CS70: Lecture 2. Outline.

Today: Proofs!!!

1. By Example.
2. Direct. (Prove $P \Longrightarrow Q$.)
3. by Contraposition (Prove $P \Longrightarrow Q$)
4. by Contradiction (Prove P.)
5. by Cases

If time: discuss induction.

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
$2 \mid 4$? Yes! Since for $q=2,4=(2) 2$.
$7 \mid 23$? No! No q where true.
4|2? No!
Formally: $a \mid b \Longleftrightarrow \exists q \in Z$ where $b=a q$.
$3 \mid 15$ since for $q=5,15=3(5)$.
A natural number $p>1$, is prime if it is divisible only by 1 and itself.

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$ and $\left(q-q^{\prime}\right)$ is an integer so $a \mid(b-c)$
Works for $\forall a, b, c$?
Argument applies to every $a, b, c \in Z$.
Direct Proof Form:
Goal: $P \Longrightarrow Q$
Assume P.
Therefore Q.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , than $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.
Add $99 a+11 b$ to both sides.

$$
100 a+10 b+c=11 k+99 a+11 b=11(k+9 a+b)
$$

Left hand side is $n, k+9 a+b$ is integer. $\Longrightarrow 11 \mid n$.
Direct proof of $P \Longrightarrow Q$:
Assumed $P: 11 \mid a-b+c$. Proved $Q: 11 \mid n$.

The Converse

Thm: $\forall n \in D_{3}$, (11|alt. sum of digits of $\left.n\right) \Longrightarrow 11 \mid n$
Is converse a theorem?
$\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n)
Yes? No?

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n) Proof: Assume 11|n.

$$
\begin{aligned}
& n=100 a+10 b+c=11 k \Longrightarrow \\
& 99 a+11 b+(a-b+c)=11 k \Longrightarrow \\
& \quad a-b+c=11 k-99 a-11 b \Longrightarrow \\
& \quad a-b+c=11(k-9 a-b) \Longrightarrow \\
& \quad a-b+c=11 \ell \text { where } \ell=(k-9 a-b) \in Z
\end{aligned}
$$

That is 11 |alternating sum of digits.
Note: similar proof to other. In this case every \Longrightarrow is \Longleftrightarrow Often works with arithmetic properties ...
...not when multiplying by 0 .
We have.
Theorem: $\forall n \in N^{\prime},(11 \mid a l t$. sum of digits of $n) \Longleftrightarrow(11 \mid n)$

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

$$
n=2 k+1 \text { what do we know about } d ?
$$

What to do? Is it even true?
Hey, that rhymes ...and there is a pun ... colored blue.
Anyway, what to do?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.
Proof: Assume $\neg Q$: d is even. $d=2 k$.
$d \mid n$ so we have

$$
n=q d=q(2 k)=2(k q)
$$

n is even. $\neg P$

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$
n^{2} is even, $n^{2}=2 k, \ldots \sqrt{2 k}$ even?
Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P=$ ' n^{2} is even.' $\neg P={ }^{\prime} n^{2}$ is odd'
$Q=$ ' n is even' $\neg Q=$ ' n is odd'
Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^{2}$ is odd.
$n=2 k+1$
$n^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
$n^{2}=2 l+1$ where $/$ is a natural number..
... and n^{2} is odd!
$\neg Q \Longrightarrow \neg P$ so $P \Longrightarrow Q$ and \ldots

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$
$\neg P \Longrightarrow Q_{1} \cdots \Longrightarrow \neg R$
$\neg P \Longrightarrow R \wedge \neg R \equiv$ False
Contrapositive: True $\Longrightarrow P$. Theorem P is proven.

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

$$
\begin{gathered}
\sqrt{2} b=a \\
2 b^{2}=a^{2}=4 k^{2}
\end{gathered}
$$

a^{2} is even $\Longrightarrow a$ is even.
$a=2 k$ for some integer k

$$
b^{2}=2 k^{2}
$$

b^{2} is even $\Longrightarrow b$ is even.
a and b have a common factor. Contradiction.

Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.
- q has prime divisor p (" $p>1$ " $=\mathrm{R}$) which is one of p_{i}.
- p divides both $x=p_{1} \cdot p_{2} \cdots p_{k}$ and q, and divides $x-q$,
$\Rightarrow \Longrightarrow p \mid x-q \Longrightarrow p \leq x-q=1$.
- so $p \leq 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $2 \times 3 \times 5 \times 7 \times 11 \times 13+1=30031=59 \times 509$
- There is a prime in between 13 and $q=30031$ that divides q.
- Proof assumed no primes in between p_{k} and q.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma
\Longrightarrow no rational solution.
Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible. Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} * \sqrt{2}}=\sqrt{2}^{2}=2
$$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).
One of the cases is true so theorem holds.
Question: Which case holds? Don’t know!!!

Be careful.

Theorem: $3=4$
Proof: Assume $3=4$.
Start with $12=12$.
Divide one side by 3 and the other by 4 to get $4=3$.

By commutativity theorem holds.
Don't assume what you want to prove!

Be really carefu!!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\begin{aligned}
\left(x^{2}-x y\right) & =x^{2}-y^{2} \\
x(x-y) & =(x+y)(x-y) \\
x & =(x+y) \\
x & =2 x \\
1 & =2
\end{aligned}
$$

Dividing by zero is no good.
Also: Multiplying inequalities by a negative.
$P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either $\sqrt{2}$ and $\sqrt{2}$ worked.
or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.
Careful when proving!
Don't assume the theorem. Divide by zero.Watch converse. ...

CS70: Note 3. Induction!

1. The natural numbers.
2. 5 year old Gauss.
3. ..and Induction.
4. Simple Proof.

The natural numbers.

$$
\begin{aligned}
& 0,1,2,3 \\
& \quad \ldots, n, n+1, n+2, n+3, \ldots
\end{aligned}
$$

A formula.

Teacher: Hello class.
Teacher: Please add the numbers from 1 to 100.
Gauss: It's $\frac{(100)(101)}{2}$ or 5050 !
Five year old Gauss Theorem: $\forall(n \in N): \sum_{i=0}^{n} i=\frac{(n)(n+1)}{2}$.
It is a statement about all natural numbers.

$$
\forall(n \in N): P(n) .
$$

$P(n)$ is " $\sum_{i=0}^{n} i \frac{(n)(n+1)}{2}$ ".
Principle of Induction:

- Prove $P(0)$.
- Assume $P(k)$, "Induction Hypothesis"
- Prove $P(k+1)$. "Induction Step."

Gauss induction proof.

Theorem: For all natural numbers $n, 0+1+2 \cdots n=\frac{n(n+1)}{2}$
Base Case: Does $0=\frac{0(0+1)}{2}$? Yes.
Induction Step: Show $\forall k \geq 0, P(k) \Longrightarrow P(k+1)$
Induction Hypothesis: $P(k)=1+\cdots+k=\frac{k(k+1)}{2}$

$$
\begin{aligned}
1+\cdots+k+(k+1) & =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k^{2}+k+2(k+1)}{2} \\
& =\frac{k^{2}+3 k+2}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

$P(k+1)$!. By principle of induction...

Notes visualization

Note's visualization: an infinite sequence of dominos.

Prove they all fall down;

- $P(0)=$ "First domino falls"
- $(\forall k) P(k) \Longrightarrow P(k+1)$:
" k th domino falls implies that $k+1$ st domino falls"

Climb an infinite ladder?

$$
\begin{gathered}
\quad P(0) \\
\forall k, P(k) \Longrightarrow P(k+1) \\
(\forall n \in N) P(n)
\end{gathered}
$$

Your favorite example of forever..or the natural numbers...

Gauss and Induction

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})\left(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\right)$ Proof?
Idea: assume predicate $P(n)$ for $n=k . P(k)$ is $\sum_{i=1}^{k} i=\frac{k(k+1)}{2}$.
Is predicate, $P(n)$ true for $n=k+1$?

$$
\sum_{i=1}^{k+1} i=\left(\sum_{i=1}^{k} i\right)+(k+1)=\frac{k(k+1)}{2}+k+1=\frac{(k+1)(k+2)}{2} .
$$

How about $k+2$. Same argument starting at $k+1$ works! Induction Step. $P(k) \Longrightarrow P(k+1)$.
Is this a proof? It shows that we can always move to the next step.
Need to start somewhere. $P(0)$ is $\sum_{i=0}^{0} i=1=\frac{(0)(0+1)}{2}$ Base Case.
Statement is true for $n=0 P(0)$ is true
plus inductive step \Longrightarrow true for $n=1(P(0) \wedge(P(0) \Longrightarrow P(1))) \Rightarrow P(1)$
plus inductive step \Longrightarrow true for $n=2(P(1) \wedge(P(1) \Rightarrow P(2))) \Rightarrow P(2)$

$$
\text { true for } n=k \Longrightarrow \text { true for } n=k+1(P(k) \wedge(P(k) \Longrightarrow P(k+1))) \Longrightarrow P(k+1)
$$

Predicate, $P(n)$, True for all natural numbers!

Induction

The canonical way of proving statements of the form

$$
(\forall k \in N)(P(k))
$$

- For all natural numbers $n, 1+2 \cdots n=\frac{n(n+1)}{2}$.
- For all $n \in N, n^{3}-n$ is divisible by 3 .
- The sum of the first n odd integers is a perfect square.

The basic form

- Prove $P(0)$. "Base Case".
- $P(k) \Longrightarrow P(k+1)$
- Assume $P(k)$, "Induction Hypothesis"
- Prove $P(k+1)$. "Induction Step."
$P(n)$ true for all natural numbers $n!!!$
Get to use $P(k)$ to prove $P(k+1)!!!!$

Next Time.

More induction!
See you on Tuesday!

