CS70: Alex Psomas: Lecture 19.

- 1. Random Variables: Brief Review
- 2. Some details on distributions: Geometric. Poisson.
- 3. Joint distributions.
- 4. Linearity of Expectation.

Random Variables: Definitions

Is a random variable random?

NO!
Is a random variable a variable?

NO!
Great name!

Random Variables: Definitions

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \mathfrak{R}$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$Pr[X \in A] = Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is

$$\{(a, Pr[X = a]) : a \in \mathscr{A}\},\$$

where \mathscr{A} is the *range* of X. That is, $\mathscr{A} = \{X(\omega), \omega \in \Omega\}$.

Expectation - Definition

Definition: The **expected value** (or mean, or expectation) of a random variable X is

$$E[X] = \sum_{a \in \mathbb{R}} a \times Pr[X = a].$$

Theorem:

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \times Pr[\omega].$$

An Example

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

X = number of H's: $\{3, 2, 2, 2, 1, 1, 1, 0\}$.

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ► $X^{-1}(2)$? $X^{-1}(2) = \{HHT, HTH, THH\}$. All the **outcomes** ω such that $X(\omega) = 2$.
- ▶ Is $X^{-1}(1)$ an event? **YES**. It's a subset of the outcomes.
- ▶ Pr[X]? This doesn't make any sense bro....
- ▶ Pr[X = 2]?

$$Pr[X = 2] = Pr[X^{-1}(2)] = Pr[\{HHT, HTH, THH\}]$$

= $Pr[\{HHT\}] + Pr[\{HTH\}] + Pr[\{THH\}] = \frac{3}{8}$

An Example

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

X = number of H's: $\{3,2,2,2,1,1,1,0\}$.

Thus,

$$E[X] = \sum_{\omega \in \Omega} X(\omega) Pr[\omega] = \frac{3}{8} + \frac{2}{8} + \frac{2}{8} + \frac{2}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + 0 = \frac{12}{8}$$

Also,

$$E[X] = \sum_{a \in \mathbb{D}} a \times Pr[X = a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$$

Win or Lose.

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3,1,1,-1,1,-1,-1,-3\}.$

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means. It doesn't have to be in the range of X.

The expected value of *X* is not the value that you expect! Great name once again!

It is the average value per experiment, if you perform the experiment many times:

$$\frac{X_1+\cdots+X_n}{n}$$
, when $n\gg 1$.

The fact that this average converges to E[X] is a theorem: the Law of Large Numbers. (See later.)

Geometric Distribution

Let's flip a coin with Pr[H] = p until we get H.

For instance:

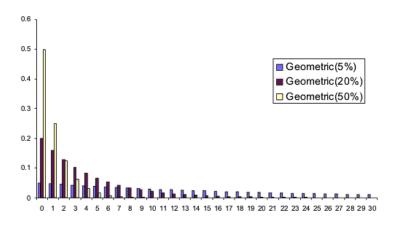
$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, ...\}$. (Notice: no distribution yet!) Let X be the number of flips until the first H. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] = (1-p)^{n-1}p, \ n \ge 1.$$

Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$



Geometric Distribution: A weird trick

Recall the Geometric Distribution.

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X=n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^{n}.$$

We want to analyze $S := \sum_{n=0}^{\infty} a^n$ for |a| < 1. $S = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} Pr[X=n] = p \, \frac{1}{1-(1-p)} = 1.$$

Geometric Distribution: Expectation

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p+2(1-p)p+3(1-p)^{2}p+4(1-p)^{3}p+\cdots$$

$$(1-p)E[X] = (1-p)p+2(1-p)^{2}p+3(1-p)^{3}p+\cdots$$

$$pE[X] = p+(1-p)p+(1-p)^{2}p+(1-p)^{3}p+\cdots$$
by subtracting the previous two identities
$$= p\sum_{n=0}^{\infty} (1-p)^{n} = 1.$$

Hence,

$$E[X] = \frac{1}{p}$$
.

Geometric Distribution: Memoryless

I flip a coin (probability of H is p) until I get H.

What's the probability that I flip it exactly 100 times? $(1-p)^{99}p$

What's the probability that I flip it exactly 100 times if (given that) the first 20 were *T*?

Same as flipping it exactly 80 times!

$$(1-p)^{79}p$$
.

Geometric Distribution: Memoryless

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

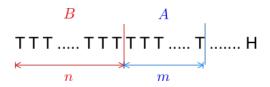
$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n + m}}{(1 - p)^n} = (1 - p)^m$$

$$= Pr[X > m].$$

Geometric Distribution: Memoryless - Interpretation

$$Pr[X>n+m|X>n]=Pr[X>m], m,n\geq 0.$$



$$Pr[X > n + m | X > n] = Pr[A|B] = Pr[A] = Pr[X > m].$$

The coin is memoryless, therefore, so is X.

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i (Pr[X \ge i] - Pr[X \ge i + 1])$$

$$= \sum_{i=1}^{\infty} (i \times Pr[X \ge i] - i \times Pr[X \ge i + 1])$$

$$= \sum_{i=1}^{\infty} (i \times Pr[X \ge i] - (i - 1) \times Pr[X \ge i])$$

$$= \sum_{i=1}^{\infty} Pr[X \ge i].$$

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

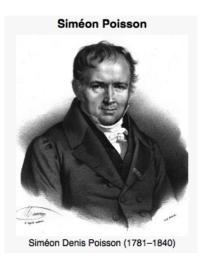
Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Used Taylor expansion of e^x at 0 : $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Simeon Poisson

The Poisson distribution is named after:



Indicators

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

Thus, we will write $X = 1_A$.

Review: Distributions

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ► $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np; (TODO)
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p};$
- $P(\lambda): Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \ge 0;$ $E[X] = \lambda.$

Joint distribution.

Two random variables, X and Y, in prob space: $(\Omega, P(\cdot))$.

What is
$$\sum_{X} Pr[X = x]$$
? 1. What $\sum_{X} Pr[Y = y]$? 1.

Let's think about: Pr[X = x, Y = y].

What is $\sum_{x,y} Pr[X = x, Y = y]$?

Are the events "X = x, Y = y" disjoint?

Yes! Y and X are functions on Ω

Do they cover the entire sample space?

Yes! X and Y are functions on Ω .

So,
$$\sum_{X,Y} Pr[X = X, Y = y] = 1$$
.

Joint Distribution: Pr[X = x, Y = y].

Marginal Distributions: Pr[X = x] and Pr[Y = y].

Important for inference.

Two random variables, same outcome space.

Experiment: pick a random person.

X = number of episodes of Games of Thrones they have seen.

Y = number of episodes of Westworld they have seen.

X =	0	1	2	3	5	40	All
Pr	0.3	0.05	0.05	0.05	0.05	0.1	0.4

Is this a distribution?

Yes! All the probabilities are non-negative and add up to 1.

Y =	0	1	5	10
Pr	0.3	0.1	0.1	0.5

Joint distribution: Example.

The **joint distribution** of *X* and *Y* is:

Y/X	0	1	2	3	5	40	All	
0	0.15	0	0	0	0	0.1	0.05	=0.3
1	0	0.05	0.05	0	0	0	0	=0.1
5	0	0	0	0.05	0.05	0	0	=0.1
10	0.15	0	0	0	0	0	0.35	=0.5
	=0.3	=0.05	=0.05	=0.05	=0.05	=0.1	=0.4	

Is this a valid distribution? Yes!

Notice that Pr[X = a] and Pr[Y = b] are (marginal) distributions! But now we have more information!

For example, if I tell you someone watched 5 episodes of Westworld, they definitely didn't watch all the episodes of GoT.

Combining Random Variables

Definition

Let X,Y,Z be random variables on Ω and $g:\mathfrak{R}^3\to\mathfrak{R}$ a function. Then g(X,Y,Z) is the random variable that assigns the value $g(X(\omega),Y(\omega),Z(\omega))$ to ω .

Thus, if V = g(X, Y, Z), then $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$.

Examples:

- ➤ X^k
- ► $(X a)^2$
- $\rightarrow a + bX + cX^2 + (Y Z)^2$
- ► $(X Y)^2$
- $\blacktriangleright X\cos(2\pi Y+Z).$

Linearity of Expectation

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note: If we had defined $Y = a_1 X_1 + \cdots + a_n X_n$ and had tried to compute $E[Y] = \sum_y y Pr[Y = y]$, we would have been in trouble!

Using Linearity - 1: Pips (dots) on dice

Roll a die n times.

 X_m = number of pips on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = (1 + 2 + \dots + 6) \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X]=\frac{7n}{2}$$
.

Note: Computing $\sum_{x} xPr[X = x]$ directly is not easy!

Using Linearity - 2: Fixed point.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where $X_m = 1$ {student m gets his/her own assignment back}.

One has

$$E[X] = E[X_1 + \cdots + X_n]$$

= $E[X_1] + \cdots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the n assignments
= 1.

Note that linearity holds even though the X_m are not independent (whatever that means).

Note: What is Pr[X = m]? Tricky

Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

No no no no no. NO ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots X_n$ and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

Using Linearity - 4: Expected number of times a word appears.

Alex is typing a document randomly: Each letter has a probability of $\frac{1}{26}$ of being typed. The document will be 100,000,000 letters long. What is the expected number of times that the word "pizza" will appear?

Let X be a random variable that counts the number of times the word "pizza" appears. We want E(X).

$$E(X) = \sum_{\omega} X(\omega) Pr[\omega].$$

Better approach: Let X_i be the indicator variable that takes value 1 if "pizza" starts on the i-th letter, and 0 otherwise. i takes values from 1 to 100,000,000-4=99,999,996.

hpizzafgnpizzadjgbidgne....

$$X_2 = 1, X_{10} = 1,...$$

Using Linearity - 4: Expected number of times a word appears.

$$E(X_i) = (\frac{1}{26})^5$$

Therefore,

$$E(X) = E(\sum_{i} X_{i}) = \sum_{i} E(X_{i}) = 99,999,996(\frac{1}{26})^{5} \approx 8.4$$

Calculating E[g(X)]

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \Re : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{v} g(v) Pr[X = v].$$

Proof:

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega] = \sum_{v} \sum_{\omega \in X^{-1}(v)} g(X(\omega))Pr[\omega]$$

$$= \sum_{v} \sum_{\omega \in X^{-1}(v)} g(v)Pr[\omega] = \sum_{v} g(v) \sum_{\omega \in X^{-1}(v)} Pr[\omega]$$

$$= \sum_{v} g(v)Pr[X = v].$$

An Example

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Method 1 - We find the distribution of $Y = X^2$:

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \\ 9, & \text{w.p. } \frac{1}{6} \end{cases}$$

Thus, $E[Y] = 4\frac{2}{6} + 1\frac{2}{6} + 0\frac{1}{6} + 9\frac{1}{6} = \frac{19}{6}.$

$$+9\frac{1}{6}=\frac{19}{6}.$$

Random Variables

- ▶ A random variable X is a function $X : \Omega \to \Re$.
- ► $Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$
- ▶ $Pr[X \in A] := Pr[X^{-1}(A)].$
- ▶ The distribution of X is the list of possible values and their probability: $\{(a, Pr[X = a]), a \in \mathcal{A}\}.$
- Joint distributions.
- g(X,Y,Z) assigns the value
- $ightharpoonup E[X] := \sum_a aPr[X = a].$
- Expectation is Linear.