CS70: Alex Psomas: Lecture 19.

1. Random Variables: Brief Review

2. Some details on distributions: Geometric. Poisson.
3. Joint distributions.

4. Linearity of Expectation.
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Definition
A random variable, X, for a random experiment with sample space Q
is a function X : Q — R.

Thus, X(-) assigns a real number X(w) to each o € Q.

Definitions
(a) For a e R, one defines

X Na)={oecQ|X(w)=al
(b) For A C R, one defines
X YA ={weQ|X(o)eA}.
(¢) The probability that X = a is defined as
Pr[X = a] = Pr[X~(a)].
(d) The probability that X € A is defined as
Pr[X € Al = Pr[X~"(A)].
(e) The distribution of a random variable X, is
{(a,Pr[X=al):ac &},
where & is the range of X. Thatis, & = {X(w),® € Q}.
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Definition: The expected value (or mean, or expectation) of a
random variable X is

EX]=) axPriX=al.

acR

Theorem:

EX]= Y X(0)x Prlo].

we
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Recall the definition of the random variable X:

{HHH,HHT ,HTH,HTT, THH, THT, TTH, TTT} — {3,1,1,—1,1,—1,—1,-3}.
3 3

1 1
E[X]—3><§+1><§—1><§—3><§_0.
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Apparently: expected value is not a common value, by any means. It
doesn’t have to be in the range of X.

The expected value of X is not the value that you expect!
Great name once again!
It is the average value per experiment, if you perform the experiment

many times:

X4t X
g, when n>> 1.

The fact that this average converges to E[X] is a theorem:
the Law of Large Numbers. (See later.)
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TTT...TTTITTT ... T ....... H
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Pr[X > n+m|X > n| = Pr[A|B] = Pr[A] = Pr[X > m].

The coin is memoryless, therefore, so is X.
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Siméon Poisson

Siméon Denis Poisson (1781-1840)
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Indicators

Definition
Let A be an event. The random variable X defined by

1, focA
X(“’)_{ 0, ifogA

is called the indicator of the event A.
Note that Pr[X = 1] = Pr[A] and Pr[X =0] =1— Pr[A].
Hence,

E[X]=1xPr[X=1]+0x Pr[X =0] = Pr[A].
This random variable X(®) is sometimes written as
1{w € A} or 14(w).

Thus, we will write X =14.
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Joint distribution.

Two random variables, X and Y, in prob space: (22, P(-)).
Whatis Y, PriX =x]? 1. WhatY, Pr[Y =y]? 1.
Let’s think about: Pr(X =x,Y =y].
Whatis ¥, , PriX = x,Y = y|?
Are the events “X = x, Y = y” disjoint?
Yes! Y and X are functions on Q
Do they cover the entire sample space?
Yes! X and Y are functions on Q.
So, Yxy PriX=x,Y=y]=1.
Joint Distribution: Pr(X =x,Y =y].
Marginal Distributions: Pr[X = x| and Pr[Y = y].
Important for inference.
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Is this a distribution?
Yes! All the probabilities are non-negative and add up to 1.

Y=1|0 1 5 10
Pr 103]0.1]0.1]05
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Joint distribution: Example.

The joint distribution of X and Y is:

Is this a valid distribution? Yes!

Y/X |0 1 2 3 5 40 All
0 0.15| 0 0 0 0 0.1 | 0.05
1 0 0.05 | 005 |O 0 0 0
0 0 0 0.05 005 |0 0
10 | 0.15 |0 0 0 0 0 0.35
=0.3 =0.05 =0.05 =0.05 =0.05 =0.1 =04

=0.3
=0.1
=0.1
=0.5

Notice that Pr[X = a] and Pr[Y = b] are (marginal) distributions!
But now we have more information!

For example, if | tell you someone watched 5 episodes of
Westworld, they definitely didn’t watch all the episodes of GoT.
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Combining Random Variables

Definition

Let X, Y, Z be random variables on Q and g : %% — % a function.
Then g(X,Y,Z) is the random variable that assigns the value

9 X(w),Y(w),Z(w)) to o.

Thus, if V=9(X,Y,2), then V(o) := g(X(), Y(0),Z(®)).
Examples:
» Xk
> (X —a)?
at+bX+cX?+(Y—-2)?
(X-Y)?
Xcos(2nY + 2).

v

v

v
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Linearity of Expectation
Theorem: Expectation is linear

Proof:

E[a1X1 +~~-+aan]

_Z (a1 X1(®)+---+anXn(w))Pr{o]
= a ZX1 )Pr[o]+ - +anZXn )Pr{w]
= a4 E[X1] + - +anE[Xn]~

Note: If we had defined Y = a; X; +--- + an X, and had tried to
compute E[Y] =Y, yPr[Y = y], we would have been in trouble!
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Using Linearity - 1: Pips (dots) on dice

Roll a die n times.
Xm = number of pips on roll m.
X = X1+ -+ X, = total number of pips in n rolls.
EX] = E[Xi+-+X]
= E[Xi]+---+ E[Xa], by linearity
= nE[Xi], because the X, have the same distribution

Now,

NN

E[X{]=1 x%+~~+6><%:(1+2+-~-+6)x%:

Hence, .
n

Note: Computing Y, xPr[X = x] directly is not easy!



Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.
X = number of students that get their own assignment back.



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.
X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.
X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has
E[X] = E[X{+-+X



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.
X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has

E[X] = E[Xi++Xp]
= E[Xi]+---+E[Xa,



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.
X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has

E[X] = E[X1+"'+Xn]
= E[Xq]+---+ E[Xn], by linearity



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has
E[X]

E[Xi+-+ Xn)
= E[Xq]+---+ E[Xn], by linearity
= I’7E[)(1]7



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where

Xm = 1{student m gets his/her own assignment back}.

One has
E[X] E[Xi+-+ Xy

= E[Xi]+---+ E[Xq], by linearity

nE[Xi], because all the X, have the same distribution



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has
E[X]

E[Xi+--+Xn]

= E[Xi]+---+ E[Xq], by linearity

nE[Xi], because all the X, have the same distribution
nPriX; =1],



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has
E[X]

E[Xi+--+Xn]

= E[Xi]+---+ E[Xq], by linearity

nE[Xi], because all the X, have the same distribution
nPr[X; = 1], because X; is an indicator



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where

Xm = 1{student m gets his/her own assignment back}.

One has

E[X] = E[X{+-+X

= E[Xi]+---+ E[Xq], by linearity
= nE[Xj], because all the X have the same distribution
= nPr[X; = 1], because X;j is an indicator

= n(1/n),



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has

EIX] = E[Xi+-+Xd]
= E[Xi]+---+ E[Xq], by linearity
= nE[Xj], because all the X have the same distribution
= nPr[X; = 1], because X;j is an indicator
= n(1/n), because student 1 is equally likely
to get any one of the n assignments



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has

EIX] = E[Xi+-+Xd]
= E[Xi]+---+ E[Xq], by linearity
= nE[Xj], because all the X have the same distribution
= nPr[X; = 1], because X;j is an indicator
= n(1/n), because student 1 is equally likely
to get any one of the n assignments



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has

EIX] = EXi+-+X)
= E[Xi]+---+ E[Xq], by linearity
= nE[Xj], because all the X have the same distribution
= nPr[X; = 1], because X;j is an indicator
= n(1/n), because student 1 is equally likely
to get any one of the n assignments
= 1.
Note that linearity holds even though the X, are not independent
(whatever that means).



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where
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One has

EIX] = EXi+-+X)
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= nE[Xj], because all the X have the same distribution
= nPr[X; = 1], because X;j is an indicator
= n(1/n), because student 1 is equally likely
to get any one of the n assignments
= 1.
Note that linearity holds even though the X, are not independent
(whatever that means).

Note: What is Pr[X = m]? Tricky ....
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Flip n coins with heads probability p. X - number of heads
Binomial Distibution: Pr[X = i], for each i.

Prix =1~ (7)p/t1 -y

E[X] = Z/xPr[X_/]_Z/x () (1-p)"

No no no no no. NO ... Or... a better approach: Let
X — { 1 if ith flip is heads

0 otherwise
E[X]] =1 x Pr[“heads"] + 0 x Pr[“tails"] = p
Moreover X = X; +--- X, and
E[X] = E[X:] + E[Xe] + --- E[X,] = nx E[X]]= np.
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Alex is typing a document randomly: Each letter has a
probability of 21—6 of being typed. The document will be
100,000,000 letters long. What is the expected number of
times that the word "pizza” will appear?

Let X be a random variable that counts the number of times the
word "pizza” appears. We want E(X).

E(X) = Y X(w)Prla].

Better approach: Let X; be the indicator variable that takes
value 1 if "pizza” starts on the i-th letter, and 0 otherwise. i
takes values from 1 to 100,000,000 — 4 = 99,999, 996.
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Therefore,

E(X)= E(Y.X) = L E(X) = 99,999,996(21—6)5 ~8.4

i
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We want to calculate E[Y].
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An Example
Let X be uniform in {—2,—-1,0,1,2,3}.

Let also g(X) = X2. Then (method 2)

3
1
ElgX¥)] = Y x5
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Method 1 - We find the distribution of Y = X2:

4, w.p. §
Y — 1, w.p. §
0, w.p. e
9, wp. g5
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» A random variable X is a function X : Q — R.

» Pr[X =a]:=Pr[X~'(a)] = Pri{o | X(») = a}].

» Pr[X c Al := Pr[X~1(A)].

» The distribution of X is the list of possible values and their
probability: {(a, Pr[X = a]),ac «/}.

» Joint distributions.

» 9(X,Y,Z) assigns the value .... .

» E[X]:=Y,aPr[X=a].

» Expectation is Linear.



