
CS70: Alex Psomas: Lecture 19.

1. Random Variables: Brief Review
2. Some details on distributions: Geometric. Poisson.
3. Joint distributions.
4. Linearity of Expectation.

Random Variables: Definitions

Is a random variable random?
NO!
Is a random variable a variable?
NO!
Great name!

Random Variables: Definitions
Definition
A random variable, X , for a random experiment with sample space Ω
is a function X : Ω→ℜ.

Thus, X (·) assigns a real number X (ω) to each ω ∈ Ω.

Definitions
(a) For a ∈ℜ, one defines

X−1(a) := {ω ∈ Ω | X (ω) = a}.
(b) For A⊂ℜ, one defines

X−1(A) := {ω ∈ Ω | X (ω) ∈ A}.
(c) The probability that X = a is defined as

Pr [X = a] = Pr [X−1(a)].

(d) The probability that X ∈ A is defined as

Pr [X ∈ A] = Pr [X−1(A)].

(e) The distribution of a random variable X , is

{(a,Pr [X = a]) : a ∈A },
where A is the range of X . That is, A = {X (ω),ω ∈ Ω}.

Expectation - Definition

Definition: The expected value (or mean, or expectation) of a
random variable X is

E [X ] = ∑
a∈R

a×Pr [X = a].

Theorem:

E [X ] = ∑
ω∈Ω

X (ω)×Pr [ω].

An Example

Flip a fair coin three times.

Ω = {HHH,HHT ,HTH,THH,HTT ,THT ,TTH,TTT}.
X = number of H ’s: {3,2,2,2,1,1,1,0}.

I Range of X? {0,1,2,3}. All the values X can take.
I X−1(2)? X−1(2) = {HHT ,HTH,THH}. All the outcomes ω

such that X (ω) = 2.
I Is X−1(1) an event? YES. It’s a subset of the outcomes.
I Pr [X ]? This doesn’t make any sense bro....
I Pr [X = 2]?

Pr [X = 2] = Pr [X−1(2)] = Pr [{HHT ,HTH,THH}]

= Pr [{HHT}] + Pr [{HTH}] + Pr [{THH}] =
3
8

An Example

Flip a fair coin three times.

Ω = {HHH,HHT ,HTH,THH,HTT ,THT ,TTH,TTT}.
X = number of H ’s: {3,2,2,2,1,1,1,0}.
Thus,
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ω∈Ω
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3
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Also,

E [X ] = ∑
a∈R

a×Pr [X = a] = 3× 1
8

+ 2× 3
8

+ 1× 3
8

+ 0× 1
8
.



Win or Lose.
Expected winnings for heads/tails games, with 3 flips?
Recall the definition of the random variable X :
{HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}→ {3,1,1,−1,1,−1,−1,−3}.

E [X ] = 3× 1
8

+ 1× 3
8
−1× 3

8
−3× 1

8
= 0.

Can you ever win 0?

Apparently: expected value is not a common value, by any means. It
doesn’t have to be in the range of X .

The expected value of X is not the value that you expect!
Great name once again!
It is the average value per experiment, if you perform the experiment
many times:

X1 + · · ·+ Xn

n
, when n� 1.

The fact that this average converges to E [X ] is a theorem:
the Law of Large Numbers. (See later.)

Geometric Distribution
Let’s flip a coin with Pr [H] = p until we get H.

For instance:

ω1 = H, or
ω2 = T H, or
ω3 = T T H, or
ωn = T T T T · · · T H.

Note that Ω = {ωn,n = 1,2, . . .}. (Notice: no distribution yet!)

Let X be the number of flips until the first H. Then, X (ωn) = n.

Also,
Pr [X = n] = (1−p)n−1p, n ≥ 1.

Geometric Distribution

Pr [X = n] = (1−p)n−1p,n ≥ 1.

Geometric Distribution: A weird trick
Recall the Geometric Distribution.

Pr [X = n] = (1−p)n−1p,n ≥ 1.

Note that
∞

∑
n=1

Pr [X = n] =
∞

∑
n=1

(1−p)n−1p = p
∞

∑
n=1

(1−p)n−1 = p
∞

∑
n=0

(1−p)n.

We want to analyze S := ∑∞
n=0 an for |a|< 1. S = 1

1−a . Indeed,

S = 1 + a + a2 + a3 + · · ·
aS = a + a2 + a3 + a4 + · · ·

(1−a)S = 1 + a−a + a2−a2 + · · ·= 1.

Hence,
∞

∑
n=1

Pr [X = n] = p
1

1− (1−p)
= 1.

Geometric Distribution: Expectation

X =D G(p), i.e., Pr [X = n] = (1−p)n−1p,n ≥ 1.

One has

E [X ] =
∞

∑
n=1

nPr [X = n] =
∞

∑
n=1

n(1−p)n−1p.

Thus,

E [X ] = p + 2(1−p)p + 3(1−p)2p + 4(1−p)3p + · · ·
(1−p)E [X ] = (1−p)p + 2(1−p)2p + 3(1−p)3p + · · ·

pE [X ] = p + (1−p)p + (1−p)2p + (1−p)3p + · · ·
by subtracting the previous two identities

= p
∞

∑
n=0

(1−p)n = 1.

Hence,

E [X ] =
1
p
.

Geometric Distribution: Memoryless

I flip a coin (probability of H is p) until I get H.

What’s the probability that I flip it exactly 100 times? (1−p)99p

What’s the probability that I flip it exactly 100 times if (given
that) the first 20 were T ?

Same as flipping it exactly 80 times!

(1−p)79p.



Geometric Distribution: Memoryless
Let X be G(p). Then, for n ≥ 0,

Pr [X > n] = Pr [ first n flips are T ] = (1−p)n.

Theorem

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Proof:

Pr [X > n + m|X > n] =
Pr [X > n + m and X > n]

Pr [X > n]

=
Pr [X > n + m]

Pr [X > n]

=
(1−p)n+m

(1−p)n = (1−p)m

= Pr [X > m].

Geometric Distribution: Memoryless - Interpretation

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Pr [X > n + m|X > n] = Pr [A|B] = Pr [A] = Pr [X > m].

The coin is memoryless, therefore, so is X .

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values {0,1,2, . . .}, one
has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

[See later for a proof.]

If X = G(p), then Pr [X ≥ i] = Pr [X > i−1] = (1−p)i−1.

Hence,

E [X ] =
∞

∑
i=1

(1−p)i−1 =
∞

∑
i=0

(1−p)i =
1

1− (1−p)
=

1
p
.

Expected Value of Integer RV
Theorem: For a r.v. X that takes values in {0,1,2, . . .}, one has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

Proof: One has

E [X ] =
∞

∑
i=1

i×Pr [X = i]

=
∞

∑
i=1

i (Pr [X ≥ i]−Pr [X ≥ i + 1])

=
∞

∑
i=1

(i×Pr [X ≥ i]− i×Pr [X ≥ i + 1])

=
∞

∑
i=1

(i×Pr [X ≥ i]− (i−1)×Pr [X ≥ i])

=
∞

∑
i=1

Pr [X ≥ i].

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Fact: E [X ] = λ .

Proof:

E [X ] =
∞

∑
m=1

m× λ m

m!
e−λ = e−λ

∞

∑
m=1

λ m

(m−1)!

= e−λ
∞

∑
m=0

λ m+1

m!
= e−λ λ

∞

∑
m=0

λ m

m!

= e−λ λeλ = λ .

Used Taylor expansion of ex at 0 : ex = ∑∞
n=0

xn

n! .

Simeon Poisson

The Poisson distribution is named after:



Indicators

Definition
Let A be an event. The random variable X defined by

X (ω) =

{
1, if ω ∈ A
0, if ω /∈ A

is called the indicator of the event A.

Note that Pr [X = 1] = Pr [A] and Pr [X = 0] = 1−Pr [A].

Hence,

E [X ] = 1×Pr [X = 1] + 0×Pr [X = 0] = Pr [A].

This random variable X (ω) is sometimes written as

1{ω ∈ A} or 1A(ω).

Thus, we will write X = 1A.

Review: Distributions

I U[1, . . . ,n] : Pr [X = m] = 1
n ,m = 1, . . . ,n;

E [X ] = n+1
2 ;

I B(n,p) : Pr [X = m] =
(n

m

)
pm(1−p)n−m,m = 0, . . . ,n;

E [X ] = np; (TODO)

I G(p) : Pr [X = n] = (1−p)n−1p,n = 1,2, . . . ;
E [X ] = 1

p ;

I P(λ ) : Pr [X = n] = λ n

n! e−λ ,n ≥ 0;
E [X ] = λ .

Joint distribution.

Two random variables, X and Y , in prob space: (Ω,P(·)).

What is ∑x Pr [X = x ]? 1. What ∑x Pr [Y = y ]? 1.

Let’s think about: Pr [X = x ,Y = y ].
What is ∑x ,y Pr [X = x ,Y = y ]?

Are the events “X = x , Y = y ” disjoint?
Yes! Y and X are functions on Ω

Do they cover the entire sample space?
Yes! X and Y are functions on Ω.

So, ∑x ,y Pr [X = x ,Y = y ] = 1.

Joint Distribution: Pr [X = x ,Y = y ].
Marginal Distributions: Pr [X = x ] and Pr [Y = y ].

Important for inference.

Two random variables, same outcome space.

Experiment: pick a random person.
X = number of episodes of Games of Thrones they have seen.
Y = number of episodes of Westworld they have seen.

X = 0 1 2 3 5 40 All
Pr 0.3 0.05 0.05 0.05 0.05 0.1 0.4

Is this a distribution?

Yes! All the probabilities are non-negative and add up to 1.

Y = 0 1 5 10
Pr 0.3 0.1 0.1 0.5

Joint distribution: Example.

The joint distribution of X and Y is:

Y/X 0 1 2 3 5 40 All
0 0.15 0 0 0 0 0.1 0.05 =0.3
1 0 0.05 0.05 0 0 0 0 =0.1
5 0 0 0 0.05 0.05 0 0 =0.1
10 0.15 0 0 0 0 0 0.35 =0.5

=0.3 =0.05 =0.05 =0.05 =0.05 =0.1 =0.4

Is this a valid distribution? Yes!
Notice that Pr [X = a] and Pr [Y = b] are (marginal) distributions!
But now we have more information!

For example, if I tell you someone watched 5 episodes of
Westworld, they definitely didn’t watch all the episodes of GoT.

Combining Random Variables

Definition
Let X ,Y ,Z be random variables on Ω and g : ℜ3→ℜ a function.
Then g(X ,Y ,Z ) is the random variable that assigns the value
g(X (ω),Y (ω),Z (ω)) to ω.

Thus, if V = g(X ,Y ,Z ), then V (ω) := g(X (ω),Y (ω),Z (ω)).

Examples:

I X k

I (X −a)2

I a + bX + cX 2 + (Y −Z )2

I (X −Y )2

I X cos(2πY + Z ).



Linearity of Expectation

Theorem: Expectation is linear

E [a1X1 + · · ·+ anXn] = a1E [X1] + · · ·+ anE [Xn].

Proof:

E [a1X1 + · · ·+ anXn]

= ∑
ω

(a1X1 + · · ·+ anXn)(ω)Pr [ω]

= ∑
ω

(a1X1(ω) + · · ·+ anXn(ω))Pr [ω]

= a1 ∑
ω

X1(ω)Pr [ω] + · · ·+ an ∑
ω

Xn(ω)Pr [ω]

= a1E [X1] + · · ·+ anE [Xn].

Note: If we had defined Y = a1X1 + · · ·+ anXn and had tried to
compute E [Y ] = ∑y yPr [Y = y ], we would have been in trouble!

Using Linearity - 1: Pips (dots) on dice
Roll a die n times.

Xm = number of pips on roll m.

X = X1 + · · ·+ Xn = total number of pips in n rolls.

E [X ] = E [X1 + · · ·+ Xn]

= E [X1] + · · ·+ E [Xn], by linearity
= nE [X1], because the Xm have the same distribution

Now,

E [X1] = 1× 1
6

+ · · ·+ 6× 1
6

= (1 + 2 + · · ·+ 6)× 1
6

=
7
2
.

Hence,

E [X ] =
7n
2
.

Note: Computing ∑x xPr [X = x ] directly is not easy!

Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X = X1 + · · ·+ Xn where
Xm = 1{student m gets his/her own assignment back}.
One has

E [X ] = E [X1 + · · ·+ Xn]

= E [X1] + · · ·+ E [Xn], by linearity
= nE [X1], because all the Xm have the same distribution
= nPr [X1 = 1], because X1 is an indicator
= n(1/n), because student 1 is equally likely

to get any one of the n assignments
= 1.

Note that linearity holds even though the Xm are not independent
(whatever that means).

Note: What is Pr [X = m]? Tricky ....

Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr [X = i], for each i .

Pr [X = i] =

(
n
i

)
pi(1−p)n−i .

E [X ] = ∑
i

i×Pr [X = i] = ∑
i

i×
(

n
i

)
pi(1−p)n−i .

No no no no no. NO ... Or... a better approach: Let

Xi =

{
1 if i th flip is heads
0 otherwise

E [Xi ] = 1×Pr [“heads′′] + 0×Pr [“tails′′] = p.

Moreover X = X1 + · · ·Xn and

E [X ] = E [X1] + E [X2] + · · ·E [Xn] = n×E [Xi ]= np.

Using Linearity - 4: Expected number of times a word
appears.

Alex is typing a document randomly: Each letter has a
probability of 1

26 of being typed. The document will be
100,000,000 letters long. What is the expected number of
times that the word ”pizza” will appear?

Let X be a random variable that counts the number of times the
word ”pizza” appears. We want E(X ).

E(X ) = ∑
ω

X (ω)Pr [ω].

Better approach: Let Xi be the indicator variable that takes
value 1 if ”pizza” starts on the i-th letter, and 0 otherwise. i
takes values from 1 to 100,000,000−4 = 99,999,996.

hpizzafgnpizzadjgbidgne....

X2 = 1, X10 = 1,...

Using Linearity - 4: Expected number of times a word
appears.

E(Xi) = (
1

26
)5

Therefore,

E(X ) = E(∑
i

Xi) = ∑
i

E(Xi) = 99,999,996(
1

26
)5 ≈ 8.4



Calculating E [g(X )]
Let Y = g(X ). Assume that we know the distribution of X .

We want to calculate E [Y ].

Method 1: We calculate the distribution of Y :

Pr [Y = y ] = Pr [X ∈ g−1(y)] where g−1(x) = {x ∈ℜ : g(x) = y}.

This is typically rather tedious!

Method 2: We use the following result.

Theorem:
E [g(X )] = ∑

v
g(v)Pr [X = v ].

Proof:

E [g(X )] = ∑
ω

g(X (ω))Pr [ω] = ∑
v

∑
ω∈X−1(v)

g(X (ω))Pr [ω]

= ∑
v

∑
ω∈X−1(v)

g(v)Pr [ω] = ∑
v

g(v) ∑
ω∈X−1(v)

Pr [ω]

= ∑
v

g(v)Pr [X = v ].

An Example
Let X be uniform in {−2,−1,0,1,2,3}.
Let also g(X ) = X 2. Then (method 2)

E [g(X )] =
3

∑
x=−2

x2 1
6

= {4 + 1 + 0 + 1 + 4 + 9}1
6

=
19
6
.

Method 1 - We find the distribution of Y = X 2:

Y =





4, w.p. 2
6

1, w.p. 2
6

0, w.p. 1
6

9, w.p. 1
6 .

Thus,

E [Y ] = 4
2
6

+ 1
2
6

+ 0
1
6

+ 9
1
6

=
19
6
.

Summary Random Variables

I A random variable X is a function X : Ω→ℜ.
I Pr [X = a] := Pr [X−1(a)] = Pr [{ω | X (ω) = a}].
I Pr [X ∈ A] := Pr [X−1(A)].
I The distribution of X is the list of possible values and their

probability: {(a,Pr [X = a]),a ∈A }.
I Joint distributions.
I g(X ,Y ,Z ) assigns the value .... .
I E [X ] := ∑a aPr [X = a].
I Expectation is Linear.


