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Time to collect coupons

X-time to get n coupons.
Xj - time to get first coupon. Note: X; =1. E(X;) =1.
Xo - time to get second coupon after getting first.
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Review: Harmonic sum

H(n) =1+ + +1~/"1dx—|n(n)
-T2 n"Ji x '

1/2

1/3

1/4 15

A good approximation is

H(n) ~In(n)+ vy where y~ 0.58 (Euler-Mascheroni constant).
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Consider this stack of cards (no gluel):

U

If each card has length 2, the stack can extend H(n) to the right of the
table. As nincreases, you can go as far as you want!



Paradox

par-a-dox
/'pera daks/

a statement or proposition that, despite sound (or apparently sound) reasoning from
acceptable premises, leads to a conclusion that seems senseless, logically
unacceptable, or self-contradictory.

"a potentially serious conflict between quantum mechanics and the general theory of
relativity known as the information paradox"

« aseemingly absurd or self-contradictory statement or proposition that when
invesfigated or explained may prove to be well founded or true.
"in a paradox, he has discovered that stepping back from his job has increased the
rewards he gleans from it"
synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency,

incongruity; More

« a situation, person, or thing that combines contradictory features or qualities.
"the mingling of deciduous trees with elements of desert flora forms a fascinating
ecological paradox"
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H(n+1)

ne=1-—=x
=zx=1/(n+1)

l—x =x

The cards have width 2. Induction shows that the center of gravity
after n cards is H(n) away from the right-most edge.
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» Events A, B are independent if PrlAn B] = Pr[A]Pr[B].
» Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are
independent

and Pr[An BN C| = Pr[A|Pr|B]Pr[C].
» Events {A,,n > 0} are mutually independent if ....

» Example: X, Y € {0,1} two fair coin flips = X, Y, X @ Y are
pairwise independent but not mutually independent.

» Example: X,Y,Z € {0,1} three fair coin flips are mutually
independent.
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Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

PrY =b|X = a] = Pr[Y = b], for all aand b.

Fact:

X, Y are independent if and only if
PriX=a,Y =b]= Pr[X = a]Pr[Y = b], forall aand b.

Obvious from Pr[An B] = Pr[A|B]Pr[B] (Product rule.)
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Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are
independent.

Indeed: PriX=a,Y =b] = 55, PriX =a] = Pr[Y = b] = {.
Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1
minus number on die 2. X and Y are not independent.

Indeed: Pr[X =12,Y =1] =0+ Pr{X =12]Pr[Y = 1] > 0.
Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y =
number of Hs in last two flips. X and Y are independent.

Indeed:
PriX=a,Y=b]= <3> (i) 27°= <3> 273 x (i) 272 =PriX=2alPr[Y=b].

a a
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Examples

(1) Assume that X, Y,Z are (pairwise) independent, with
E[X]=E[Y]= E[Z] 0 and E[X?] = E[Y?]| = E[Z%] =1.

Then
E[(X+2Y+32)%] = E[X?+4Y2+9Z%2 + 4XY +12YZ + 6 XZ]

=14+44+9+4x0+12x0+6x0
=14.

(2) Let X, Y be independent and U[1,2,...n]. Then
E[(X-Y)]] = E[X?+Y2-2XY]=2E[X?]-2E[X]?

14+3n+2m  (n+1)>?
3 2
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Mutually Independent Random Variables

Definition

X,Y,Z are mutually independent if

PriX=x,Y=y,Z=2]=PriX=x]PrlY =ylPr[Z=2Z], forall x,y,z.

Theorem

The events A, B, C,... are pairwise (resp. mutually) independent iff
the random variables 14,15,1¢,... are pairwise (resp. mutually)
independent.

Proof:
Priia=1,1g=1,1¢c=1]=PrlAnBnNC],...
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Functions of pairwise independent RVs

If X,Y,Z are pairwise independent, but not mutually independent, it
may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins,

X =1{coin1is H},Y =1{coin2is H},Z=Xa@ Y. Then, X,Y,Z are
pairwise independent. Let g(Y,Z2) =Y & Z.

Then g(Y,Z) = Y@ X® Y = X is not independent of X.

Example 2: Let A, B, C be pairwise but not mutually independent in a
way that A and BN C are not independent. Let
X=14,Y=15,Z=1¢. Choose f(X)=X,g(Y,Z) = YZ.
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Quick Review.

Coupons; Independent Random Variables ‘

v

Expected time to collect n coupons is nH(n) ~ n(Inn—+7)
X,Y independent < Pr[X € A, Y € Bl = Pr[X € A|Pr[Y € B]
Then, f(X),g(Y) are independent

and E[XY] = E[X]E[Y]

Mutual independence ....

v

v
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Variance and Standard Deviation

Fact:

Indeed:

var(X)

var[X] = E[X?] - E[X]?.

E[(X - E[X])?]
E[X? —2XE[X]+ E[X]?)
E[X?] - 2E[X]E[X] + E[X]?, by linearity

= E[X?]-E[X]?.
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A simple example

This example illustrates the term ‘standard deviation.

Pr=10.5 T - T Pr=10.5
O | O S
)
— H+a

Consider the random variable X such that

x_| p-o, w.p. 1/2
| u+o, wp1/2

Then, E[X] = u and (X — E[X])? = 62. Hence,
var(X) = 6® and 6(X) = o.
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Example

Consider X with
X — -1, w.p.0.99
1 99, w.p.0.01.
Then
E[X] = —1x0.99+99x0.01=0.

E[X?] = 1x0.99+(99)x0.01~100.

Var(X) ~ 100 = o(X)~10.
Also,

E(]X])=1x0.99+99 x 0.01 = 1.98.
Thus, o(X) # E[|X — E[X]]]!

Exercise: How big can you make E[p?fi)?[xm?
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Uniform
Assume that Pr[X =i]=1/nforic {1,...,n}. Then

n 1 n
EIX] = YixPriX=i==-Yi
[X] ,; [X=1] ”,-;
1n(n+1)  n+1
n 2 2
Also,
n 1/7
ElX? = ZiZPr[X:i]:EZiz
i=1 i=1

143n+2n° :
= —6 as you can verify.



Uniform
Assume that Pr[X =i]=1/nforic {1,...,n}. Then

n 1 n
E[X] = ixPriX=il==Yi
X = LixPix=0=23
1n(n+1)  n+1
n 2 2
Also,
n 1 n
E[X?] = ZFMM:H:EZF
i=1 i=1
14+3n+2n? :
= —6 as you can verify.
This gives
2 2 2 _
Var(X):1+3n+2n ~(n+1)7 _ n" -1

6 4 12
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Fixed points.

Number of fixed points in a random permutation of n items.
“Number of student that get homework back.”
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Fixed points.

Number of fixed points in a random permutation of n items.
“Number of student that get homework back.”

X=X1+X5---+ X
where X; is indicator variable for ith student getting hw back.

E(X?) = Y EXP)+Y E(XX).
i i#]

= nx%+(n)(n—1)>< n(n=1)
= 1+1=2

E(X?)=1x Pr[X;=1]+0x Pr[X; =0]
_1
E(X;X)) =1 x Pr[X; = 11X = 1]+ 0 x Pr[“anything else”]
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2 N ) n ; i
e = Y A(T)e -
i=0
= Really???!1##...

Too hard!

Ok.. fine.
Let’'s do something else.
Maybe not much easier...but there is a payoff.
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Poisson Distribution: Definition

Definition Poisson Distribution with parameter A > 0

m

xzpuyﬁmw:mp%ﬁa%m>a

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with p=24/nas n— eo.
Mean: pn=A

Variance: p(1—p)n=21—212/n— A .

E(X?)? Var(X) = E(X?)— (E(X))? or E(X?) = Var(X) + E(X)?.
E(X?)=A+A%.



Inequalities: An Overview

Distribution

Markov

Chebyshev

| 008 008
f f\
e n 007 i 007
i |
A .
006 ““\ os [ o6
|
|
005 | ‘ | os ¥ \ os
| | 1|
004 “ ‘ \‘ 004 | ‘ | 004
[ |
008 [ 008 | 008
L [
ooz . oz | oz
F [
001 Pn- g | \ 001 / o0t
/ N \ /
N n | n
% i w % % i 0

s




Andrey Markov

Andrey (Andrei) Andreyevich
Markov

Born 14 June 1856 N.5.
Ryazan, Russian Empire
Died 20 July 1922 (aged 66)

Petrograd, Russian SFSR



Andrey Markov

Andrey (Andrei) Andreyevich
Markov

Andrey Markov is best known for his work on
stochastic processes. A primary subject of his
research later became known as Markov
chains and Markov processes.

Born 14 June 1856 N.5.
Ryazan, Russian Empire
Died 20 July 1922 (aged 66)

Petrograd, Russian SFSR



Andrey Markov

Born

Andrey (Andrei) Andreyevich
Markov

14 June 1856 N.5.
Ryazan, Russian Empire
20 July 1922 (aged 66)
Petrograd, Russian SFSR

Andrey Markov is best known for his work on
stochastic processes. A primary subject of his
research later became known as Markov
chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.



Andrey Markov

Andrey (Andrei) Andreyevich
Markov

Andrey Markov is best known for his work on
stochastic processes. A primary subject of his
research later became known as Markov
chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.

Markov was an atheist. In 1912 he protested
Leo Tolstoy’s excommunication from the
Russian Orthodox Church by requesting his
own excommunication.

Born 14 June 1856 N.S.
Ryazan, Russian Empire
Died 20 July 1922 (aged 66)

Petrograd, Russian SFSR



Andrey Markov

Andrey (Andrei) Andreyevich
Markov

Andrey Markov is best known for his work on
stochastic processes. A primary subject of his
research later became known as Markov
chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.

Markov was an atheist. In 1912 he protested
Leo Tolstoy’s excommunication from the
Russian Orthodox Church by requesting his
own excommunication. The Church complied
with his request.

Born 14 June 1856 N.S.
Ryazan, Russian Empire
Died 20 July 1922 (aged 66)

Petrograd, Russian SFSR



Markov’s inequality



Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev.



Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.



Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality



Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality
Assume f: R — [0,) is nondecreasing.



Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality

Assume f: R — [0, ) is nondecreasing. Then,

Ef(X)]
f(a)

PriX>a] < , for all a such that f(a) > 0.



Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality

Assume f: R — [0, ) is nondecreasing. Then,

Ef(X)]
f(a)

PriX>a] < , for all a such that f(a) > 0.

Proof:



Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality
Assume f: R — [0, ) is nondecreasing. Then,

PriX>a] < EE,’;S)()], for all a such that f(a) > 0.
Proof:
Observe that HX
1{X>a} < Q

f(a)



Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality
Assume f: R — [0, ) is nondecreasing. Then,

PriX>a] < EE,’;S)()], for all a such that f(a) > 0.
Proof:
Observe that F(X)
>al< 22,
1{X>a} < (@)

Indeed, if X < a, the inequality reads 0 < f(X)/f(a), which holds
since f(-) > 0.



Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality
Assume f: R — [0, ) is nondecreasing. Then,

PriX>a] < EE(ZS)()], for all a such that f(a) > 0.
Proof:
Observe that F(X)
>al< 22,
1{X>a} < (@)

Indeed, if X < a, the inequality reads 0 < f(X)/f(a), which holds
since f(-) > 0. Also, if X > a, it reads 1 < f(X)/f(a), which holds since
f(-) is nondecreasing.



Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality
Assume f: R — [0, ) is nondecreasing. Then,

PriX>a] < EE(ZS)()], for all a such that f(a) > 0.
Proof:
Observe that F(X)
>al < )
1{X>a} < (@)

Indeed, if X < a, the inequality reads 0 < f(X)/f(a), which holds
since f(-) > 0. Also, if X > a, it reads 1 < f(X)/f(a), which holds since
f(-) is nondecreasing.

Taking the expectation yields the inequality,



Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality

Assume f: R — [0, ) is nondecreasing. Then,

PriX>a] < EE(ZS)()], for all a such that f(a) > 0.
Proof:
Observe that F(X)
>al< 22,
1{X>a} < (@)

Indeed, if X < a, the inequality reads 0 < f(X)/f(a), which holds
since f(-) > 0. Also, if X > a, it reads 1 < f(X)/f(a), which holds since
f(-) is nondecreasing.

Taking the expectation yields the inequality, because expectation is
monotone. |
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