Today

Finish Linear Regression:
Best linear function prediction of Y given X.

MMSE: Best Function that predicts Y from S.
Conditional Expectation.
Applications to random processes.

LLSE
Theorem
Consider two RVs X, Y with a given distribution Pr[X = x,Y = y].
Then, cov(X,Y)
LIY|X] =V = E[Y]+ 22 (X — E[X]).
Proof 1: [YIX] (vl var(X) ( «[ )
Y-V =(Y—E[Y]) - LG (X~ E[X]). E[Y V]~ 0by linearity.

Also, E[(Y — V)X] = 0. after a bit of algebra. (See next slide.)
Combine brown inequalities: £[(V — V)(c+dX)] = 0 for any ¢,d.

Since: V:atﬁ)gforsome o,f,s03c,d st ?—a—bX:cH-dX.
Then, E[(Y - Y)(Y —a—bX)]=0,va,b. Now,
E[(Y—a—bX)A]=E[(Y- Y+ V—a—bX)

= E[(Y - V)?|+E[(Y-a—bX)?]+0>E[(Y- V)2

This shows that E[(Y — ¥)2] < E[(Y —a—bX)?], for all (a,b).
Thus V is the LLSE. O

A Bit of Algebra

Y=V = (Y= ElY]) - a5 X — EIX).
Hence, E[Y — ¥] = 0. We want to show that E[(Y — ¥)X] = 0.
Note that R R

E[(Y=Y)X] = E[(Y - Y)(X-E[X])],
because E[(Y — ¥V)E[X]] = 0.
Now,

E[(Y - ¥)(X - E[X])]

— El(Y - V)X - £ - ST - Eppx - £pa)
=0 cov(X,Y) - %)[()’(]Y)var[X] =0. O

*) Recall that cov(X. Y) = E[(X — E[X])(Y — E[Y])] and
var[X] = E[(X — E[X])?].

Estimation Error

We saw that the LLSE of Y given X is

cov(X,Y)

Ly|X]=V= EYI+ o0

(X —E[X]).

How good is this estimator?
Or what is the mean squared estimation error?

We find

E[|Y - L[Y|X][] = E[(Y — E[Y] - (cov(X, Y)/var(X))(X — E[X]))?]
= E[(Y - E[Y])?] - 2(cov(X, Y)/var(X))E[(Y — E[Y])(X - E[X])]
+(cov(X, Y)/var(X))?E[(X — E[X])?]
2
=var(Y)— 700:;:2’)2;) .

Without observations, the estimate is E[Y]. The error is var(Y). Observing X
reduces the error.

Estimation Error: A Picture
We saw that cov(X,Y)

LYIX) = ¥ = Y]+ =2 (X = XD
and 2
E[|Y — L[Y|X]P] = var(Y) - %

Here is a picture when E[X] =0,E[Y] =0:
Dimensions correspond to sample points, uniform sample space.

cov(X,Y)?

P = var(y) -
I = var var(X)

. /\
| = var(Y \ L
2 = var(¥) y
\ X

P cov(X,Y)?
var(X)

Vector Y at dimension w is % Y(o)

Linear Regression Examples

Example 1:
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Linear Regression Examples

Example 2:

We find:
E[X]=0;E[Y]=0; E[X?| =1/2, E[XY] =1/2;
var[X] = E[X?] - E[X]? =1/2;cov(X, Y) = E[XY] - E[X]E[Y] =1/2;

CovX. ¥) x _ Epxg) = X.

LR: ¥ = E[Y]+ var(X]

Linear Regression Examples

Example 3:

We find:
E[X] =0; E[Y] = 0; E[X?| = 1/2; E[XY] = —1/2;

var[X] = E[X?] — E[X]? = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] = —1/2;

cov(X,Y)

LR: ?:E[Y]+T[X]

(X—E[X])=—X.

Linear Regression Examples

Example 4:
v
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We find:

E[X]=3;E[Y] =25;E[X?] = (3/15)(1+ 22 + 32 + 42 + 52) = 11;
EIXY]=(1/15)(1 x 1+1x2+---+5x 4) =8.4;
var[X] =11-9=2;cov(X,Y)=84-3x25=0.9;

LR: ¥ =25+ ?(X—S): 1.15+0.45X.

LR: Another Figure

.l(') e — conX.Y)
slope = = . X]

Note that

> the LR line goes through (E[X], E[Y])

cov(X.Y)

> its slope is <7575y -

Summary

Linear Regression

1. Linear Regression: L[Y|X] = E[Y]+ C‘,’,;(,f()’(;/)(X— E[X])

2. Non-Bayesian: minimize ¥,(Y, —a— bX,)?
3. Bayesian: minimize E[(Y —a— bX)?]

CS70: Noninear Regression.

1. Review: joint distribution, LLSE

. Quadratic Regression

. Definition of Conditional expectation

. Properties of CE

. Applications: Diluting, Mixing, Rumors
. CE = MMSE
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Review

Definitions Let X and Y be RVs on Q.
» Joint Distribution: Pr[X =x,Y =y]
> Marginal Distribution: Pr{X =x] =Y, Pr[X =x,Y =y]
> Conditional Distribution: Pr[Y = y|X = x] = ZI35eA

» LLSE: L[Y|X] = a+ bX where a,b minimize E[(Y —a— bX)?].

We saw that

cov(X,Y)

LIYIX) = EVI+ =2

(X—E[X]).

Recall the non-Bayesian and Bayesian viewpoints.

Nonlinear Regression: Motivation

There are many situations where a good guess about Y given X is
not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level,
cancer risk).

v

Bettey estimate

Our goal: explore estimates ¥ = g(X) for nonlinear functions g(-).

Quadratic Regression
Let X, Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable
Q[Y|X] = a+bX+cX?

where a, b, ¢ are chosen to minimize E[(Y —a—bX — cX?)?].
Derivation: We set to zero the derivatives w.r.t. a,b,c. We get

0 = E[Y—a—bX-cX?

0 E[(Y —a—bX —cX?)X]

0 = E[(Y—a—bX—cX?)X?]

We solve these three equations in the three unknowns (a, b, c).

Note: These equations imply that E[(Y — Q[Y|X])h(X)] = O for any
h(X) = d+eX +X2. That is, the estimation error is orthogonal to all
the quadratic functions of X. Hence, Q[Y|X] is the projection of Y
onto the space of quadratic functions of X.

Conditional Expectation

Definition Let X and Y be RVs on Q. The conditional expectation of
Y given X is defined as

E[YIX]=9(X)
where
g(x) = E[Y|X=X] ::ZyPr[Y:y|X: x].
Fact Y
E[YIX=x]=Y Y(o)Prio|X =x].
Proof: E[Y|X = x] = E[Y|Al with A= {0 : X(®) = x}. 0

Deja vu, all over again?

Have we seen this before? Yes.

Is anything new? Yes.

The idea of defining g(x) = E[Y|X = x] and then E[Y|X] = g(X).
Big deal? Quite! Simple but most convenient.

Recall that L[Y|X] = a+ bX is a function of X.

This is similar: E[Y|X] = g(X) for some function g(-).

In general, g(X) is not linear, i.e., not a+ bX. It could be that
g(X) = a+bX +cX?. Or that g(X) = 2sin(4X) 4+ exp{—3X}. Or
something else.

Properties of CE
ElYIX=x]=Y yPrlY =y|X =x]
y

Theorem
a) X, Y independent = E[Y|X] = E[Y];

(
(b) ElaY +bZ|X] = aE[Y|X]+ bE[Z|X];
(c) EL[YA(X)|X] = h(X)E[Y|X].VA();
(d) ETA(X)ETYIX]] = E[A(X) Y],YA();
(e) E[E[Y|X]] = E[Y].
Proof:

(a),(b) Obvious

(©) E[Yh(X)|X =x] =Y Y(0)h(X(w))Pr[ow|X = x]

=Y Y(@)h(x)Pr[o|X = x] = h(x)E[Y|X = x]




Properties of CE
E[YIX=x]=Y yPrlY =y|X =x]
y

Theorem

(a) X, Y independent = E[Y|X] = E[Y];
(b) E[aY +bZ|X] = aE[Y|X] + bE[Z|X];
(©) E[Yh(X)|X] = h(X)E[Y|X],Vh(-);

(d) E[(X)E[Y|X]] = E[n(X) Y], Vh(-);
(e) E[ETYIX]] = E[Y].

Proof: (continued)
d) E[A(X)E[Y|X]] = ):h(x)E[Y|X = X]Pr[X = x]

=Y h(x)Y yPr[Y = y|X = x]Pr[X = x]
X iz

:Zh(x)):yPF[X:X,y:J’]

=Y K yPr[X X,y =yl =E[RX)Y].

Xy

Properties of CE

E[Y|X=x]=Y yPr[Y =y|X =x]
Iz

Theorem

(a) X, Y independent = E[Y|X] = E[Y];
(b) E[aY +bZ|X] = aE[Y|X]+ bE[Z|X];
(¢) E[YN(X)|X] = h(X)ETY|X],Vh(-);
Ed; E[h(X )E[Y\X]]—E[h( )Y1.vh();

Proof: (continued)
(e) Let h(X)=1in(d).

Properties of CE

Theorem

) X, Y independent = E[Y|X] = E[Y];
) E[aY +bZ|X] = aE[Y|X]+ bE[Z|X];
) E[YA(X)|X] = h(X)E[Y|X],¥h(");

) E[h(X)E[Y|X]] = E[N(X)Y],Vh(-);

) E[E[Y|X]] = E[Y].

Note that (d) says that
E[(Y — E[Y|XDh(X)] =0.

We say that the estimation error Y — E[Y|X] is orthogonal to every
function h(X) of X.

We call this the projection property. More about this later.

Application: Calculating E[Y|X]

Let X,Y,Z be i.i.d. with mean 0 and variance 1. We want to calculate

E[2+5X +7XY +11X2 +13X322|X].

We find

E[24+5X+7XY +11X2+13X322|X]
=24+ 5X+7XE[Y|X]+11X2 +13X3E[Z2|X]
=24+ 5X+7XE[Y]+11X2 +13X3E[Z?
=24 5X+11X%+13X3(var[Z] + E[Z]?)
=245X+11X24+13Xx5.

Application: Diluting

8 8 8
HrExEaE

a=N-1 N -1

red halls

Each step, pick ball from well-mixed urn. Replace with blue ball.

Let X, be the number of red balls in the urn at step n.
What is E[Xp]?
Given X, = m, Xp.1 =m—1w.p. m/N (if you pick a red ball)
and X,.1 = m otherwise. Hence,

E[Xn1|Xn = m] = m—(m/N) = m(N—1)/N = Xpp.,
with p := (N —1)/N. Consequently,

E[Xn11] = E[E[Xn+1|Xa]]l = pE[Xn], n > 1.
N-1

— E[Xa] =p" "E[X4] = N(T)H,n >1.

Diluting
Here is a plot:
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Diluting

By analyzing E[X,1|Xn], we found that E[Xn] = N(¥51)"",n> 1.

Here is another argument for that result.
Consider one particular red ball, say ball k.

Each step, it remains red w.p. (N —1)/N, if different ball picked. —
the probability still red at step nis [(N—1)/N]™'. Define:

Yn(k) = 1{ball k is red at step n}.
Then, X, = Ya(1)+---+ Ya(N). Hence,

E[Xn] E[Yn(1)+---+ Ya(N)] = NE[Yn(1)]

NPr[Y,(1) =1] = N[(N—1)/N]"".

Application: Mixing

=N-1

red balls

Each step, pick ball from each well-mixed urn. Transfer it to other urn.

Let X, be the number of red balls in the bottom urn at step n.

What is E[Xj]?

Given X, =m, Xp .1 =m+1wp. pand X,,.1 =m—1w.p. q

where p = (1—m/N)? (B goes up, R down)

and g = (m/N)? (R goes up, B down).

Thus,

EXnit|Xnl=Xn+p—q=Xn+1-2Xy/N=1+pXn, p:=(1-2/N).

Mixing

We saw that E[X.1|Xn] = 1+pXn, p:=(1—-2/N).
Does that make sense?

Hence,
E[Xai1] = 1+ pE[X]
E[Xe] = 1+pN; E[Xs] = 1+p(1+pN) = 14p +p°N
E[Xs)=1+p(1+p+p?N)=1+p+p2+p°N
EXa=14p+---+p"2+p"'N.

Hence,

Dl =T N>
n] = T—p p n=1.

Application: Mixing

Here is the plot.
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Application: Going Viral

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).
You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

o O (@] o] Xy=3
\

‘O @ O OHO (O ] OH. o @ .‘X~1:

In this example, d = 4.

Application: Going Viral

00w o] [opas]ns

‘o ® O o”o o e OH. o e o‘f\'x:-')

Fact: Number of tweets X =Y ;;_; X, where X, is tweets in level n.
Then, E[X] <« iff pd < 1.

Proof:

Given X, = k, X1 = B(kd,p). Hence, E[X,.1|Xn = k] = kpd.
Thus, E[Xp1|Xn] = pdX,. Consequently, E[X] = (pd)" ', n>1.
If pd < 1, then E[X; + -+ Xn] < (1 —pd)~" = E[X] < (1 - pd)~!

If pd > 1, then for all C one can find n s.t.
E[X]> E[X;1+---+Xy] > C.

In fact, one can show that pd > 1 = Pr[X =] > 0.




Application: Going Viral

|o ® O 0"0 o e CH. o e o‘.\’ 5

An easy extension: Assume that everyone has an independent
number D; of friends with E[D;] = d. Then, the same fact holds.

To see this, note that given X, = k, and given the numbers of friends
Dy = d4,...,Dx = di of these X, people, one has
Xni1 = B(dy +---+dk,p). Hence,

E[Xn+1[Xn:k,D1 :d1,.“,Dk:dk] :p(d1 +-~-+dk)A
Thus, E[Xn1|Xn =k, Dy,...,D¢] = p(Dy + -+ D).
Consequently, E[X,.1| X, = k] = E[p(D; +---+ Dg)] = pdk.
Finally, E[Xn1|Xn] = pdXn, and E[Xp.1] = pdE[Xp].

We conclude as before.

Application: Wald’s |dentity

Here is an extension of an identity we used in the last slide.
Theorem Wald’s Identity
Assume that X1, X,... and Z are independent, where

Z takes values in {0,1,2,...}

and E[X;] =pu foralln> 1.

Then,
E[Xi+---+ Xz] = uE[Z].

Proof:

E[Xy +---+ Xz|Z = k] = pk.

Thus, E[Xi +---+ Xz|Z] = uZ.

Hence, E[Xy +---+ X7] = E[uZ] = nE[Z].

CE = MMSE

Theorem

E[Y|X] is the ‘best’ guess about Y based on X.
Specifically, it is the function g(X) of X that

minimizes E[(Y — g(X))?].

E[Y|X]
e

Linear Regression

. X

CE = MMSE

Theorem CE = MMSE

9(X) := E[Y|X] is the function of X that minimizes E[(Y — g(X))?].
Proof:
Let h(X) be any function of X. Then

E[(Y—h(X))’] = EL(Y~g(X)+g(X)—h(X))]
EN(Y —g(X))?] + E[(9(X) ~ h(X))?]
+2E[(Y = g(X))(9(X) = h(X))].

But,

E[(Y —g(X))(g(X)— h(X))] = 0 by the projection property.

Thus, E[(Y — h(X))?] > E[(Y - g(X))?]. 0

E[Y|X] and L[Y|X] as projections

v

{e+dX e, de R}

o LyIx) de(X)g(): R— R}

L[Y|X] is the projection of Y on {a+ bX,a,b e R}: LLSE
E[Y|X] is the projection of Y on {g(X),g(:) : ® — R}: MMSE.

Summary

‘ Conditional Expectation ‘

> Definition: E[Y|X] =X, yPr[Y = y|X = x]

> Properties: Linearity, Y — E[Y|X] L h(X); E[E[Y|X]] = E[Y]

» Some Applications:

» Calculating E[Y|X]

Diluting
Mixing
Rumors
Wald

vyVY vy

» MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)




