CS70: Lecture 2. QOutline.

Today: Proofs!!!

—_

. By Example.
Direct. (Prove P = Q.)

by Contraposition (Prove P — Q)

P OD

by Contradiction (Prove P.)
5. by Cases

If time: discuss induction.
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Quick Background and Notation.

Integers closed under addition.
abeZ — at+be”Z
alb means “a divides b”.
2|4? Yes! Since for g =2, 4 = (2)2.
71237 No! No g where true.
4|27 No!
Formally: a|lb < 3g € Z where b = aq.
3|15 since for g =5, 15 = 3(5).
A natural number p > 1, is prime if it is divisible only by 1 and itself.
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Direct Proof.

Theorem: For any a,b,c € Z, if alb and a|c then a|(b— c).

Proof: Assume a|b and alc
b=agand c=aq where q.q € Z

b—c=aq—aq =a(q—qg) Done?
(b—c)=a(g—q')and (g—qd') is an integer so
a/(b—c)

Works for Va, b, c?
Argument applies to every a,b,c € Z.

Direct Proof Form:
Goal: P = Q
Assume P.

Therefore Q.
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CS70: Note 3. Induction!

1. The natural numbers.
2. 5year old Gauss.
3. ..and Induction.

4. Simple Proof.
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