CS70: Lecture 20

Coupons; Independent Random Variables; Markov; Variance

1. Time to Collect Coupons
2. Review: Independence of Events
3. Independent RVs
4. Mutually independent RVs
5. Variance
6. Inequalities

- Markov
- Chebyshev

7. Weak Law of Large Numbers

Review: Harmonic sum

$$
H(n)=1+\frac{1}{2}+\cdots+\frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} d x=\ln (n) .
$$

A good approximation is
$H(n) \approx \ln (n)+\gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Coupon Collectors Problem.

Experiment: Get coupons at random from n until collect all n
coupons.
Outcomes: $\{123145 \ldots, 56765 \ldots\}$
Random Variable: X - length of outcome.
Before: $\operatorname{Pr}[X \geq n \ln 2 n] \leq \frac{1}{2}$
Today: $E[X]$?

Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend $H(n)$ to the right of the table. As n increases, you can go as far as you want!

Time to collect coupons

X-time to get n coupons.

X_{1} - time to get first coupon. Note: $X_{1}=1 . E\left(X_{1}\right)=1$
X_{2} - time to get second coupon after getting first.
$\operatorname{Pr}\left[\right.$ "get second coupon"|"got milk first coupon"] $=\frac{n-1}{n}$
$E\left[X_{2}\right]$? Geometric ! ! ! $\Longrightarrow E\left[X_{2}\right]=\frac{1}{p}=\frac{1}{\frac{n-1}{n}}=\frac{n}{n-1}$.
$\operatorname{Pr}\left[\right.$ "getting j th coupon|"got $i-1$ rst coupons"] $=\frac{n-(i-1)}{n}=\frac{n-i+1}{n}$
$E\left[X_{i}\right]=\frac{1}{p}=\frac{n}{n-i+1}, i=1,2, \ldots, n$.
$E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]=\frac{n}{n}+\frac{n}{n-1}+\frac{n}{n-2}+\cdots+\frac{n}{1}$
$=n\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=: n H(n) \approx n(\ln n+\gamma)$

Paradox

par•a•dox

/pere,daks

noun
a statement or proposition that, despite sound (or apparently sound) reasoning from acceptable premises, leads to a conclusion that seems senseless, logically
unacceptable, or self-contradictory.
"a potentially serious confict between quant
relativity known as the information

- a seemingly absurd or self-contradictory statement or proposition that when
investigated or explained may prove to be well founded or true
in a paradox, he has discovered that stepping back from his job has increased the synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency, contradiction, contr
incongruity; More
a situation, person, or thing that combines contradictory features or qualities
a situation, person, or thing that combines contradictory features or qualities.
"the mingling of deciduous trees with elements of desert flora forms a fascinating ecological paradox

Stacking

The cards have width 2. Induction shows that the center of gravity after n cards is $H(n)$ away from the right-most edge.

Independence: Examples

Example

Roll two die, $X, Y=$ number of pips on the two dice, X, Y are independent.
Indeed: $\operatorname{Pr}[X=a, Y=b]=\frac{1}{36}, \operatorname{Pr}[X=a]=\operatorname{Pr}[Y=b]=\frac{1}{6}$

Example 2

Roll two die. $X=$ total number of pips, $Y=$ number of pips on die 1
minus number on die 2. X and Y are not independent.
Indeed: $\operatorname{Pr}[X=12, Y=1]=0 \neq \operatorname{Pr}[X=12] \operatorname{Pr}[Y=1]>0$.

Example 3

Flip a fair coin five times, $X=$ number of $H \mathrm{~s}$ in first three flips, $Y=$ number of H in last two flips. X and Y are independent.
Indeed:
$\operatorname{Pr}[X=a, Y=b]=\binom{3}{a}\binom{2}{b} 2^{-5}=\binom{3}{a} 2^{-3} \times\binom{ 2}{b} 2^{-2}=\operatorname{Pr}[X=a] \operatorname{Pr}[Y=b]$.

Review: Independence of Events

- Events A, B are independent if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Events A, B, C are mutually independent if
A, B are independent, A, C are independent, B, C are independent
and $\operatorname{Pr}[A \cap B \cap C]=\operatorname{Pr}[A] \operatorname{Pr}[B] \operatorname{Pr}[C]$.
- Events $\left\{A_{n}, n>0\right\}$ are mutually independent if
- Example: $X, Y \in\{0,1\}$ two fair coin flips $\Rightarrow X, Y, X \oplus Y$ are pairwise independent but not mutually independent.
- Example: $X, Y, Z \in\{0,1\}$ three fair coin flips are mutually independent.

Mean of product of independent RV

Theorem

Let X, Y be independent RVs. Then

$$
E[X Y]=E[X] E[Y] .
$$

Proof:
Recall that $E[g(X, Y)]=\sum_{x, y} g(x, y) \operatorname{Pr}[X=x, Y=y]$. Hence,
$E[X Y]=\sum_{x, y} x y \operatorname{Pr}[X=x, Y=y]=\sum_{x, y} x y \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]$, by ind.
$=\sum_{x}\left[\sum_{y} x y \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]\right]=\sum_{x}\left[x \operatorname{Pr}[X=x]\left(\sum_{y} y \operatorname{Pr}[Y=y]\right)\right]$
$=\sum_{X}[x \operatorname{Pr}[X=x] E[Y]]=E[X] E[Y]$.

Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

$$
\operatorname{Pr}[Y=b \mid X=a]=\operatorname{Pr}[Y=b], \text { for all } a \text { and } b
$$

Fact:

X, Y are independent if and only if
$\operatorname{Pr}[X=a, Y=b]=\operatorname{Pr}[X=a] \operatorname{Pr}[Y=b]$, for all a and b
Obvious from $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]$ (Product rule.)

Examples

(1) Assume that X, Y, Z are (pairwise) independent, with $E[X]=E[Y]=E[Z]=0$ and $E\left[X^{2}\right]=E\left[Y^{2}\right]=E\left[Z^{2}\right]=1$. Then

$$
E\left[(X+2 Y+3 Z)^{2}\right]=E\left[X^{2}+4 Y^{2}+9 Z^{2}+4 X Y+12 Y Z+6 X Z\right]
$$

$$
=1+4+9+4 \times 0+12 \times 0+6 \times 0
$$

$$
=14 .
$$

(2) Let X, Y be independent and $U[1,2, \ldots n]$. Then

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right]=2 E\left[X^{2}\right]-2 E[X]^{2} \\
& =\frac{1+3 n+2 n^{2}}{3}-\frac{(n+1)^{2}}{2} .
\end{aligned}
$$

Mutually Independent Random Variables

Definition

X, Y, Z are mutually independent if
$\operatorname{Pr}[X=x, Y=y, Z=z]=\operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \operatorname{Pr}[Z=z]$, for all x, y, z.

Theorem
The events A, B, C, \ldots are pairwise (resp. mutually) independent iff the random variables $1_{A}, 1_{B}, 1_{C}, \ldots$ are pairwise (resp. mutually) independent.
Proof:

$$
\operatorname{Pr}\left[1_{A}=1,1_{B}=1,1_{C}=1\right]=\operatorname{Pr}[A \cap B \cap C], \ldots
$$

Variance

The variance measures the deviation from the mean value.
Definition: The variance of X is

$$
\sigma^{2}(X):=\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]
$$

$\sigma(X)$ is called the standard deviation of X.

Functions of pairwise independent RVs

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

$f(X)$ and $g(Y, Z)$ are not independent.

Example 1: Flip two fair coins,
$X=1\{\operatorname{coin} 1$ is $H\}, Y=1\{\operatorname{coin} 2$ is $H\}, Z=X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y Z)=Y \oplus Z$.
Then $g(Y, Z)=Y \oplus X \oplus Y=X$ is not independent of X
Example 2: Let A, B, C be pairwise but not mutually independent in a way that A and $B \cap C$ are not independent. Let
$X=1_{A}, Y=1_{B}, Z=1_{C}$. Choose $f(X)=X, g(Y, Z)=Y Z$

Variance and Standard Deviation

Fact:

$$
\operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}
$$

Indeed:
$\operatorname{var}(X)=E\left[(X-E[X])^{2}\right]$
$=E\left[X^{2}-2 X E[X]+E[X]^{2}\right)$
$=E\left[X^{2}\right]-2 E[X] E[X]+E[X]^{2}$, by linearity
$=E\left[X^{2}\right]-E[X]^{2}$.

Quick Review.

Coupons; Independent Random Variables

- Expected time to collect n coupons is $n H(n) \approx n(\ln n+\gamma)$
- X, Y independent $\Leftrightarrow \operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B]$
- Then, $f(X), g(Y)$ are independent

$$
\text { and } E[X Y]=E[X] E[Y]
$$

- Mutual independence

A simple example

This example illustrates the term 'standard deviation.'

Consider the random variable X such tha

$$
X= \begin{cases}\mu-\sigma, & \text { w.p. } 1 / 2 \\ \mu+\sigma, & \text { w.p. } 1 / 2\end{cases}
$$

Then, $E[X]=\mu$ and $(X-E[X])^{2}=\sigma^{2}$. Hence,

$$
\operatorname{var}(X)=\sigma^{2} \text { and } \sigma(X)=\sigma
$$

Example

Consider X with

$$
X= \begin{cases}-1, & \text { w. p. } 0.99 \\ 99, & \text { w. p. } 0.01\end{cases}
$$

Then

$$
\begin{aligned}
E[X] & =-1 \times 0.99+99 \times 0.01=0 . \\
E\left[X^{2}\right] & =1 \times 0.99+(99)^{2} \times 0.01 \approx 100 . \\
\operatorname{Var}(X) & \approx 100 \Longrightarrow \sigma(X) \approx 10 .
\end{aligned}
$$

Also,

$$
E(|X|)=1 \times 0.99+99 \times 0.01=1.98 .
$$

Thus, $\sigma(X) \neq E[|X-E[X]|]$!
Exercise: How big can you make $\frac{\sigma(X)}{E[X-E X X]}$?

Fixed points.

Number of fixed points in a random permutation of n items
"Number of student that get homework back."
$x=x_{1}+x_{2} \cdots+x_{n}$
where X_{i} is indicator variable for ith student getting hw back

$$
\begin{aligned}
E\left(X^{2}\right) & =\sum_{i} E\left(X_{i}^{2}\right)+\sum_{i \neq j} E\left(X_{i} X_{j}\right) . \\
& =n \times \frac{1}{n}+(n)(n-1) \times \frac{1}{n(n-1)} \\
& =1+1=2 .
\end{aligned}
$$

$E\left(X_{i}^{2}\right)=1 \times \operatorname{Pr}\left[X_{i}=1\right]+0 \times \operatorname{Pr}\left[X_{i}=0\right]$
$\begin{aligned} & E\left(X_{i} X_{j}\right)=\frac{1}{n} \\ & 1\end{aligned} \times \operatorname{Pr}\left[X_{i}=1 \cap X_{j}=1\right]+0 \times \operatorname{Pr}[$ "anything else"

$$
=1 \times \frac{(n-2)!}{n!}=\frac{1}{n(n-1)}
$$

$\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=2-1=1$

Uniform

Assume that $\operatorname{Pr}[X=i]=1 / n$ for $i \in\{1, \ldots, n\}$. Then

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{n} i \times \operatorname{Pr}[X=i]=\frac{1}{n} \sum_{i=1}^{n} i \\
& =\frac{1}{n} \frac{n(n+1)}{2}=\frac{n+1}{2} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{i=1}^{n} i^{2} \operatorname{Pr}[X=i]=\frac{1}{n} \sum_{i=1}^{n} i^{2} \\
& =\frac{1+3 n+2 n^{2}}{6}, \text { as you can verify. }
\end{aligned}
$$

This gives

$$
\operatorname{var}(X)=\frac{1+3 n+2 n^{2}}{6}-\frac{(n+1)^{2}}{4}=\frac{n^{2}-1}{12}
$$

Variance: binomial.

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{i=0}^{n} i^{2}\binom{n}{i} p^{i}(1-p)^{n-i} . \\
& =\text { Really???!!\#\#... }
\end{aligned}
$$

Too hard!

Ok.. fine.
Let's do something else
Maybe not much easier...but there is a payoff

Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $\operatorname{Pr}[X=n]=(1-p)^{n-1} p$ for $n \geq 1$. Recall $E[X]=1 / p$.
$E\left[X^{2}\right]=p+4 p(1-p)+9 p(1-p)^{2}+\ldots$
$-(1-p) E\left[X^{2}\right]=-\left[p(1-p)+4 p(1-p)^{2}+\ldots\right]$ $p E\left[X^{2}\right]=p+3 p(1-p)+5 p(1-p)^{2}+.$.
$=2\left(p+2 p(1-p)+3 p(1-p)^{2}+..\right) \quad E[X]$
$-\left(p+p(1-p)+p(1-p)^{2}+\ldots\right)$ Distribution.
$p E\left[X^{2}\right]=2 E[X]-1$
$=2\left(\frac{1}{p}\right)-1=\frac{2-p}{p}$
$\Longrightarrow E\left[X^{2}\right]=(2-p) / p^{2}$ and
$\Longrightarrow E\left[X^{2}\right]=(2-p) / p^{2}$ and
$\operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=\frac{2-p}{p^{2}}-\frac{1}{p^{2}}=\frac{1-p}{p^{2}}$.
$\sigma(X)=\frac{\sqrt{1-p}}{p} \approx E[X]$ when p is small(ish).

Properties of variance.

1. $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$, where c is a constant. Scales by c^{2}.
2. $\operatorname{Var}(X+c)=\operatorname{Var}(X)$, where c is a constant. Shifts center.

Proof:

$\operatorname{Var}(c X)=E\left((c X)^{2}\right)-(E(c X))^{2}$
$=c^{2} E\left(X^{2}\right)-c^{2}(E(X))^{2}=c^{2}\left(E\left(X^{2}\right)-E(X)^{2}\right)$
$=c^{2} \operatorname{Var}(X)$
$\operatorname{Var}(X+c)=E\left((X+c-E(X+c))^{2}\right)$
$=E\left((X+c-E(X)-c)^{2}\right)$
$=E\left((X-E(X))^{2}\right)=\operatorname{Var}(X)$

Variance of sum of two independent random variables Theorem:
If X and Y are independent, then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.
That is, we assume that $E(X)=0$ and $E(Y)=0$.
Then, by independence,

$$
E(X Y)=E(X) E(Y)=0 .
$$

Hence,

$$
\begin{aligned}
\operatorname{var}(X+Y) & =E\left((X+Y)^{2}\right)=E\left(X^{2}+2 X Y+Y^{2}\right) \\
& =E\left(X^{2}\right)+2 E(X Y)+E\left(Y^{2}\right)=E\left(X^{2}\right)+E\left(Y^{2}\right) \\
& =\operatorname{var}(X)+\operatorname{var}(Y) .
\end{aligned}
$$

Poisson Distribution: Definition

Definition Poisson Distribution with parameter $\lambda>0$

$$
X=P(\lambda) \Leftrightarrow \operatorname{Pr}[X=m]=\frac{\lambda^{m}}{m!} e^{-\lambda}, m \geq 0 .
$$

Mean, Variance?
Ugh.
Recall that Poission is the limit of the Binomial with $p=\lambda / n$ as $n \rightarrow \infty$
Mean: $p n=\lambda$
Variance: $p(1-p) n=\lambda-\lambda^{2} / n \rightarrow \lambda$.
$E\left(X^{2}\right) ? \operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$ or $E\left(X^{2}\right)=\operatorname{Var}(X)+E(X)^{2}$. $E\left(X^{2}\right)=\lambda+\lambda^{2}$.

Variance of sum of independent random variables
 Theorem:

If X, Y, Z, \ldots are pairwise independent, then

$$
\operatorname{var}(X+Y+Z+\cdots)=\operatorname{var}(X)+\operatorname{var}(Y)+\operatorname{var}(Z)+\cdots
$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.
That is, we assume that $E[X]=E[Y]=\cdots=0$.
Then, by independence
$E[X Y]=E[X] E[Y]=0$. Also, $E[X Z]=E[Y Z]=\cdots=0$.
Hence
$\operatorname{var}(X+Y+Z+\cdots)=E\left((X+Y+Z+\cdots)^{2}\right)$
$=E\left(X^{2}+Y^{2}+Z^{2}+\cdots+2 X Y+2 X Z+2 Y Z+\cdots\right)$
$=E\left(X^{2}\right)+E\left(Y^{2}\right)+E\left(Z^{2}\right)+\cdots+0+\cdots+0$

$$
=\operatorname{var}(X)+\operatorname{var}(Y)+\operatorname{var}(Z)+\cdots
$$

$$
\square
$$

Inequalities: An Overview

Variance of Binomial Distribution.

Flip coin with heads probability p.
X - how many heads?

$$
X_{i}=\left\{\begin{array}{lc}
1 & \text { if } i \text { th flip is heads } \\
0 & \text { otherwise }
\end{array}\right.
$$

$E\left(X_{i}^{2}\right)=1^{2} \times p+0^{2} \times(1-p)=p$.
$\operatorname{Var}\left(X_{i}\right)=p-(E(X))^{2}=p-p^{2}=p(1-p)$
$p=0 \Longrightarrow \operatorname{Var}\left(X_{i}\right)=0$
$p=1 \Longrightarrow \operatorname{Var}\left(X_{i}\right)=0$
$X=X_{1}+X_{2}+\ldots X_{n}$.
X_{i} and X_{j} are independent: $\operatorname{Pr}\left[X_{i}=1 \mid X_{j}=1\right]=\operatorname{Pr}\left[X_{i}=1\right]$.

$$
\operatorname{Var}(X)=\operatorname{Var}\left(X_{1}+\cdots X_{n}\right)=n p(1-p)
$$

Andrey Markov

Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev's first inequality.
Theorem Markov's Inequality
Assume $f: \mathfrak{R} \rightarrow[0, \infty)$ is nondecreasing. Then
$\operatorname{Pr}[X \geq a] \leq \frac{E[f(X)]}{f(a)}$, for all a such that $f(a)>0$.

Proof:

Observe that

$$
1\{X \geq a\} \leq \frac{f(X)}{f(a)}
$$

Indeed, if $X<a$, the inequality reads $0<f(X) / f(a)$, which holds since $f(\cdot) \geq 0$. Also, if $X \geq a$, it reads $1 \leq f(X) / f(a)$, which holds since $f(\cdot)$ is nondecreasing
Taking the expectation yields the inequality, because expectation is monotone.

Markov Inequality Example: $P(\lambda)$

Let $X=P(\lambda)$. Recall that $E[X]=\lambda$ and $E\left[X^{2}\right]=\lambda+\lambda^{2}$.

A picture

$f(a) 1\{X \geq a\} \leq f(x) \Rightarrow 1\{X \geq a\} \leq \frac{f(X)}{f(a)}$

$$
\Rightarrow \operatorname{Pr}[X \geq a] \leq \frac{E[f(X)}{f(a)}
$$

Summary

Variance; Inequalities; WLLN

- Variance: $\operatorname{var}[X]:=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}$
- Fact: $\operatorname{var}[a X+b] a^{2} \operatorname{var}[X]$
- Sum: X, Y, Z pairwise ind. $\Rightarrow \operatorname{var}[X+Y+Z]=$.
- Markov: $\operatorname{Pr}[X \geq a] \leq E[f(X)] / f(a)$ where ..

Markov Inequality Example: G(p)

$$
\text { Let } X=G(p) \text {. Recall that } E[X]=\frac{1}{p} \text { and } E\left[X^{2}\right]=\frac{2-p}{p^{2}} \text {. }
$$

Choosing $f(x)=x$, we

 get$\operatorname{Pr}[X \geq a] \leq \frac{E[X]}{a}=\frac{1}{a p}$.
Choosing $f(x)=x^{2}$
we get
$\operatorname{Pr}[X \geq a] \leq \frac{E\left[X^{2}\right]}{a^{2}}=\frac{2-p}{p^{2} a^{2}}$

