CS70: Lecture 20.

Coupons; Independent Random Variables; Markov; Variance

CS70: Lecture 20.

Coupons; Independent Random Variables; Markov; Variance

CS70: Lecture 20.

Coupons; Independent Random Variables; Markov; Variance

- 1. Time to Collect Coupons
- 2. Review: Independence of Events
- 3. Independent RVs
- 4. Mutually independent RVs
- 5. Variance
- 6. Inequalities
 - Markov
 - Chebyshev
- 7. Weak Law of Large Numbers

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Experiment: Get coupons at random from *n* until collect all *n* coupons. **Outcomes:** {123145...,56765...}

Experiment: Get coupons at random from *n* until collect all *n*coupons.
Outcomes: {123145...,56765...}
Random Variable: X - length of outcome.

Experiment: Get coupons at random from *n* until collect all *n*coupons.
Outcomes: {123145...,56765...}
Random Variable: X - length of outcome.

Experiment: Get coupons at random from *n* until collect all *n* coupons. **Outcomes:** {123145...,56765...} **Random Variable:** *X* - length of outcome. Before: $Pr[X \ge n \ln 2n] \le \frac{1}{2}$.

Experiment: Get coupons at random from *n* until collect all *n* coupons. **Outcomes:** {123145...,56765...} **Random Variable:** *X* - length of outcome. Before: $Pr[X \ge n \ln 2n] \le \frac{1}{2}$.

Today: E[X]?

Experiment: Get coupons at random from *n* until collect all *n* coupons. **Outcomes:** {123145...,56765...} **Random Variable:** *X* - length of outcome. Before: $Pr[X \ge n \ln 2n] \le \frac{1}{2}$.

Today: E[X]?

X-time to get *n* coupons.

X-time to get *n* coupons.

 X_1 - time to get first coupon.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X-time to get *n* coupons.

- X_1 time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
- X_2 time to get second coupon after getting first.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

"]

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk

X-time to get *n* coupons.

- X_1 time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
- X_2 time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]?$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric !

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

E[*X*₂]? Geometric ! !

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

```
E[X<sub>2</sub>]? Geometric !!!
```

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{\rho} =$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{\rho}}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* - 1rst coupons"] = $\frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* – 1rst coupons"] = $\frac{n-(i-1)}{n} = \frac{n-i+1}{n}$ $E[X_i]$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* – 1rst coupons" $] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$ $E[X_i] = \frac{1}{p}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting$ *i*th coupon|"got*i* $- 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n - i + 1}, \end{aligned}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n - i + 1}, i = 1, 2, \dots, n. \end{aligned}$

 $E[X] = E[X_1] + \cdots + E[X_n] =$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n - i + 1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n)$$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

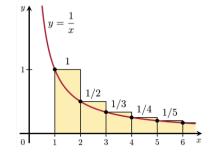
Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

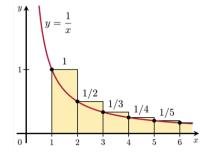
Review: Harmonic sum


٠

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

Review: Harmonic sum

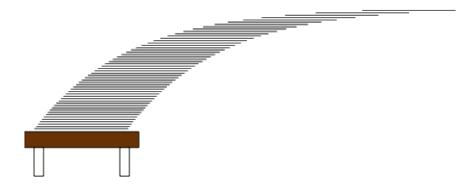
٠


$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

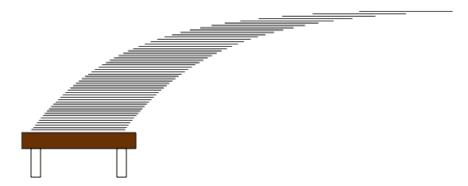
Review: Harmonic sum

.

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$



A good approximation is


 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Consider this stack of cards (no glue!):

Consider this stack of cards (no glue!):

Consider this stack of cards (no glue!):

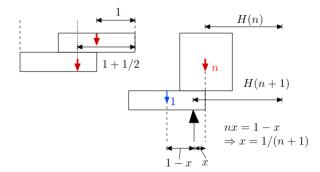
If each card has length 2, the stack can extend H(n) to the right of the table.

Consider this stack of cards (no glue!):

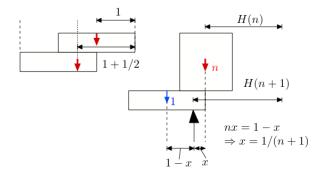
If each card has length 2, the stack can extend H(n) to the right of the table. As *n* increases, you can go as far as you want!

Paradox

par·a·dox /ˈperəˌdäks/

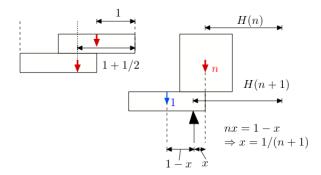

noun

a statement or proposition that, despite sound (or apparently sound) reasoning from acceptable premises, leads to a conclusion that seems senseless, logically unacceptable, or self-contradictory.


"a potentially serious conflict between quantum mechanics and the general theory of relativity known as the information paradox"

- a seemingly absurd or self-contradictory statement or proposition that when investigated or explained may prove to be well founded or true.
 "in a paradox, he has discovered that stepping back from his job has increased the rewards he gleans from it" synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency, incongruity; More
- a situation, person, or thing that combines contradictory features or qualities.
 "the mingling of deciduous trees with elements of desert flora forms a fascinating ecological paradox"

Stacking



Stacking

The cards have width 2.

Stacking

The cards have width 2. Induction shows that the center of gravity after *n* cards is H(n) away from the right-most edge.

Events A, B are independent if

• Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- ► Events A, B, C are mutually independent if

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- ► Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- ► Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

• Events $\{A_n, n \ge 0\}$ are mutually independent if

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

- Events $\{A_n, n \ge 0\}$ are mutually independent if
- ► Example: X, Y ∈ {0,1} two fair coin flips ⇒ X, Y, X ⊕ Y are pairwise independent but not mutually independent.

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

- Events $\{A_n, n \ge 0\}$ are mutually independent if
- ► Example: X, Y ∈ {0,1} two fair coin flips ⇒ X, Y, X ⊕ Y are pairwise independent but not mutually independent.
- ► Example: $X, Y, Z \in \{0, 1\}$ three fair coin flips are mutually independent.

Definition: Independence

Definition: Independence

The random variables X and Y are **independent** if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Fact:

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Fact:

X, Y are independent if and only if

Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b], for all *a* and *b*.

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Fact:

X, Y are independent if and only if

Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b], for all *a* and *b*.

Obvious from $Pr[A \cap B] = Pr[A|B]Pr[B]$ (Product rule.)

Example 1 Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0.$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$.

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed:
$$Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$$
.

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Indeed:

$$Pr[X=a, Y=b] = \binom{3}{a}\binom{2}{b}2^{-5}$$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed:
$$Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0.$$

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Indeed:

$$Pr[X = a, Y = b] = {3 \choose a} {2 \choose b} 2^{-5} = {3 \choose a} 2^{-3} \times {2 \choose b} 2^{-2}$$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed:
$$Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$$
.

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Indeed:

$$Pr[X = a, Y = b] = {3 \choose a} {2 \choose b} 2^{-5} = {3 \choose a} 2^{-3} \times {2 \choose b} 2^{-2} = Pr[X = a] Pr[Y = b].$$

Theorem Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof: Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y].$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xy Pr[X = x, Y = y]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof: Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof: Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$
$$= \sum_{x} [\sum_{y} xyPr[X = x]Pr[Y = y]]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof: Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

=
$$\sum_{x} [\sum_{y} xyPr[X = x]Pr[Y = y]] = \sum_{x} [xPr[X = x](\sum_{y} yPr[Y = y])]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} [\sum_{y} xyPr[X = x]Pr[Y = y]] = \sum_{x} [xPr[X = x](\sum_{y} yPr[Y = y])]$$

$$= \sum_{x} [xPr[X = x]E[Y]]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

=
$$\sum_{x} [\sum_{y} xyPr[X = x]Pr[Y = y]] = \sum_{x} [xPr[X = x](\sum_{y} yPr[Y = y])]$$

=
$$\sum_{x} [xPr[X = x]E[Y]] = E[X]E[Y].$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} [\sum_{y} xyPr[X = x]Pr[Y = y]] = \sum_{x} [xPr[X = x](\sum_{y} yPr[Y = y])]$$

$$= \sum_{x} [xPr[X = x]E[Y]] = E[X]E[Y].$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0
= 14.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0
= 14.

(2) Let X, Y be independent and U[1, 2, ..., n]. Then

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0
= 14.

(2) Let X, Y be independent and U[1, 2, ..., n]. Then

$$E[(X - Y)^2] = E[X^2 + Y^2 - 2XY] = 2E[X^2] - 2E[X]^2$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0
= 14.

(2) Let X, Y be independent and U[1,2,...n]. Then

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY] = 2E[X^{2}] - 2E[X]^{2}$$
$$= \frac{1 + 3n + 2n^{2}}{3} - \frac{(n+1)^{2}}{2}.$$

Definition

Definition

X, Y, Z are mutually independent if

Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z], for all x, y, z.

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

The events A, B, C, ... are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, ...$ are pairwise (resp. mutually) independent.

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

The events A, B, C, ... are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, ...$ are pairwise (resp. mutually) independent. **Proof:**

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

The events A, B, C, ... are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, ...$ are pairwise (resp. mutually) independent.

Proof:

$$Pr[1_A = 1, 1_B = 1, 1_C = 1] = Pr[A \cap B \cap C], \dots$$

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins, $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y.$

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins,

X = 1{coin 1 is H}, Y = 1{coin 2 is H}, $Z = X \oplus Y$. Then, X, Y, Z are pairwise independent.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins, $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins, $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$. Then $g(Y, Z) = Y \oplus X \oplus Y = X$ is not independent of X.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins, $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$. Then $g(Y, Z) = Y \oplus X \oplus Y = X$ is not independent of X.

Example 2: Let A, B, C be pairwise but not mutually independent in a way that A and $B \cap C$ are not independent.

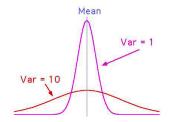
If X, Y, Z are pairwise independent, but not mutually independent, it may be that

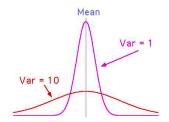
f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins, $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$. Then $g(Y, Z) = Y \oplus X \oplus Y = X$ is not independent of X.

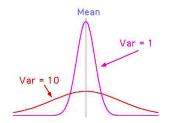
Example 2: Let *A*, *B*, *C* be pairwise but not mutually independent in a way that *A* and $B \cap C$ are not independent. Let $X = 1_A, Y = 1_B, Z = 1_C$. Choose f(X) = X, g(Y, Z) = YZ.

- Expected time to collect *n* coupons is $nH(n) \approx n(\ln n + \gamma)$
- ► X, Y independent \Leftrightarrow $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$

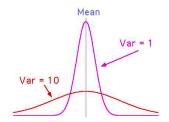

- Expected time to collect *n* coupons is $nH(n) \approx n(\ln n + \gamma)$
- ► X, Y independent \Leftrightarrow $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$
- Then, f(X), g(Y) are independent


Coupons; Independent Random Variables

- Expected time to collect *n* coupons is $nH(n) \approx n(\ln n + \gamma)$
- ► X, Y independent \Leftrightarrow $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$

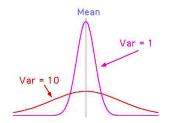

► Then, f(X), g(Y) are independent and E[XY] = E[X]E[Y]

- Expected time to collect *n* coupons is $nH(n) \approx n(\ln n + \gamma)$
- ► X, Y independent \Leftrightarrow $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$
- ► Then, f(X), g(Y) are independent and E[XY] = E[X]E[Y]
- Mutual independence



The variance measures the deviation from the mean value.

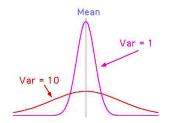
The variance measures the deviation from the mean value.


Definition: The variance of X is

The variance measures the deviation from the mean value. **Definition:** The variance of X is

$$\sigma^{2}(X) := var[X] = E[(X - E[X])^{2}].$$

Variance



The variance measures the deviation from the mean value. **Definition:** The variance of X is

$$\sigma^{2}(X) := var[X] = E[(X - E[X])^{2}].$$

 $\sigma(X)$ is called the standard deviation of *X*.

Variance

The variance measures the deviation from the mean value. **Definition:** The variance of X is

$$\sigma^{2}(X) := var[X] = E[(X - E[X])^{2}].$$

 $\sigma(X)$ is called the standard deviation of *X*.

Fact:

$$var[X] = E[X^2] - E[X]^2.$$

Fact:

$$var[X] = E[X^2] - E[X]^2.$$

$$var(X) = E[(X - E[X])^2]$$

Fact:

$$var[X] = E[X^2] - E[X]^2.$$

$$var(X) = E[(X - E[X])^2]$$

= $E[X^2 - 2XE[X] + E[X]^2)$

Fact:

$$var[X] = E[X^2] - E[X]^2.$$

$$var(X) = E[(X - E[X])^{2}]$$

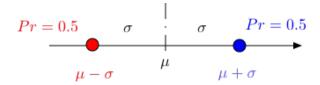
= $E[X^{2} - 2XE[X] + E[X]^{2})$
= $E[X^{2}] - 2E[X]E[X] + E[X]^{2},$

Fact:

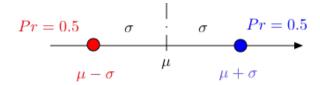
$$var[X] = E[X^2] - E[X]^2.$$

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2})$
= $E[X^{2}] - 2E[X]E[X] + E[X]^{2}$, by linearity


Fact:

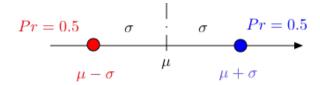
$$var[X] = E[X^2] - E[X]^2.$$


$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2})$
= $E[X^{2}] - 2E[X]E[X] + E[X]^{2}$, by linearity
= $E[X^{2}] - E[X]^{2}$.

This example illustrates the term 'standard deviation.'

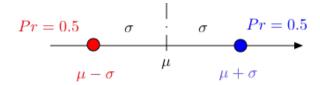
This example illustrates the term 'standard deviation.'


This example illustrates the term 'standard deviation.'

Consider the random variable X such that

$$X = \begin{cases} \mu - \sigma, & \text{w.p. } 1/2\\ \mu + \sigma, & \text{w.p. } 1/2 \end{cases}$$

This example illustrates the term 'standard deviation.'



Consider the random variable X such that

$$X = \left\{ egin{array}{ccc} \mu - \sigma, & ext{w.p. 1/2} \ \mu + \sigma, & ext{w.p. 1/2}. \end{array}
ight.$$

Then, $E[X] = \mu$ and $(X - E[X])^2 = \sigma^2$.

This example illustrates the term 'standard deviation.'

Consider the random variable X such that

$$X = \left\{ egin{array}{ccc} \mu - \sigma, & ext{w.p. 1/2} \ \mu + \sigma, & ext{w.p. 1/2}. \end{array}
ight.$$

Then, $E[X] = \mu$ and $(X - E[X])^2 = \sigma^2$. Hence,

$$var(X) = \sigma^2$$
 and $\sigma(X) = \sigma^2$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01.} \end{cases}$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01.} \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01} \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

$$E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01} \end{cases}$$

Then

$$\begin{split} E[X] &= -1 \times 0.99 + 99 \times 0.01 = 0. \\ E[X^2] &= 1 \times 0.99 + (99)^2 \times 0.01 \approx 100. \\ Var(X) &\approx 100 \implies \sigma(X) \approx 10. \end{split}$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01} \end{cases}$$

Then

$$\begin{array}{rcl} E[X] &=& -1 \times 0.99 + 99 \times 0.01 = 0. \\ E[X^2] &=& 1 \times 0.99 + (99)^2 \times 0.01 \approx 100. \\ Var(X) &\approx& 100 \implies \sigma(X) \approx 10. \end{array}$$

$$E(|X|) = 1 \times 0.99 + 99 \times 0.01 = 1.98.$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01} \end{cases}$$

Then

$$\begin{array}{rcl} E[X] &=& -1 \times 0.99 + 99 \times 0.01 = 0. \\ E[X^2] &=& 1 \times 0.99 + (99)^2 \times 0.01 \approx 100. \\ Var(X) &\approx& 100 \implies \sigma(X) \approx 10. \end{array}$$

Also,

$$E(|X|) = 1 \times 0.99 + 99 \times 0.01 = 1.98.$$

Thus, $\sigma(X) \neq E[|X - E[X]|]!$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01}. \end{cases}$$

Then

$$\begin{array}{rcl} E[X] &=& -1 \times 0.99 + 99 \times 0.01 = 0. \\ E[X^2] &=& 1 \times 0.99 + (99)^2 \times 0.01 \approx 100. \\ Var(X) &\approx& 100 \implies \sigma(X) \approx 10. \end{array}$$

Also,

$$E(|X|) = 1 \times 0.99 + 99 \times 0.01 = 1.98.$$

Thus, $\sigma(X) \neq E[|X - E[X]|]!$

Exercise: How big can you make $\frac{\sigma(X)}{E[|X-E[X]|]}$?

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

$$E[X^{2}] = \sum_{i=1}^{n} i^{2} Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i^{2}$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

$$E[X^{2}] = \sum_{i=1}^{n} i^{2} Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i^{2}$$
$$= \frac{1+3n+2n^{2}}{6},$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

$$E[X^{2}] = \sum_{i=1}^{n} i^{2} Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^{2}$$
$$= \frac{1 + 3n + 2n^{2}}{6}, \text{ as you can verify.}$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Also,

$$E[X^{2}] = \sum_{i=1}^{n} i^{2} Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^{2}$$
$$= \frac{1 + 3n + 2n^{2}}{6}, \text{ as you can verify}.$$

This gives

$$var(X) = \frac{1+3n+2n^2}{6} - \frac{(n+1)^2}{4} = \frac{n^2-1}{12}.$$

X is a geometrically distributed RV with parameter p.

$$E[X^2] = \rho + 4\rho(1-\rho) + 9\rho(1-\rho)^2 + ...$$

$$E[X^2] = p + 4p(1-p) + 9p(1-p)^2 + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^2 + \dots]

$$E[X^2] = p + 4p(1-p) + 9p(1-p)^2 + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^2 + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^2 + \dots

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X^{2}] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X^{2}] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + ...$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + ...]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + ...
= 2(p+2p(1-p) + 3p(1-p)^{2} + ...) E[X]!
-(p+p(1-p) + p(1-p)^{2} + ...) Distribution.
pE[X²] = 2E[X] - 1

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X^{2}] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X^{2}] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
$$pE[X^{2}] = 2E[X] - 1$$

= 2($\frac{1}{p}$) - 1

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X^{2}] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X^{2}] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X^{2}] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \ge 1$. Recall E[X] = 1/p.

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

 $\implies E[X^2] = (2-p)/p^2$

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \ge 1$. Recall E[X] = 1/p.

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

 $\implies E[X^2] = (2-p)/p^2$ and $var[X] = E[X^2] - E[X]^2$

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

$$\implies E[X^2] = (2-p)/p^2 \text{ and } \\ var[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2}$$

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

$$\implies E[X^{2}] = (2-p)/p^{2} \text{ and} var[X] = E[X^{2}] - E[X]^{2} = \frac{2-p}{p^{2}} - \frac{1}{p^{2}} = \frac{1-p}{p^{2}} \cdot \sigma(X) = \frac{\sqrt{1-p}}{p}$$

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

Number of fixed points in a random permutation of *n* items.

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

 $X = X_1 + X_2 \cdots + X_n$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

 $X = X_1 + X_2 \cdots + X_n$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X=X_1+X_2\cdots+X_n$$

$$E(X^2) = \sum_i E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$

= +

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X=X_1+X_2\cdots+X_n$$

$$E(X^2) = \sum_i E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= +$$

$$E(X_i^2) = 1 \times \Pr[X_i = 1] + 0 \times \Pr[X_i = 0]$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_{i} E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$
$$= \frac{1}{n}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_{i} E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$
$$= \frac{1}{n}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_{i} E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= n \times \frac{1}{n} +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$
$$= \frac{1}{n}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_i E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= n \times \frac{1}{n} +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$

= $\frac{1}{n}$
$$E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr[$$
 "anything else"]

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_{i} E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= n \times \frac{1}{n} +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$

= $\frac{1}{n}$
$$E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr[$$
 "anything else"]
= $1 \times \frac{(n-2)!}{n!}$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_{i} E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= n \times \frac{1}{n} +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0] = \frac{1}{n} E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr["anything else"] = 1 \times \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_i E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$

= $n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)}$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0] = \frac{1}{n} E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr["anything else"] = 1 \times \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^{2}) = \sum_{i} E(X_{i}^{2}) + \sum_{i \neq j} E(X_{i}X_{j}).$$

= $n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)}$
= $1 + 1 = 2.$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0] = \frac{1}{n} E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr["anything else"] = 1 \times \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^{2}) = \sum_{i} E(X_{i}^{2}) + \sum_{i \neq j} E(X_{i}X_{j}).$$

= $n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)}$
= $1 + 1 = 2.$

$$E(X_{i}^{2}) = 1 \times Pr[X_{i} = 1] + 0 \times Pr[X_{i} = 0]$$

= $\frac{1}{n}$
$$E(X_{i}X_{j}) = 1 \times Pr[X_{i} = 1 \cap X_{j} = 1] + 0 \times Pr[$$
 "anything else"]
= $1 \times \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$
$$Var(X) = E(X^{2}) - (E(X))^{2} = 2 - 1 = 1.$$

$$E[X^2] = \sum_{i=0}^n i^2 {n \choose i} p^i (1-p)^{n-i}.$$

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok..

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine.

$$E[X^2] = \sum_{i=0}^n i^2 {n \choose i} p^i (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine. Let's do something else.

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine. Let's do something else. Maybe not much easier...

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine. Let's do something else. Maybe not much easier...but there is a payoff.

1. $Var(cX) = c^2 Var(X)$, where c is a constant.

1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant.

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X + c) = Var(X), where c is a constant. Shifts center.

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X + c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2}$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

= $c^2 E(X^2) - c^2 (E(X))^2 = c^2 (E(X^2) - E(X)^2)$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$
 $Var(X+c) = E((X+c-E(X+c))^{2})$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$
$$Var(X+c) = E((X+c-E(X+c))^{2})$$

= $E((X+c-E(X)-c)^{2})$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$
$$Var(X+c) = E((X+c-E(X+c))^{2})$$

= $E((X+c-E(X)-c)^{2})$
= $E((X-E(X))^{2})$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$
$$Var(X+c) = E((X+c-E(X+c))^{2})$$

= $E((X+c-E(X)-c)^{2})$
= $E((X-E(X))^{2}) = Var(X)$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$
$$Var(X+c) = E((X+c-E(X+c))^{2})$$

= $E((X+c-E(X)-c)^{2})$
= $E((X-E(X))^{2}) = Var(X)$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY)=E(X)E(Y)=0.$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2)$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2+2XY+Y^2)$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2)$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$
= $var(X) + var(Y)$.

If X, Y, Z, \ldots are pairwise independent, then

 $var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

E[XY] = E[X]E[Y] = 0.

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X+Y+Z+\cdots) = E((X+Y+Z+\cdots)^2)$$

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^2)$$

= $E(X^2 + Y^2 + Z^2 + \cdots + 2XY + 2XZ + 2YZ + \cdots)$

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^2)$$

= $E(X^2 + Y^2 + Z^2 + \cdots + 2XY + 2XZ + 2YZ + \cdots)$
= $E(X^2) + E(Y^2) + E(Z^2) + \cdots + 0 + \cdots + 0$

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^2)$$

= $E(X^2 + Y^2 + Z^2 + \cdots + 2XY + 2XZ + 2YZ + \cdots)$
= $E(X^2) + E(Y^2) + E(Z^2) + \cdots + 0 + \cdots + 0$
= $var(X) + var(Y) + var(Z) + \cdots$.

Flip coin with heads probability *p*.

Flip coin with heads probability *p*. *X*- how many heads?

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E(X_i^2)$

Flip coin with heads probability *p*. *X*- how many heads?

 $X_{i} = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$

 $E(X_i^2) = 1^2 \times p + 0^2 \times (1-p)$

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E(X_i^2) = 1^2 \times p + 0^2 \times (1-p) = p.$

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1-p) = p.$$

Var $(X_i) = p - (E(X))^2$

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

Var(X_i) = p - (E(X))^2 = p - p^2

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

 $Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).
p = 0

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

Flip coin with heads probability *p*. *X*- how many heads?

 $X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1-p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1-p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

 X_i and X_j are independent:

Flip coin with heads probability *p*. *X*- how many heads?

$$\begin{split} E(X_i^2) &= 1^2 \times p + 0^2 \times (1 - p) = p. \\ Var(X_i) &= p - (E(X))^2 = p - p^2 = p(1 - p). \\ p &= 0 \implies Var(X_i) = 0 \\ p &= 1 \implies Var(X_i) = 0 \\ X &= X_1 + X_2 + \dots + X_n. \\ X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1]. \end{split}$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots X_n.$$

$$X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1].$$

$$Var(X) = Var(X_1 + \dots + X_n)$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

$$X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1].$$

$$Var(X) = Var(X_1 + \cdots + X_n) = np(1-p).$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

$$X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1].$$

$$Var(X) = Var(X_1 + \cdots + X_n) = np(1-p).$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = rac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda / n$ as $n \to \infty$.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = rac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$. Mean: $pn = \lambda$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$. Mean: $pn = \lambda$

Variance: $p(1-p)n = \lambda - \lambda^2/n \rightarrow \lambda$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = rac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$. Mean: $pn = \lambda$

Variance: $p(1-p)n = \lambda - \lambda^2/n \rightarrow \lambda$.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda / n$ as $n \to \infty$.

Mean: $pn = \lambda$ Variance: $p(1-p)n = \lambda - \lambda^2/n \rightarrow \lambda$. $E(X^2)$?

Definition Poisson Distribution with parameter $\lambda > 0$

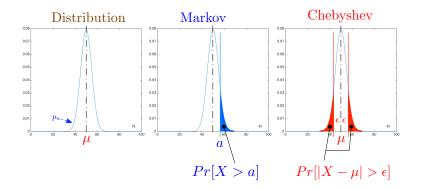
$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$. Mean: $pn = \lambda$ Variance: $p(1-p)n = \lambda - \lambda^2/n \to \lambda$. $E(X^2)$? $Var(X) = E(X^2) - (E(X))^2$ or $E(X^2) = Var(X) + E(X)^2$.

Definition Poisson Distribution with parameter $\lambda > 0$


$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$. Mean: $pn = \lambda$ Variance: $p(1-p)n = \lambda - \lambda^2/n \to \lambda$. $E(X^2)$? $Var(X) = E(X^2) - (E(X))^2$ or $E(X^2) = Var(X) + E(X)^2$. $E(X^2) = \lambda + \lambda^2$.

Inequalities: An Overview

Andrey (Andrei) Andreyevich Markov

Born	14 June 1856 N.S. Ryazan, Russian Empire
Died	20 July 1922 (aged 66) Petrograd, Russian SFSR

Andrey (Andrei) Andreyevich Markov

Andrey Markov is best known for his work on stochastic processes. A primary subject of his research later became known as Markov chains and Markov processes.

Andrey (Andrei) Andreyevich Markov

Andrey Markov is best known for his work on stochastic processes. A primary subject of his research later became known as Markov chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.

Andrey (Andrei) Andreyevich Markov

Died 20 July 1922 (aged 66) Petrograd, Russian SFSR Andrey Markov is best known for his work on stochastic processes. A primary subject of his research later became known as Markov chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.

Markov was an atheist. In 1912 he protested Leo Tolstoy's excommunication from the Russian Orthodox Church by requesting his own excommunication.

Andrey (Andrei) Andreyevich Markov

Born 14 June 1856 N.S. Ryazan, Russian Empire Died 20 July 1922 (aged 66) Petrograd, Russian SFSR Andrey Markov is best known for his work on stochastic processes. A primary subject of his research later became known as Markov chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.

Markov was an atheist. In 1912 he protested Leo Tolstoy's excommunication from the Russian Orthodox Church by requesting his own excommunication. The Church complied with his request.

The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev.

The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev. It should be (and is sometimes) called Chebyshev's first inequality.

The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev. It should be (and is sometimes) called Chebyshev's first inequality.

Theorem Markov's Inequality

The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev. It should be (and is sometimes) called Chebyshev's first inequality.

Theorem Markov's Inequality

Assume $f: \mathfrak{R} \to [0,\infty)$ is nondecreasing.

The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev. It should be (and is sometimes) called Chebyshev's first inequality.

Theorem Markov's Inequality

Assume $f: \mathfrak{R} \to [0,\infty)$ is nondecreasing. Then,

$$\Pr[X \ge a] \le \frac{E[f(X)]}{f(a)}$$
, for all *a* such that $f(a) > 0$.

The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev. It should be (and is sometimes) called Chebyshev's first inequality.

Theorem Markov's Inequality

Assume $f: \mathfrak{R} \to [0,\infty)$ is nondecreasing. Then,

$$\Pr[X \ge a] \le rac{E[f(X)]}{f(a)}$$
, for all *a* such that $f(a) > 0$.

Proof:

The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev. It should be (and is sometimes) called Chebyshev's first inequality.

Theorem Markov's Inequality

Assume $f: \mathfrak{R} \to [0,\infty)$ is nondecreasing. Then,

$$Pr[X \ge a] \le \frac{E[f(X)]}{f(a)}$$
, for all *a* such that $f(a) > 0$.

Proof:

Observe that

$$1\{X \ge a\} \le \frac{f(X)}{f(a)}.$$

The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev. It should be (and is sometimes) called Chebyshev's first inequality.

Theorem Markov's Inequality

Assume $f: \mathfrak{R} \to [0,\infty)$ is nondecreasing. Then,

$$Pr[X \ge a] \le \frac{E[f(X)]}{f(a)}$$
, for all *a* such that $f(a) > 0$.

Proof:

Observe that

$$1\{X\geq a\}\leq \frac{f(X)}{f(a)}.$$

Indeed, if X < a, the inequality reads $0 \le f(X)/f(a)$, which holds since $f(\cdot) \ge 0$.

The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev. It should be (and is sometimes) called Chebyshev's first inequality.

Theorem Markov's Inequality

Assume $f: \mathfrak{R} \to [0,\infty)$ is nondecreasing. Then,

$$Pr[X \ge a] \le \frac{E[f(X)]}{f(a)}$$
, for all *a* such that $f(a) > 0$.

Proof:

Observe that

$$1\{X\geq a\}\leq \frac{f(X)}{f(a)}.$$

Indeed, if X < a, the inequality reads $0 \le f(X)/f(a)$, which holds since $f(\cdot) \ge 0$. Also, if $X \ge a$, it reads $1 \le f(X)/f(a)$, which holds since $f(\cdot)$ is nondecreasing.

The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev. It should be (and is sometimes) called Chebyshev's first inequality.

Theorem Markov's Inequality

Assume $f: \mathfrak{R} \to [0,\infty)$ is nondecreasing. Then,

$$Pr[X \ge a] \le \frac{E[f(X)]}{f(a)}$$
, for all *a* such that $f(a) > 0$.

Proof:

Observe that

$$1\{X\geq a\}\leq \frac{f(X)}{f(a)}.$$

Indeed, if X < a, the inequality reads $0 \le f(X)/f(a)$, which holds since $f(\cdot) \ge 0$. Also, if $X \ge a$, it reads $1 \le f(X)/f(a)$, which holds since $f(\cdot)$ is nondecreasing.

Taking the expectation yields the inequality,

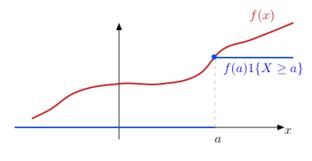
The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev. It should be (and is sometimes) called Chebyshev's first inequality.

Theorem Markov's Inequality

Assume $f: \mathfrak{R} \to [0,\infty)$ is nondecreasing. Then,

$$Pr[X \ge a] \le \frac{E[f(X)]}{f(a)}$$
, for all *a* such that $f(a) > 0$.

Proof:


Observe that

$$1\{X\geq a\}\leq \frac{f(X)}{f(a)}.$$

Indeed, if X < a, the inequality reads $0 \le f(X)/f(a)$, which holds since $f(\cdot) \ge 0$. Also, if $X \ge a$, it reads $1 \le f(X)/f(a)$, which holds since $f(\cdot)$ is nondecreasing.

Taking the expectation yields the inequality, because expectation is monotone.

A picture

$$f(a)1\{X \ge a\} \le f(x) \Rightarrow 1\{X \ge a\} \le \frac{f(X)}{f(a)}$$
$$\Rightarrow \Pr[X \ge a] \le \frac{E[f(X)]}{f(a)}$$

Let X = G(p).

Let X = G(p). Recall that E[X] =

Let X = G(p). Recall that $E[X] = \frac{1}{p}$ and $E[X^2] =$

Let X = G(p). Recall that $E[X] = \frac{1}{p}$ and $E[X^2] = \frac{2-p}{p^2}$.

Let X = G(p). Recall that $E[X] = \frac{1}{p}$ and $E[X^2] = \frac{2-p}{p^2}$.

Choosing f(x) = x, we get

Let
$$X = G(p)$$
. Recall that $E[X] = \frac{1}{p}$ and $E[X^2] = \frac{2-p}{p^2}$.

Choosing f(x) = x, we get

$$\Pr[X \ge a] \le \frac{E[X]}{a} = \frac{1}{ap}.$$

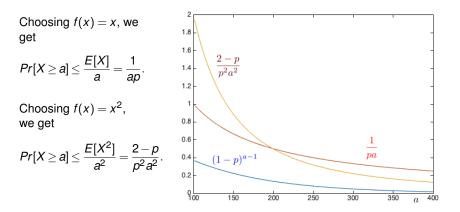
Let
$$X = G(p)$$
. Recall that $E[X] = \frac{1}{p}$ and $E[X^2] = \frac{2-p}{p^2}$.

Choosing f(x) = x, we get

$$\Pr[X \ge a] \le \frac{E[X]}{a} = \frac{1}{ap}.$$

Choosing $f(x) = x^2$, we get

Let
$$X = G(p)$$
. Recall that $E[X] = \frac{1}{p}$ and $E[X^2] = \frac{2-p}{p^2}$.


Choosing f(x) = x, we get

$$\Pr[X \ge a] \le \frac{E[X]}{a} = \frac{1}{ap}.$$

Choosing $f(x) = x^2$, we get

$$Pr[X \ge a] \le \frac{E[X^2]}{a^2} = \frac{2-p}{p^2a^2}.$$

Let
$$X = G(p)$$
. Recall that $E[X] = \frac{1}{p}$ and $E[X^2] = \frac{2-p}{p^2}$.

Let $X = P(\lambda)$.

Let $X = P(\lambda)$. Recall that E[X] =

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$ and $E[X^2] =$

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$ and $E[X^2] = \lambda + \lambda^2$.

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$ and $E[X^2] = \lambda + \lambda^2$.

Choosing f(x) = x, we get

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$ and $E[X^2] = \lambda + \lambda^2$.

Choosing f(x) = x, we get

 $Pr[X \ge a] \le \frac{E[X]}{a} = \frac{\lambda}{a}.$

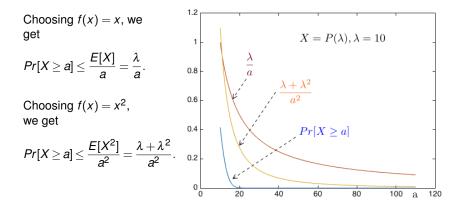
Let $X = P(\lambda)$. Recall that $E[X] = \lambda$ and $E[X^2] = \lambda + \lambda^2$.

Choosing f(x) = x, we get

 $Pr[X \ge a] \le \frac{E[X]}{a} = \frac{\lambda}{a}.$

Choosing $f(x) = x^2$, we get

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$ and $E[X^2] = \lambda + \lambda^2$.


Choosing f(x) = x, we get

$$Pr[X \ge a] \le \frac{E[X]}{a} = \frac{\lambda}{a}$$

Choosing $f(x) = x^2$, we get

$$\Pr[X \ge a] \le \frac{E[X^2]}{a^2} = \frac{\lambda + \lambda^2}{a^2}.$$

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$ and $E[X^2] = \lambda + \lambda^2$.

► Variance:
$$var[X] := E[(X - E[X])^2] = E[X^2] - E[X]^2$$

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b]a^2var[X]$

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b]a^2var[X]$
- Sum: X, Y, Z pairwise ind. $\Rightarrow var[X + Y + Z] = \cdots$

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b]a^2var[X]$
- Sum: X, Y, Z pairwise ind. $\Rightarrow var[X + Y + Z] = \cdots$
- Markov: $Pr[X \ge a] \le E[f(X)]/f(a)$ where ...

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b]a^2var[X]$
- Sum: X, Y, Z pairwise ind. $\Rightarrow var[X + Y + Z] = \cdots$
- Markov: $Pr[X \ge a] \le E[f(X)]/f(a)$ where ...