
CS70: Lecture 20.

Coupons; Independent Random Variables; Markov; Variance

1. Time to Collect Coupons

2. Review: Independence of Events

3. Independent RVs

4. Mutually independent RVs

5. Variance

6. Inequalities

I Markov
I Chebyshev

7. Weak Law of Large Numbers

Coupon Collectors Problem.

Experiment: Get coupons at random from n until collect all n
coupons.
Outcomes: {123145...,56765...}
Random Variable: X - length of outcome.

Before: Pr [X ≥ n ln2n]≤ 1
2 .

Today: E [X ]?

Time to collect coupons

X -time to get n coupons.

X1 - time to get first coupon. Note: X1 = 1. E(X1) = 1.

X2 - time to get second coupon after getting first.

Pr [“get second coupon”|“got milk—- first coupon”] = n−1
n

E [X2]? Geometric ! ! ! =⇒ E [X2] =
1
p = 1

n−1
n

= n
n−1 .

Pr [“getting i th coupon|“got i−1rst coupons”] = n−(i−1)
n = n−i+1

n

E [Xi ] =
1
p = n

n−i+1 , i = 1,2, . . . ,n.

E [X ] = E [X1]+ · · ·+E [Xn] =
n
n
+

n
n−1

+
n

n−2
+ · · ·+ n

1

= n(1+
1
2
+ · · ·+ 1

n
) =: nH(n)≈ n(lnn+ γ)

Review: Harmonic sum

H(n) = 1+
1
2
+ · · ·+ 1

n
≈
∫ n

1

1
x

dx = ln(n).

.

A good approximation is

H(n)≈ ln(n)+ γ where γ ≈ 0.58 (Euler-Mascheroni constant).

Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend H(n) to the right of the
table. As n increases, you can go as far as you want!

Paradox



Stacking

The cards have width 2. Induction shows that the center of gravity
after n cards is H(n) away from the right-most edge.

Review: Independence of Events

I Events A,B are independent if Pr [A∩B] = Pr [A]Pr [B].

I Events A,B,C are mutually independent if

A,B are independent, A,C are independent, B,C are
independent

and Pr [A∩B∩C] = Pr [A]Pr [B]Pr [C].

I Events {An,n ≥ 0} are mutually independent if . . ..

I Example: X ,Y ∈ {0,1} two fair coin flips⇒ X ,Y ,X ⊕Y are
pairwise independent but not mutually independent.

I Example: X ,Y ,Z ∈ {0,1} three fair coin flips are mutually
independent.

Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

Pr [Y = b|X = a] = Pr [Y = b], for all a and b.

Fact:

X ,Y are independent if and only if

Pr [X = a,Y = b] = Pr [X = a]Pr [Y = b], for all a and b.

Obvious from Pr [A∩B] = Pr [A|B]Pr [B] (Product rule.)

Independence: Examples

Example 1
Roll two die. X ,Y = number of pips on the two dice. X ,Y are
independent.

Indeed: Pr [X = a,Y = b] = 1
36 ,Pr [X = a] = Pr [Y = b] = 1

6 .

Example 2
Roll two die. X = total number of pips, Y = number of pips on die 1
minus number on die 2. X and Y are not independent.

Indeed: Pr [X = 12,Y = 1] = 0 6= Pr [X = 12]Pr [Y = 1]> 0.

Example 3
Flip a fair coin five times, X = number of Hs in first three flips, Y =
number of Hs in last two flips. X and Y are independent.

Indeed:

Pr [X =a,Y =b] =
(

3
a

)(
2
b

)
2−5 =

(
3
a

)
2−3×

(
2
b

)
2−2 =Pr [X =a]Pr [Y =b].

Mean of product of independent RV

Theorem
Let X ,Y be independent RVs. Then

E [XY ] = E [X ]E [Y ].

Proof:
Recall that E [g(X ,Y )] = ∑x ,y g(x ,y)Pr [X = x ,Y = y ]. Hence,

E [XY ] = ∑
x ,y

xyPr [X = x ,Y = y ] = ∑
x ,y

xyPr [X = x ]Pr [Y = y ], by ind.

= ∑
x
[∑

y
xyPr [X = x ]Pr [Y = y ]] = ∑

x
[xPr [X = x ](∑

y
yPr [Y = y ])]

= ∑
x
[xPr [X = x ]E [Y ]] = E [X ]E [Y ].

Examples

(1) Assume that X ,Y ,Z are (pairwise) independent, with
E [X ] = E [Y ] = E [Z ] = 0 and E [X 2] = E [Y 2] = E [Z 2] = 1.

Then

E [(X +2Y +3Z )2] = E [X 2 +4Y 2 +9Z 2 +4XY +12YZ +6XZ ]

= 1+4+9+4×0+12×0+6×0
= 14.

(2) Let X ,Y be independent and U[1,2, . . .n]. Then

E [(X −Y )2] = E [X 2 +Y 2−2XY ] = 2E [X 2]−2E [X ]2

=
1+3n+2n2

3
− (n+1)2

2
.



Mutually Independent Random Variables

Definition

X ,Y ,Z are mutually independent if

Pr [X = x ,Y = y ,Z = z] = Pr [X = x ]Pr [Y = y ]Pr [Z = z], for all x ,y ,z.

Theorem
The events A,B,C, . . . are pairwise (resp. mutually) independent iff
the random variables 1A,1B,1C , . . . are pairwise (resp. mutually)
independent.
Proof:

Pr [1A = 1,1B = 1,1C = 1] = Pr [A∩B∩C], . . .

Functions of pairwise independent RVs

If X ,Y ,Z are pairwise independent, but not mutually independent, it
may be that

f (X ) and g(Y ,Z ) are not independent.

Example 1: Flip two fair coins,
X = 1{coin 1 is H},Y = 1{coin 2 is H},Z = X ⊕Y . Then, X ,Y ,Z are
pairwise independent. Let g(Y ,Z ) = Y ⊕Z .
Then g(Y ,Z ) = Y ⊕X ⊕Y = X is not independent of X .

Example 2: Let A,B,C be pairwise but not mutually independent in a
way that A and B∩C are not independent. Let
X = 1A,Y = 1B,Z = 1C . Choose f (X ) = X ,g(Y ,Z ) = YZ .

Quick Review.

Coupons; Independent Random Variables

I Expected time to collect n coupons is nH(n)≈ n(lnn+ γ)

I X ,Y independent⇔ Pr [X ∈ A,Y ∈ B] = Pr [X ∈ A]Pr [Y ∈ B]

I Then, f (X ),g(Y ) are independent

and E [XY ] = E [X ]E [Y ]

I Mutual independence ....

Variance

The variance measures the deviation from the mean value.

Definition: The variance of X is

σ2(X ) := var [X ] = E [(X −E [X ])2].

σ(X ) is called the standard deviation of X .

Variance and Standard Deviation

Fact:
var [X ] = E [X 2]−E [X ]2.

Indeed:

var(X ) = E [(X −E [X ])2]

= E [X 2−2XE [X ]+E [X ]2)

= E [X 2]−2E [X ]E [X ]+E [X ]2, by linearity
= E [X 2]−E [X ]2.

A simple example

This example illustrates the term ‘standard deviation.’

Consider the random variable X such that

X =

{
µ−σ , w.p. 1/2
µ +σ , w.p. 1/2.

Then, E [X ] = µ and (X −E [X ])2 = σ2. Hence,

var(X ) = σ2 and σ(X ) = σ .



Example

Consider X with

X =

{
−1, w. p. 0.99
99, w. p. 0.01.

Then

E [X ] = −1×0.99+99×0.01 = 0.
E [X 2] = 1×0.99+(99)2×0.01≈ 100.

Var(X ) ≈ 100 =⇒ σ(X )≈ 10.

Also,
E(|X |) = 1×0.99+99×0.01 = 1.98.

Thus, σ(X ) 6= E [|X −E [X ]|]!
Exercise: How big can you make σ(X )

E [|X−E [X ]|]?

Uniform
Assume that Pr [X = i] = 1/n for i ∈ {1, . . . ,n}. Then

E [X ] =
n

∑
i=1

i×Pr [X = i] =
1
n

n

∑
i=1

i

=
1
n

n(n+1)
2

=
n+1

2
.

Also,

E [X 2] =
n

∑
i=1

i2Pr [X = i] =
1
n

n

∑
i=1

i2

=
1+3n+2n2

6
, as you can verify.

This gives

var(X ) =
1+3n+2n2

6
− (n+1)2

4
=

n2−1
12

.

Variance of geometric distribution.

X is a geometrically distributed RV with parameter p.
Thus, Pr [X = n] = (1−p)n−1p for n ≥ 1. Recall E [X ] = 1/p.

E [X 2] = p+4p(1−p)+9p(1−p)2 + ...

−(1−p)E [X 2] = −[p(1−p)+4p(1−p)2 + ...]

pE [X 2] = p+3p(1−p)+5p(1−p)2 + ...

= 2(p+2p(1−p)+3p(1−p)2 + ..) E [X ]!
−(p+p(1−p)+p(1−p)2 + ...) Distribution.

pE [X 2] = 2E [X ]−1

= 2(
1
p
)−1 =

2−p
p

=⇒ E [X 2] = (2−p)/p2 and
var [X ] = E [X 2]−E [X ]2 = 2−p

p2 − 1
p2 = 1−p

p2 .

σ(X ) =

√
1−p
p ≈ E [X ] when p is small(ish).

Fixed points.
Number of fixed points in a random permutation of n items.
“Number of student that get homework back.”

X = X1 +X2 · · ·+Xn

where Xi is indicator variable for i th student getting hw back.

E(X 2) = ∑
i

E(X 2
i )+∑

i 6=j
E(XiXj).

= n× 1
n
+(n)(n−1)× 1

n(n−1)
= 1+1 = 2.

E(X 2
i ) = 1×Pr [Xi = 1]+0×Pr [Xi = 0]

= 1
n

E(XiXj) = 1×Pr [Xi = 1∩Xj = 1]+0×Pr [“anything else’′]
= 1× (n−2)!

n! = 1
n(n−1)

Var(X ) = E(X 2)− (E(X ))2 = 2−1 = 1.

Variance: binomial.

E [X 2] =
n

∑
i=0

i2
(

n
i

)
pi(1−p)n−i .

= Really???!!##...

Too hard!

Ok.. fine.
Let’s do something else.
Maybe not much easier...but there is a payoff.

Properties of variance.

1. Var(cX ) = c2Var(X ), where c is a constant.
Scales by c2.

2. Var(X +c) = Var(X ), where c is a constant.
Shifts center.

Proof:

Var(cX ) = E((cX )2)− (E(cX ))2

= c2E(X 2)−c2(E(X ))2 = c2(E(X 2)−E(X )2)

= c2Var(X )

Var(X +c) = E((X +c−E(X +c))2)

= E((X +c−E(X )−c)2)

= E((X −E(X ))2) = Var(X )



Variance of sum of two independent random variables
Theorem:
If X and Y are independent, then

Var(X +Y ) = Var(X )+Var(Y ).

Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E(X ) = 0 and E(Y ) = 0.

Then, by independence,

E(XY ) = E(X )E(Y ) = 0.

Hence,

var(X +Y ) = E((X +Y )2) = E(X 2 +2XY +Y 2)

= E(X 2)+2E(XY )+E(Y 2) = E(X 2)+E(Y 2)

= var(X )+var(Y ).

Variance of sum of independent random variables
Theorem:
If X ,Y ,Z , . . . are pairwise independent, then

var(X +Y +Z + · · ·) = var(X )+var(Y )+var(Z )+ · · · .
Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E [X ] = E [Y ] = · · ·= 0.

Then, by independence,

E [XY ] = E [X ]E [Y ] = 0. Also, E [XZ ] = E [YZ ] = · · ·= 0.

Hence,

var(X +Y +Z + · · ·) = E((X +Y +Z + · · ·)2)

= E(X 2 +Y 2 +Z 2 + · · ·+2XY +2XZ +2YZ + · · ·)
= E(X 2)+E(Y 2)+E(Z 2)+ · · ·+0+ · · ·+0
= var(X )+var(Y )+var(Z )+ · · · .

Variance of Binomial Distribution.

Flip coin with heads probability p.
X - how many heads?

Xi =

{
1 if i th flip is heads
0 otherwise

E(X 2
i ) = 12×p+02× (1−p) = p.

Var(Xi) = p− (E(X ))2 = p−p2 = p(1−p).

p = 0 =⇒ Var(Xi) = 0
p = 1 =⇒ Var(Xi) = 0

X = X1 +X2 + . . .Xn.

Xi and Xj are independent: Pr [Xi = 1|Xj = 1] = Pr [Xi = 1].

Var(X ) = Var(X1 + · · ·Xn) = np(1−p).

Poisson Distribution: Definition

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with p = λ/n as n→ ∞.

Mean: pn = λ

Variance: p(1−p)n = λ −λ 2/n→ λ .

E(X 2)? Var(X ) = E(X 2)− (E(X ))2 or E(X 2) = Var(X )+E(X )2.

E(X 2) = λ +λ 2.

Inequalities: An Overview

n

pn

µ

Pr[|X � µ| > ✏]

✏✏

Chebyshev

n

pn

pn

Distribution

n

pn

Pr[X > a]

a

Markov

µ

Andrey Markov

Andrey Markov is best known for his work on
stochastic processes. A primary subject of his
research later became known as Markov
chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.

Markov was an atheist. In 1912 he protested
Leo Tolstoy’s excommunication from the
Russian Orthodox Church by requesting his
own excommunication. The Church complied
with his request.



Markov’s inequality
The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality

Assume f : ℜ→ [0,∞) is nondecreasing. Then,

Pr [X ≥ a]≤ E [f (X )]

f (a)
, for all a such that f (a)> 0.

Proof:

Observe that
1{X ≥ a} ≤ f (X )

f (a)
.

Indeed, if X < a, the inequality reads 0≤ f (X )/f (a), which holds
since f (·)≥ 0. Also, if X ≥ a, it reads 1≤ f (X )/f (a), which holds since
f (·) is nondecreasing.

Taking the expectation yields the inequality, because expectation is
monotone.

A picture Markov Inequality Example: G(p)

Let X = G(p). Recall that E [X ] = 1
p and E [X2] = 2−p

p2 .

Choosing f (x) = x , we
get

Pr [X ≥a]≤ E [X ]

a
=

1
ap

.

Choosing f (x) = x2,
we get

Pr [X ≥a]≤ E [X2]

a2 =
2−p
p2a2 .

Markov Inequality Example: P(λ )

Let X = P(λ ). Recall that E [X ] = λ and E [X2] = λ +λ 2.

Choosing f (x) = x , we
get

Pr [X ≥ a]≤ E [X ]

a
=

λ
a
.

Choosing f (x) = x2,
we get

Pr [X ≥a]≤ E [X2]

a2 =
λ +λ 2

a2 .

Summary

Variance; Inequalities; WLLN

I Variance: var [X ] := E [(X −E [X ])2] = E [X 2]−E [X ]2

I Fact: var [aX +b]a2var [X ]

I Sum: X ,Y ,Z pairwise ind. ⇒ var [X +Y +Z ] = · · ·
I Markov: Pr [X ≥ a]≤ E [f (X )]/f (a) where ...


