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Confidence?

I You flip a coin once and get H.

Do think that Pr [H] = 1?

I You flip a coin 10 times and get 5 Hs.

Are you sure that Pr [H] = 0.5?

I You flip a coin 106 times and get 35% of Hs.

How much are you willing to bet that Pr [H] is exactly 0.35?

How much are you willing to bet that Pr [H] ∈ [0.3,0.4]?

Did different exam rooms perform differently? (6 afraid of 7?)

More generally, you estimate an unknown quantity θ .

Your estimate is θ̂ .

How much confidence do you have in your estimate?



Confidence?

Confidence is essential is many applications:

I How effective is a medication?

I Are we sure of the milage of a car?

I Can we guarantee the lifespan of a device?

I We simulated a system. Do we trust the simulation results?

I Is an algorithm guaranteed to be fast?

I Do we know that a program has no bug?

As scientists and engineers, be convinced of this fact:

An estimate without confidence level is useless!



Confidence Interval
The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a,b] is a 95%-confidence interval for an unknown quantity
θ if

Pr [θ ∈ [a,b]]≥ 95%.

The interval [a,b] is calculated on the basis of observations.

Here is a typical framework. Assume that X1,X2, . . . ,Xn are i.i.d. and
have a distribution that depends on some parameter θ .

For instance, Xn = B(θ).

Thus, more precisely, given θ , the random variables Xn are i.i.d. with
a known distribution (that depends on θ ).

I We observe X1, . . . ,Xn

I We calculate a = a(X1, . . . ,Xn) and b = b(X1, . . . ,Xn)

I If we can guarantee that Pr [θ ∈ [a,b]]≥ 95%, then [a,b] is a
95%-CI for θ .



Confidence Interval: Applications

I We poll 1000 people.

I Among those, 48% declare they will vote for Trump.
I We do some calculations ....
I We conclude that [0.43,0.53] is a 95%-CI for the fraction of

all the voters who will vote for Trump.

I We observe 1,000 heart valve replacements that were
performed by Dr. Bill.

I Among those, 35 patients died during surgery. (Sad
example!)

I We do some calculations ...
I We conclude that [1%,5%] is a 95%-CI for the probability of

dying during that surgery by Dr. Bill.
I We do a similar calculation for Dr. Fred.
I We find that [8%,12%] is a 95%-CI for Dr. Fred’s surgery.
I What surgeon do you choose?



Coin Flips: Intuition
Say that you flip a coin n = 100
times and observe 20 Hs.

If p := Pr [H] = 0.5, this event
is very unlikely.

Intuitively, if is unlikely that the
fraction of Hs, say An, differs a
lot from p := Pr [H].

Thus, it is unlikely that p differs
a lot from An. Hence, one
should be able to build a
confidence interval
[An− ε,An + ε] for p.

The key idea is that |An−p| ≤ ε ⇔ p ∈ [An− ε,An + ε].

Thus, Pr [|An−p|> ε]≤ 5%⇔ Pr [p ∈ [An− ε,An + ε]]≥ 95%.

It remains to find ε such that Pr [|An−p|> ε]≤ 5%.

One approach: Chebyshev.



Confidence Interval with Chebyshev

I Flip a coin n times. Let An be the fraction of Hs.

I Can we find ε such that Pr [|An−p|> ε]≤ 5%?

Using Chebyshev, we will see that ε = 2.25 1√
n works. Thus

[An−
2.25√

n
,An +

2.25√
n
] is a 95%-CI for p.

Example: If n = 1500, then Pr [p ∈ [An−0.05,An +0.05]]≥ 95%.

In fact, a = 1√
n works, so that with n = 1,500 one has

Pr [p ∈ [An−0.02,An +0.02]]≥ 95%.



Confidence Intervals: Result

Theorem:
Let Xn be i.i.d. with mean µ and variance σ2.
Define An = X1+···+Xn

n . Then,

Pr [µ ∈ [An−4.5
σ√
n
,An +4.5

σ√
n
]]≥ 95%.

Thus, [An−4.5 σ√
n ,An +4.5 σ√

n ]] is a 95%-CI for µ.

Example: Let Xn = 1{ coin n yields H}. Then

µ = E [Xn] = p := Pr [H]. Also, σ
2 = var(Xn) = p(1−p)≤ 1

4
.

Hence, [An−4.51/2√
n ,An +4.51/2√

n ]] is a 95%-CI for p.



Confidence Interval: Analysis
We prove the theorem, i.e., that An±4.5σ/

√
n is a 95%-CI for µ.

From Chebyshev:

Pr [|An−µ| ≥ 4.5σ/
√

n]≤ var(An)

[4.5σ/
√

n]2
=

n
20σ2 var(An).

Now,

var(An) = var(
X1 + · · ·+Xn

n
) =

1
n2 var(X1 + · · ·+Xn)

=
1
n2 ×n.var(X1) =

1
n

σ
2.

Hence,

Pr [|An−µ| ≥ 4.5σ/
√

n]≤ n
20σ2 ×

1
n

σ
2 = 5%.

Thus,
Pr [|An−µ| ≤ 4.5σ/

√
n]≥ 95%.

Hence,
Pr [µ ∈ [An−4.5σ/

√
n,An +4.5σ/

√
n]]≥ 95%.



Confidence interval for p in B(p)
Let Xn be i.i.d. B(p). Define An = (X1 + · · ·+Xn)/n.

Theorem:

[An−
2.25√

n
,An +

2.25√
n
] is a 95%-CI for p.

Proof:

We have just seen that

Pr [µ ∈ [An−4.5σ/
√

n,An +4.5σ/
√

n]]≥ 95%.

Here, µ = p and σ2 = p(1−p). Thus, σ2 ≤ 1
4 and σ ≤ 1

2 .

Thus,

Pr [µ ∈ [An−4.5×0.5/
√

n,An +4.5×0.5/
√

n]]≥ 95%.



Confidence interval for p in B(p)

An illustration:

Good practice: You run your simulation, or experiment. You get an
estimate. You indicate your confidence interval.



Confidence interval for p in B(p)

Improved CI: In fact, one can replace 2.25 by 1.

Quite a bit of work to get there: continuous random variables;
Gaussian; Central Limit Theorem.



Confidence Interval for 1/p in G(p)
Let Xn be i.i.d. G(p). Define An = (X1 + · · ·+Xn)/n.

Theorem:

[
An

1+4.5/
√

n
,

An

1−4.5/
√

n
] is a 95%-CI for

1
p
.

Proof: We know that

Pr [µ ∈ [An−4.5σ/
√

n,An +4.5σ/
√

n]]≥ 95%.

Here, µ = 1
p and σ =

√
1−p
p ≤ 1

p . Hence,

Pr [
1
p
∈ [An−4.5

1
p
√

n
,An +4.5

1
p
√

n
]]≥ 95%.

Now, An−4.5 1
p
√

n ≤
1
p ≤

1
p ≤ An +4.5 1

p
√

n is equivalent to

An

1+4.5/
√

n
≤ 1

p
≤ An

1−4.5/
√

n
.

Examples: [0.7A100,1.8A100] and [0.96A10000,1.05A10000].



Which Coin is Better?
You are given coin A and coin B. You want to find out which one has
a larger Pr [H]. Let pA and pB be the values of Pr [H] for the two coins.

Approach:

I Flip each coin n times.
I Let An be the fraction of Hs for coin A and Bn for coin B.
I Assume An > Bn. It is tempting to think that pA > pB.

Confidence?

Analysis: Note that

E [An−Bn] =pA−pB and var(An−Bn)=
1
n
(pA(1−pA)+pB(1−pB))≤

1
2n

.

Thus, Pr [|An−Bn− (pA−pB)|> ε]≤ 1
2nε2 , so

Pr [pA−pB ∈ [An−Bn− ε,An−Bn + ε]]≥ 1− 1
2nε2 , and

Pr [pA−pB ≥ 0]≥ 1− 1
2n(An−Bn)2 .

Example: With n = 100 and An−Bn = 0.2, Pr [pA > pB ]≥ 1− 1
8 = 0.875.



Unknown σ
For B(p), we wanted to estimate p. The CI requires σ =

√
p(1−p). We

replaced σ by an upper bound: 1/2.

In some applications, it may be OK to replace σ2 by the following sample
variance:

s2
n :=

1
n

n

∑
m=1

(Xm−An)
2.

However, in some cases, this is dangerous! The theory says it is OK if the
distribution of Xn is nice (Gaussian). This is used regularly in practice.
However, be aware of the risk.



Summary

Confidence Intervals

1. Estimates without confidence level are useless!

2. [a,b] is a 95%-CI for θ if Pr [θ ∈ [a,b]]≥ 95%.

3. Using Chebyshev: [An−4.5σ/
√

n,An +4.5σ/
√

n] is a 95%-CI for
µ.

4. Using CLT, we will replace 4.5 by 2.

5. When σ is not known, one can replace it by an upper bound.

6. Examples: B(p),G(p), which coin is better?

7. In some cases, one can replace σ by the empirical standard
deviation.



Linear Regression.

Linear Regression
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6. More examples



Linear Regression: Preamble

The best guess about Y , if we know only the distribution of Y , is E [Y ].

More precisely, the value of a that minimizes E [(Y −a)2] is a = E [Y ].

Proof:

Let Ŷ := Y −E [Y ]. Then, E [Ŷ ] = 0. So, E [Ŷ c] = 0,∀c. Now,

E [(Y −a)2] = E [(Y −E [Y ]+E [Y ]−a)2]

= E [(Ŷ +c)2] with c = E [Y ]−a

= E [Ŷ 2 +2Ŷ c+c2] = E [Ŷ 2]+2E [Ŷ c]+c2

= E [Ŷ 2]+0+c2 ≥ E [Ŷ 2].

Hence, E [(Y −a)2]≥ E [(Y −E [Y ])2],∀a.



Linear Regression: Preamble

Thus, if we want to guess the value of Y , we choose E [Y ].

Now assume we make some observation X related to Y .

How do we use that observation to improve our guess about Y ?

The idea is to use a function g(X ) of the observation to estimate Y .

The simplest function g(X ) is a constant that does not depend of X .

The next simplest function is linear: g(X ) = a+bX .

What is the best linear function? That is our next topic.

A bit later, we will consider a general function g(X ).



Linear Regression: Motivation
Example 1: 100 people.

Let (Xn,Yn) = (height, weight) of person n, for n = 1, . . . ,100:

E[Y ]

Y

X

The blue line is Y =−114.3+106.5X . (X in meters, Y in kg.)

Best linear fit: Linear Regression.



Motivation

Example 2: 15 people.

We look at two attributes: (Xn,Yn) of person n, for n = 1, . . . ,15:

The line Y = a+bX is the linear regression.



Covariance
Definition The covariance of X and Y is

cov(X ,Y ) := E [(X −E [X ])(Y −E [Y ])].

Fact
cov(X ,Y ) = E [XY ]−E [X ]E [Y ].

Proof:
Think about E [X ] = E [Y ] = 0. Just E [XY ]. ish.

For the sake of completeness.

E [(X −E [X ])(Y −E [Y ])] = E [XY −E [X ]Y −XE [Y ]+E [X ]E [Y ]]

= E [XY ]−E [X ]E [Y ]−E [X ]E [Y ]+E [X ]E [Y ]

= E [XY ]−E [X ]E [Y ].



Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y )> 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y )< 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.



Examples of Covariance

E [X ] = 1×0.15+2×0.4+3×0.45 = 1.9
E [X 2] = 12×0.15+22×0.4+32×0.45 = 5.8
E [Y ] = 1×0.2+2×0.6+3×0.2 = 2
E [XY ] = 1×0.05+1×2×0.1+ · · ·+3×3×0.2 = 4.85
cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = 1.05
var [X ] = E [X 2]−E [X ]2 = 2.19.



Properties of Covariance

cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] = E [XY ]−E [X ]E [Y ].

Fact
(a) var [X ] = cov(X ,X )
(b) X ,Y independent⇒ cov(X ,Y ) = 0
(c) cov(a+X ,b+Y ) = cov(X ,Y )
(d) cov(aX +bY ,cU +dV ) = ac ·cov(X ,U)+ad ·cov(X ,V )

+bc ·cov(Y ,U)+bd ·cov(Y ,V ).
Proof:
(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the
RVs are zero-mean. Then,

cov(aX +bY ,cU +dV ) = E [(aX +bY )(cU +dV )]

= ac ·E [XU]+ad ·E [XV ]+bc ·E [YU]+bd ·E [YV ]

= ac ·cov(X ,U)+ad ·cov(X ,V )+bc ·cov(Y ,U)+bd ·cov(Y ,V ).



Linear Regression: Non-Bayesian

Definition
Given the samples {(Xn,Yn),n = 1, . . . ,N}, the Linear Regression of
Y over X is

Ŷ = a+bX

where (a,b) minimize

N

∑
n=1

(Yn−a−bXn)
2.

Thus, Ŷn = a+bXn is our guess about Yn given Xn.
The squared error is (Yn− Ŷn)

2.
The LR minimizes the sum of the squared errors.

Why the squares and not the absolute values?
Main justification: much easier!

Note: This is a non-Bayesian formulation: there is no prior.



Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution Pr [X = x ,Y = y ], the
Linear Least Squares Estimate of Y given X is

Ŷ = a+bX =: L[Y |X ]

where (a,b) minimize

g(a,b) := E [(Y −a−bX )2].

Thus, Ŷ = a+bX is our guess about Y given X .
The squared error is (Y − Ŷ )2.
The LLSE minimizes the expected value of the squared error.

Why the squares and not the absolute values?
Main justification: much easier!

Note: This is a Bayesian formulation:
there is a prior Pr [X = x ,Y = y ].



LR: Non-Bayesian or Uniform?

Observe that

1
N

N

∑
n=1

(Yn−a−bXn)
2 = E [(Y −a−bX )2]

where one assumes that

(X ,Y ) = (Xn,Yn), w.p.
1
N

for n = 1, . . . ,N.

That is, the non-Bayesian LR is equivalent to the Bayesian LLSE that
assumes that (X ,Y ) is uniform on the set of observed samples.

Thus, we can study the two cases LR and LLSE in one shot.

However, the interpretations are different!



LLSE

Next Time.


