Today

Finish Linear Regression:
Best linear function prediction of Y given X.
MMSE: Best Function that predicts Y from S.
Conditional Expectation
Applications to random processes.

Estimation Error

We saw that the LLSE of Y given X is

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

How good is this estimator?
Or what is the mean squared estimation error?
We find
$E\left[|Y-L[Y \mid X]|^{2}\right]=E\left[(Y-E[Y]-(\operatorname{cov}(X, Y) / \operatorname{var}(X))(X-E[X]))^{2}\right]$
$=E\left[(Y-E[Y])^{2}\right]-2(\operatorname{cov}(X, Y) / \operatorname{var}(X)) E[(Y-E[Y])(X-E[X])]$ $+(\operatorname{cov}(X, Y) / \operatorname{var}(X))^{2} E\left[(X-E[X])^{2}\right]$

$$
=\operatorname{var}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\operatorname{var}(X)} .
$$

Without observations, the estimate is $E[Y]$. The error is $\operatorname{var}(Y)$. Observing X reduces the error.

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$
Then,

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

Proof 1: $\quad L[Y \mid X]=\hat{Y}=E[Y]+\operatorname{var}(X)(X-E[X])$.
$Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) . \quad E[Y-\hat{Y}]=0$ by linearity
Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra. (See next slide.)
Combine brown inequalities: $E[(Y-\hat{Y})(c+d X)]=0$ for any c, d. Since: $\hat{Y}=\alpha+\beta X$ for some α, β, so $\exists c, d$ s.t. $\hat{Y}-a-b X=c+d X$. Then, $E[(Y-\hat{Y})(\hat{Y}-a-b X)]=0, \forall a, b$. Now,

$$
\begin{aligned}
& E\left[(Y-a-b X)^{2}\right]=E\left[(Y-\hat{Y}+\hat{Y}-a-b X)^{2}\right] \\
& \quad=E\left[(Y-\hat{Y})^{2}\right]+E\left[(\hat{Y}-a-b X)^{2}\right]+0 \geq E\left[(Y-\hat{Y})^{2}\right] .
\end{aligned}
$$

This shows that $E\left[(Y-\hat{Y})^{2}\right] \leq E\left[(Y-a-b X)^{2}\right]$, for all (a, b). Thus \hat{Y} is the LLSE
\square

Estimation Error: A Picture

We saw that

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

and

$$
E\left[|Y-L[Y \mid X]|^{2}\right]=\operatorname{var}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\operatorname{var}(X)}
$$

Here is a picture when $E[X]=0, E[Y]=0$:
Dimensions correspond to sample points, uniform sample space.

Vector Y at dimension ω is $\frac{1}{\sqrt{\Omega}} Y(\omega)$

A Bit of Algebra

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X]) .
$$

Hence, $E[Y-\hat{Y}]=0$. We want to show that $E[(Y-\hat{Y}) X]=0$.
Note that

$$
E[(Y-\hat{Y}) X]=E[(Y-\hat{Y})(X-E[X])]
$$

because $E[(Y-\hat{Y}) E[X]]=0$.
Now,

$$
\begin{aligned}
& E[(Y-\hat{Y})(X-E[X])] \\
& \quad=E[(Y-E[Y])(X-E[X])]-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]} E[(X-E[X])(X-E[X])] \\
& \quad=^{(*)} \operatorname{cov}(X, Y)-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]} \operatorname{var}[X]=0 . \quad \square
\end{aligned}
$$

${ }^{(*)}$ Recall that $\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]$ and $\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]$.

Linear Regression Examples

Example 1 :

Linear Regression Examples

Example 2:

We find:
$E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=1 / 2 ;$
$\operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=1 / 2$;
$\mathrm{LR}: \hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])=X$.

LR: Another Figure

Note that

- the LR line goes through $(E[X], E[Y])$
- its slope is $\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}$.

Linear Regression Examples

Example 3:

We find:
$E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=-1 / 2 ;$
$\operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=-1 / 2 ;$
LR: $\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])=-X$.

Summary

Linear Regression

1. Linear Regression: $L[Y \mid X]=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])$
2. Non-Bayesian: minimize $\sum_{n}\left(Y_{n}-a-b X_{n}\right)^{2}$
3. Bayesian: minimize $E\left[(Y-a-b X)^{2}\right]$

Linear Regression Examples Example 4:

We find:
$E[X]=3 ; E[Y]=2.5 ; E\left[X^{2}\right]=(3 / 15)\left(1+2^{2}+3^{2}+4^{2}+5^{2}\right)=11 ;$
$E[X Y]=(1 / 15)(1 \times 1+1 \times 2+\cdots+5 \times 4)=8.4$;
$\operatorname{var}[X]=11-9=2 ; \operatorname{cov}(X, Y)=8.4-3 \times 2.5=0.9$
LR: $\hat{Y}=2.5+\frac{0.9}{2}(X-3)=1.15+0.45 X$.
CS70: Noninear Regression.

1. Review: joint distribution, LLSE
2. Quadratic Regression
3. Definition of Conditional expectation
4. Properties of CE
5. Applications: Diluting, Mixing, Rumors
6. $\mathrm{CE}=\mathrm{MMSE}$

Review

Definitions Let X and Y be RVs on Ω.

- Joint Distribution: $\operatorname{Pr}[X=x, Y=y]$
- Marginal Distribution: $\operatorname{Pr}[X=x]=\sum_{y} \operatorname{Pr}[X=x, Y=y]$
- Conditional Distribution: $\operatorname{Pr}[Y=y \mid X=x]=\frac{\operatorname{Pr}[X=x, Y=y]}{\operatorname{Pr} X=x]}$
- LLSE: $L[Y \mid X]=a+b X$ where a, b minimize $E\left[(Y-a-b X)^{2}\right]$.

We saw that

$$
L[Y \mid X]=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X]) .
$$

Recall the non-Bayesian and Bayesian viewpoints.

Conditional Expectation

Definition Let X and Y be RVs on Ω. The conditional expectation of Y given X is defined as

$$
E[Y \mid X]=g(X)
$$

where
Fact

$$
\begin{gathered}
g(x):=E[Y \mid X=x]:=\sum_{y} y \operatorname{Pr}[Y=y \mid X=x] . \\
E[Y \mid X=x]=\sum_{\omega} Y(\omega) \operatorname{Pr}[\omega \mid X=x] .
\end{gathered}
$$

Proof: $E[Y \mid X=x]=E[Y \mid A]$ with $A=\{\omega: X(\omega)=x\}$.

Nonlinear Regression: Motivation

There are many situations where a good guess about Y given X is not linear.
E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).

Our goal: explore estimates $\hat{Y}=g(X)$ for nonlinear functions $g(\cdot)$

Deja vu, all over again?

Have we seen this before? Yes

Is anything new? Yes.
The idea of defining $g(x)=E[Y \mid X=x]$ and then $E[Y \mid X]=g(X)$.
Big deal? Quite! Simple but most convenient.
Recall that $L[Y \mid X]=a+b X$ is a function of X
This is similar: $E[Y \mid X]=g(X)$ for some function $g(\cdot)$.
In general, $g(X)$ is not linear, i.e., not $a+b X$. It could be that $g(X)=a+b X+c X^{2}$. Or that $g(X)=2 \sin (4 X)+\exp \{-3 X\}$. Or something else.

Quadratic Regression

Let X, Y be two random variables defined on the same probability space.
Definition: The quadratic regression of Y over X is the random variable

$$
Q[Y \mid X]=a+b X+c X^{2}
$$

where a, b, c are chosen to minimize $E\left[\left(Y-a-b X-c X^{2}\right)^{2}\right]$.
Derivation: We set to zero the derivatives w.r.t. a, b, c. We get

$$
\begin{aligned}
& 0=E\left[Y-a-b X-c X^{2}\right] \\
& 0=E\left[\left(Y-a-b X-c X^{2}\right) X\right] \\
& 0=E\left[\left(Y-a-b X-c X^{2}\right) X^{2}\right]
\end{aligned}
$$

We solve these three equations in the three unknowns (a, b, c).
Note: These equations imply that $E[(Y-Q[Y \mid X]) h(X)]=0$ for any $h(X)=d+e X+f X^{2}$. That is, the estimation error is orthogonal to all he quadratic functions of X. Hence, $Q[Y \mid X]$ is the projection of Y anto the space of quadratic functions of X

Properties of CE

$$
E[Y \mid X=x]=\sum_{y} y \operatorname{Pr}[Y=y \mid X=x]
$$

Theorem
(a) X, Y independent $\Rightarrow E[Y \mid X]=E[Y]$;
(b) $E[a Y+b Z \mid X]=a E[Y \mid X]+b E[Z \mid X]$
(c) $E[Y h(X) \mid X]=h(X) E[Y \mid X], \forall h(\cdot)$
(d) $E[h(X) E[Y \mid X]]=E[h(X) Y], \forall h(\cdot)$
(e) $E[E[Y \mid X]]=E[Y]$.

Proof:
(a),(b) Obvious
(c) $E[Y h(X) \mid X=x]=\sum_{\omega} Y(\omega) h(X(\omega)) \operatorname{Pr}[\omega \mid X=x]$

$$
=\sum_{\omega} Y(\omega) h(x) \operatorname{Pr}[\omega \mid X=x]=h(x) E[Y \mid X=x]
$$

Properties of CE

$$
E[Y \mid X=x]=\sum_{y} y P r[Y=y \mid X=x]
$$

Theorem
(a) X, Y independent $\Rightarrow E[Y \mid X]=E[Y]$;
(b) $E[a Y+b Z \mid X]=a E[Y \mid X]+b E[Z \mid X]$;
(c) $E[Y h(X) \mid X]=h(X) E[Y \mid X], \forall h(\cdot)$;
(d) $E[h(X) E[Y \mid X]]=E[h(X) Y], \forall h(\cdot)$;
(e) $E[E[Y \mid X]]=E[Y]$.

Proof: (continued)
(d) $E[h(X) E[Y \mid X]]=\sum_{x} h(x) E[Y \mid X=x] \operatorname{Pr}[X=x]$

$$
\begin{aligned}
& =\sum_{x} h(x) \sum_{y} y \operatorname{Pr}[Y=y \mid X=x] \operatorname{Pr}[X=x] \\
& =\sum_{x} h(x) \sum_{y} y \operatorname{Pr}[X=x, y=y] \\
& =\sum_{x, y} h(x) y \operatorname{Pr}[X=x, y=y]=E[h(X) Y] .
\end{aligned}
$$

Application: Calculating $E[Y \mid X]$

Let X, Y, Z be i.i.d. with mean 0 and variance 1 . We want to calculate
$E\left[2+5 X+7 X Y+11 X^{2}+13 X^{3} Z^{2} \mid X\right]$.

We find
$E\left[2+5 X+7 X Y+11 X^{2}+13 X^{3} Z^{2} \mid X\right]$
$=2+5 X+7 X E[Y \mid X]+11 X^{2}+13 X^{3} E\left[Z^{2} \mid X\right]$
$=2+5 X+7 X E[Y]+11 X^{2}+13 X^{3} E\left[Z^{2}\right]$
$=2+5 X+11 X^{2}+13 X^{3}\left(\operatorname{var}[Z]+E[Z]^{2}\right)$
$=2+5 X+11 X^{2}+13 X^{3}$

Properties of CE

$$
E[Y \mid X=x]=\sum_{y} y \operatorname{Pr}[Y=y \mid X=x]
$$

Theorem

(a) X, Y independent $\Rightarrow E[Y \mid X]=E[Y]$
(b) $E[a Y+b Z \mid X]=a E[Y \mid X]+b E[Z \mid X]$
(b) $E[a Y+b Z \mid X]=a E[Y \mid X]+b E[Z \mid X$
(c) $E[Y h(X) \mid X]=h(X) E[Y \mid X], \forall h(\cdot) ;$
(e) $E[E[Y \mid X]]=E[Y]$.

Proof: (continued)
(e) Let $h(X)=1$ in (d)

Application: Diluting

$X_{1}=N$
red balls
Each step, pick ball from well-mixed urn. Replace with blue ball Let X_{n} be the number of red balls in the urn at step n.
What is $E\left[X_{n}\right]$?
Given $X_{n}=m, X_{n+1}=m-1$ w.p. m / N (if you pick a red ball) and $X_{n+1}=m$ otherwise. Hence,

$$
E\left[X_{n+1} \mid X_{n}=m\right]=m-(m / N)=m(N-1) / N=X_{n} \rho,
$$

with $\rho:=(N-1) / N$. Consequently,
$E\left[X_{n+1}\right]=E\left[E\left[X_{n+1} \mid X_{n}\right]\right]=\rho E\left[X_{n}\right], n \geq 1$.

$$
\Longrightarrow E\left[X_{n}\right]=\rho^{n-1} E\left[X_{1}\right]=N\left(\frac{N-1}{N}\right)^{n-1}, n \geq 1 .
$$

Properties of CE

,

(a) X, Y independent $\Rightarrow E[Y \mid X]=E[Y$
(b) $E[a Y+b Z \mid X]=a E[Y \mid X]+b E[Z \mid X$
c) $E[Y h(X) \mid X]=h(X) E[Y \mid X], \forall h(\cdot)$;
d) $E[h(X) E[Y \mid X]]=E[h(X) Y], \forall h(\cdot)$
(e) $E[E[Y \mid X]]=E[Y]$.

Note that (d) says that

$$
E[(Y-E[Y \mid X]) h(X)]=0
$$

We say that the estimation error $Y-E[Y \mid X]$ is orthogonal to every function $h(X)$ of X.

We call this the projection property. More about this later

Diluting

Here is a plot:

Diluting

By analyzing $E\left[X_{n+1} \mid X_{n}\right]$, we found that $E\left[X_{n}\right]=N\left(\frac{N-1}{N}\right)^{n-1}, n \geq 1$ Here is another argument for that result.
Consider one particular red ball, say ball k.
Each step, it remains red w.p. $(N-1) / N$, if different ball picked. \Longrightarrow the probability still red at step n is $[(N-1) / N]^{n-1}$. Define:

$$
Y_{n}(k)=1\{\text { ball } k \text { is red at step } n\} .
$$

Then, $X_{n}=Y_{n}(1)+\cdots+Y_{n}(N)$. Hence,

$$
\begin{aligned}
E\left[X_{n}\right] & =E\left[Y_{n}(1)+\cdots+Y_{n}(N)\right]=N E\left[Y_{n}(1)\right] \\
& =N \operatorname{Pr}\left[Y_{n}(1)=1\right]=N[(N-1) / N]^{n-1} .
\end{aligned}
$$

Application: Mixing

Here is the plot.

Application: Mixing

Each step, pick ball from each well-mixed urn. Transfer it to other urn. Let X_{n} be the number of red balls in the bottom urn at step n. What is $E\left[X_{n}\right]$?
Given $X_{n}=m, X_{n+1}=m+1$ w.p. p and $X_{n+1}=m-1$ w.p. q
where $p=(1-m / N)^{2}$ (B goes up, R down
and $q=(m / N)^{2}$ (R goes up, B down).
Thus,
$E\left[X_{n+1} \mid X_{n}\right]=X_{n}+p-q=X_{n}+1-2 X_{n} / N=1+\rho X_{n}, \rho:=(1-2 / N)$.

Application: Going Vira

Consider a social network (e.g., Twitter)
You start a rumor (e.g., Rao is bad at making copies).
You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.
Does the rumor spread? Does it die out (mercifully)?

In this example, $d=4$.

Mixing

We saw that $E\left[X_{n}, \mid X_{n}\right]=1+\rho X_{n}, \rho:=(1-2 / N)$
Does that make sense?
Hence,
$E\left[X_{n+1}\right]=1+\rho E\left[X_{n}\right]$
$E\left[X_{2}\right]=1+\rho N ; E\left[X_{3}\right]=1+\rho(1+\rho N)=1+\rho+\rho^{2} N$ $E\left[X_{4}\right]=1+\rho\left(1+\rho+\rho^{2} N\right)=1+\rho+\rho^{2}+\rho^{3} N$ $E\left[X_{n}\right]=1+\rho+\cdots+\rho^{n-2}+\rho^{n-1} N$.

Hence,

$$
E\left[X_{n}\right]=\frac{1-\rho^{n-1}}{1-\rho}+\rho^{n-1} N, n \geq 1 .
$$

Application: Going Viral

Fact: Number of tweets $X=\sum_{n=1}^{\infty} X_{n}$ where X_{n} is tweets in level n. Then, $E[X]<\infty$ iff $p d<1$.
Proof:
Given $X_{n}=k, X_{n+1}=B(k d, p)$. Hence, $E\left[X_{n+1} \mid X_{n}=k\right]=k p d$.
Thus, $E\left[X_{n+1} \mid X_{n}\right]=p d X_{n}$. Consequently, $E\left[X_{n}\right]=(p d)^{n-1}, n \geq 1$.
If $p d<1$, then $E\left[X_{1}+\cdots+X_{n}\right] \leq(1-p d)^{-1} \Longrightarrow E[X] \leq(1-p d)^{-1}$.
f $p d \geq 1$, then for all C one can find n s.t.
$E[X] \geq E\left[X_{1}+\cdots+X_{n}\right] \geq C$.
In fact, one can show that $p d \geq 1 \Longrightarrow \operatorname{Pr}[X=\infty]>0$.

Application: Going Viral

An easy extension: Assume that everyone has an independent number D_{i} of friends with $E\left[D_{i}\right]=d$. Then, the same fact holds.
To see this, note that given $X_{n}=k$, and given the numbers of friends $D_{1}=d_{1}, \ldots, D_{k}=d_{k}$ of these X_{n} people, one has
$x_{n+1}=B\left(d_{1}+\cdots+d_{k}, p\right)$. Hence

$$
E\left[X_{n+1} \mid X_{n}=k, D_{1}=d_{1}, \ldots, D_{k}=d_{k}\right]=p\left(d_{1}+\cdots+d_{k}\right) .
$$

Thus, $E\left[X_{n+1} \mid X_{n}=k, D_{1}, \ldots, D_{k}\right]=p\left(D_{1}+\cdots+D_{k}\right)$.
Consequently, $E\left[X_{n+1} \mid X_{n}=k\right]=E\left[p\left(D_{1}+\cdots+D_{k}\right)\right]=p d k$
Finally, $E\left[X_{n+1} \mid X_{n}\right]=p d X_{n}$, and $E\left[X_{n+1}\right]=p d E\left[X_{n}\right]$. We conclude as before.

CE = MMSE

Theorem CE $=$ MMSE

$g(X):=E[Y \mid X]$ is the function of X that minimizes $E\left[(Y-g(X))^{2}\right]$.
Proof:
Let $h(X)$ be any function of X. Then

$$
\begin{aligned}
E\left[(Y-h(X))^{2}\right]= & E\left[(Y-g(X)+g(X)-h(X))^{2}\right] \\
= & E\left[(Y-g(X))^{2}\right]+E\left[(g(X)-h(X))^{2}\right] \\
& +2 E[(Y-g(X))(g(X)-h(X))] .
\end{aligned}
$$

But,
$E[(Y-g(X))(g(X)-h(X))]=0$ by the projection property.
Thus, $E\left[(Y-h(X))^{2}\right] \geq E\left[(Y-g(X))^{2}\right]$.

Application: Wald's Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that X_{1}, X_{2}, \ldots and Z are independent, where
Z takes values in $\{0,1,2, \ldots\}$
and $E\left[X_{n}\right]=\mu$ for all $n \geq 1$.
Then,

$$
E\left[X_{1}+\cdots+X_{z}\right]=\mu E[Z]
$$

Proof:
$E\left[X_{1}+\cdots+X_{Z} \mid Z=k\right]=\mu k$.
Thus, $E\left[X_{1}+\cdots+X_{Z} \mid Z\right]=\mu Z$.
Hence, $E\left[X_{1}+\cdots+X_{Z}\right]=E[\mu Z]=\mu E[Z]$.
$E[Y \mid X]$ and $L[Y \mid X]$ as projections

$L[Y \mid X]$ is the projection of Y on $\{a+b X, a, b \in \Re\}$: LLSE $E[Y \mid X]$ is the projection of Y on $\{g(X), g(\cdot): \Re \rightarrow \Re\}$: MMSE.

CE = MMSE

Theorem
$E[Y \mid X]$ is the 'best' guess about Y based on X
Specifically, it is the function $g(X)$ of X that
minimizes $E\left[(Y-g(X))^{2}\right]$

Summary

Conditional Expectation

- Definition: $E[Y \mid X]:=\sum_{y} y \operatorname{Pr}[Y=y \mid X=x]$
- Properties: Linearity, $Y-E[Y \mid X] \perp h(X) ; E[E[Y \mid X]]=E[Y$
- Some Applications:
- Calculating $E[Y \mid X]$
- Diluting
- Mixing
- Rumor
- Wald
- MMSE: $E[Y \mid X]$ minimizes $E\left[(Y-g(X))^{2}\right]$ over all $g(\cdot)$

