CS70: Alex Psomas: Lecture 19.

1. Random Variables: Brief Review
2. Some details on distributions: Geometric. Poisson.
3. Joint distributions,
4. Linearity of Expectation.

Random Variables: Definitions

Is a random variable random?
NO!
Is a random variable a variable?
NO!
Great name

Random Variables: Definitions Definition
A random variable, X for a random experiment with sample space Ω is a function $X: \Omega \rightarrow \Re$
Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines
$X^{-1}(a):=\{\omega \in \Omega \mid X(\omega)=a\}$.
b) For $A \subset \mathfrak{R}$, one defines

$$
X^{-1}(A):=\{\omega \in \Omega \mid X(\omega) \in A\} .
$$

(c) The probability that $X=a$ is defined as

$$
\operatorname{Pr}[X=a]=\operatorname{Pr}\left[X^{-1}(a)\right] .
$$

d) The probability that $X \in A$ is defined as

$$
\operatorname{Pr}[X \in A]=\operatorname{Pr}\left[X^{-1}(A)\right] .
$$

(e) The distribution of a random variable X, is

$$
\{(a, \operatorname{Pr}[X=a]): a \in \mathscr{A}\},
$$

where \mathscr{A} is the range of X. That is, $\mathscr{A}=\{X(\omega), \omega \in \Omega\}$.

An Example

Flip a fair coin three times

$\Omega=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T\}$
$X=$ number of H 's: $\{3,2,2,2,1,1,1,0\}$.
Thus,

$$
E[X]=\sum_{\omega \in \Omega} X(\omega) \operatorname{Pr}[\omega]=\frac{3}{8}+\frac{2}{8}+\frac{2}{8}+\frac{2}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+0=\frac{12}{8}
$$

Also,

$$
E[X]=\sum_{a \in \mathbb{R}} a \times \operatorname{Pr}[X=a]=3 \times \frac{1}{8}+2 \times \frac{3}{8}+1 \times \frac{3}{8}+0 \times \frac{1}{8}
$$

Win or Lose.

Expected winnings for heads/tails games, with 3 flips?
Recall the definition of the random variable X :
$\{H H H$, HHT, HTH, HTT, THH, THT , TTH, TTT $\} \rightarrow\{3,1,1,-1,1,-1,-1,-3\}$.

$$
E[X]=3 \times \frac{1}{8}+1 \times \frac{3}{8}-1 \times \frac{3}{8}-3 \times \frac{1}{8}=0 .
$$

Can you ever win 0 ?
Apparently: expected value is not a common value, by any means. It doesn't have to be in the range of X.
The expected value of X is not the value that you expect! Great name once again
It is the average value per experiment, if you perform the experiment many times:

$$
\frac{X_{1}+\cdots+X_{n}}{n} \text {, when } n \gg 1 \text {. }
$$

The fact that this average converges to $E[X]$ is a theorem the Law of Large Numbers. (See later.)

Geometric Distribution: A weird trick Recall the Geometric Distribution.

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1 .
$$

Note that
$\sum_{n=1}^{\infty} \operatorname{Pr}[X=n]=\sum_{n=1}^{\infty}(1-p)^{n-1} p=p \sum_{n=1}^{\infty}(1-p)^{n-1}=p \sum_{n=0}^{\infty}(1-p)^{n}$.
We want to analyze $S:=\sum_{n=0}^{\infty} a^{n}$ for $|a|<1 . S=\frac{1}{1-a}$. Indeed,

$$
\begin{aligned}
S & =1+a+a^{2}+a^{3}+\cdots \\
a S & =\quad a+a^{2}+a^{3}+a^{4}+\cdots \\
(1-a) S & =1+a-a+a^{2}-a^{2}+\cdots=1
\end{aligned}
$$

Hence,

$$
\sum_{n=1}^{\infty} \operatorname{Pr}[X=n]=p \frac{1}{1-(1-p)}=1 .
$$

Geometric Distribution
Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get H

For instance:

$$
\begin{aligned}
& \omega_{1}=H, \text { or } \\
& \omega_{2}=T H, \text { or } \\
& \omega_{3}=T T H, \text { or } \\
& \omega_{n}=T T T T \ldots T H .
\end{aligned}
$$

Note that $\Omega=\left\{\omega_{n}, n=1,2, \ldots\right\}$. (Notice: no distribution yet!) Let X be the number of flips until the first H. Then, $X\left(\omega_{n}\right)=n$. Also,

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1 .
$$

Geometric Distribution: Expectation

$$
X={ }_{D} G(p) \text {, i.e., } \operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1 .
$$

One has

$$
E[X]=\sum_{n=1}^{\infty} n \operatorname{Pr}[X=n]=\sum_{n=1}^{\infty} n(1-p)^{n-1} p .
$$

Thus,
$E[X]=p+2(1-p) p+3(1-p)^{2} p+4(1-p)^{3} p+\cdots$
$(1-p) E[X]=(1-p) p+2(1-p)^{2} p+3(1-p)^{3} p+\cdots$ $p E[X]=p+(1-p) p+(1-p)^{2} p+(1-p)^{3} p+\cdots$
by subtracting the previous two identities

$$
=p \sum_{n=0}^{\infty}(1-p)^{n}=1 \text {. }
$$

Hence,

$$
E[X]=\frac{1}{p} .
$$

Geometric Distribution

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1 .
$$

Geometric Distribution: Memoryless

I flip a coin (probability of H is p) until I get H.
What's the probability that I flip it exactly 100 times? $(1-p)^{99} p$ What's the probability that I flip it exactly 100 times if (given hat) the first 20 were T ?

Same as flipping it exactly 80 times
$(1-p)^{79} p$.

Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$
\operatorname{Pr}[X>n]=\operatorname{Pr}[\text { first } n \text { flips are } T]=(1-p)^{n} .
$$

Theorem

$$
\operatorname{Pr}[X>n+m \mid X>n]=\operatorname{Pr}[X>m], m, n \geq 0 .
$$

Proof:

$$
\operatorname{Pr}[X>n+m \mid X>n]=\frac{\operatorname{Pr}[X>n+m \text { and } X>n]}{\operatorname{Pr}[X>n]}
$$

$=\frac{\operatorname{Pr}[X>n+m]}{\operatorname{Pr}[X>n]}$
$\operatorname{Pr}[X>n]$
$(1-p)^{n+m}$
$=\frac{(1-p)^{n+m}}{(1-p)^{n}}=(1-p)^{m}$
$=\operatorname{Pr}[X>m]$.

Expected Value of Integer RV
Theorem: For a r.v. X that takes values in $\{0,1,2, \ldots\}$, one has

Proof: One has

$$
E[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i]
$$

$E[X]=\sum_{i=1}^{\infty} i \times \operatorname{Pr}[X=i]$
$=\sum_{i=1}^{\infty} i(\operatorname{Pr}[X \geq i]-\operatorname{Pr}[X \geq i+1])$
$=\sum_{i=1}^{\infty}(i \times \operatorname{Pr}[X \geq i]-i \times \operatorname{Pr}[X \geq i+1])$
$=\sum_{i=1}^{\infty}(i \times \operatorname{Pr}[X \geq i]-(i-1) \times \operatorname{Pr}[X \geq i])$
$=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i]$.

Geometric Distribution: Memoryless - Interpretation
$\operatorname{Pr}[X>n+m \mid X>n]=\operatorname{Pr}[X>m], m, n \geq 0$.
$\operatorname{Pr}[X>n+m \mid X>n]=\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]=\operatorname{Pr}[X>m]$.
The coin is memoryless, therefore, so is X.

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda>0$

$$
X=P(\lambda) \Leftrightarrow \operatorname{Pr}[X=m]=\frac{\lambda^{m}}{m!} e^{-\lambda}, m \geq 0 .
$$

Fact: $E[X]=\lambda$.
Proof:

$$
\begin{aligned}
E[X] & =\sum_{m=1}^{\infty} m \times \frac{\lambda^{m}}{m!} e^{-\lambda}=e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^{m}}{(m-1)!} \\
& =e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}=e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^{m}}{m!} \\
& =e^{-\lambda} \lambda e^{\lambda}=\lambda .
\end{aligned}
$$

Used Taylor expansion of e^{x} at $0: e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0,1,2, \ldots\}$, one has

$$
E[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i]
$$

[See later for a proof.]

If $X=G(p)$, then $\operatorname{Pr}[X \geq i]=\operatorname{Pr}[X>i-1]=(1-p)^{i-1}$.
Hence,

$$
E[X]=\sum_{i=1}^{\infty}(1-p)^{i-1}=\sum_{i=0}^{\infty}(1-p)^{i}=\frac{1}{1-(1-p)}=\frac{1}{p} .
$$

Simeon Poisson

The Poisson distribution is named after:

Indicators

Definition

Let A be an event. The random variable X defined by

$$
X(\omega)= \begin{cases}1, & \text { if } \omega \in A \\ 0, & \text { if } \omega \notin A\end{cases}
$$

is called the indicator of the event A.
Note that $\operatorname{Pr}[X=1]=\operatorname{Pr}[A]$ and $\operatorname{Pr}[X=0]=1-\operatorname{Pr}[A]$.
Hence,

$$
E[X]=1 \times \operatorname{Pr}[X=1]+0 \times \operatorname{Pr}[X=0]=\operatorname{Pr}[A] .
$$

This random variable $X(\omega)$ is sometimes written as

$$
1\{\omega \in A\} \text { or } 1_{A}(\omega) .
$$

Thus, we will write $X=1_{A}$.

Two random variables, same outcome space.

Experiment: pick a random person
$X=$ number of episodes of Games of Thrones they have seen.
$\mathrm{Y}=$ number of episodes of Westworld they have seen.

$\mathrm{X}=$	0	1	2	3	5	40	All
Pr	0.3	0.05	0.05	0.05	0.05	0.1	0.4

Is this a distribution?
Yes! All the probabilities are non-negative and add up to 1

$\mathrm{Y}=$	0	1	5	10
Pr	0.3	0.1	0.1	0.5

Review: Distributions

- $U[1, \ldots, n]: \operatorname{Pr}[X=m]=\frac{1}{n}, m=1, \ldots, n$; $E[X]=\frac{n+1}{2}$;
- $B(n, p): \operatorname{Pr}[X=m]=\binom{n}{m} p^{m}(1-p)^{n-m}, m=0, \ldots, n ;$ $E[X]=n p ;(T O D O)$
- $G(p): \operatorname{Pr}[X=n]=(1-p)^{n-1} p, n=1,2, \ldots$ $E[X]=\frac{1}{p}$;
- $P(\lambda): \operatorname{Pr}[X=n]=\frac{\lambda^{n}}{n!} e^{-\lambda}, n \geq 0$ $E[X]=\lambda$

Joint distribution: Example.

The joint distribution of X and Y is

Y / X	0	1	2	3	5	40	All
0	0.15	0	0	0	0	0.1	0.05
1	0	0.05	0.05	0	0	0	0
5	0	0	0	0.05	0.05	0	0
$=0.3$							
$=0.1$							
$=0.1$							
10	0.15	0	0	0	0	0	0.35
$=0.5$							
$=0.3$						$=0.05$	$=0.05$
$=0.05$	$=0.05$	$=0.1$	$=0.4$				

Is this a valid distribution? Yes!
Notice that $\operatorname{Pr}[X=a]$ and $\operatorname{Pr}[Y=b]$ are (marginal) distributions! But now we have more information!
For example, if I tell you someone watched 5 episodes of Westworld, they definitely didn't watch all the episodes of GoT

Joint distribution

Two random variables, X and Y, in prob space: $(\Omega, P(\cdot))$
What is $\sum_{x} \operatorname{Pr}[X=x]$? 1. What $\sum_{x} \operatorname{Pr}[Y=y]$? 1 .
Let's think about: $\operatorname{Pr}[X=x, Y=y]$.
What is $\sum_{x, y} \operatorname{Pr}[X=x, Y=y]$?
Are the events " $X=x, Y=y$ " disjoint?
Yes! Y and X are functions on Ω
Do they cover the entire sample space?
Yes! X and Y are functions on Ω.
So, $\sum_{x, y} \operatorname{Pr}[X=x, Y=y]=1$.
Joint Distribution: $\operatorname{Pr}[X=x, Y=y]$.
Marginal Distributions: $\operatorname{Pr}[X=x]$ and $\operatorname{Pr}[Y=y]$ mportant for inference.

Combining Random Variables

Definition

Let X, Y, Z be random variables on Ω and $g: \Re^{3} \rightarrow \Re$ a function
Then $g(X, Y, Z)$ is the random variable that assigns the value
$g(X(\omega), Y(\omega), Z(\omega))$ to ω.
Thus, if $V=g(X, Y, Z)$, then $V(\omega):=g(X(\omega), Y(\omega), Z(\omega))$
Examples:

- X^{k}
- $(X-a)^{2}$
- $a+b X+c X^{2}+(Y-Z)^{2}$
- $(X-Y)^{2}$
- $X \cos (2 \pi Y+Z)$.

Linearity of Expectation

Theorem: Expectation is linear

$$
E\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1} E\left[X_{1}\right]+\cdots+a_{n} E\left[X_{n}\right]
$$

Proof:

$$
\begin{aligned}
E & {\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right] } \\
& =\sum_{\omega}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)(\omega) \operatorname{Pr}[\omega] \\
& =\sum_{\omega}\left(a_{1} X_{1}(\omega)+\cdots+a_{n} X_{n}(\omega)\right) \operatorname{Pr}[\omega] \\
& =a_{1} \sum_{\omega} X_{1}(\omega) \operatorname{Pr}[\omega]+\cdots+a_{n} \sum_{\omega} X_{n}(\omega) \operatorname{Pr}[\omega] \\
& =a_{1} E\left[X_{1}\right]+\cdots+a_{n} E\left[X_{n}\right] .
\end{aligned}
$$

Note: If we had defined $Y=a_{1} X_{1}+\cdots+a_{n} X_{n}$ and had tried to compute $E[Y]=\sum_{y} y \operatorname{Pr}[Y=y]$, we would have been in trouble!

Using Linearity - 3: Binomial Distribution.
Flip n coins with heads probability p. X - number of heads Binomial Distibution: $\operatorname{Pr}[X=i]$, for each i.

$$
\begin{gathered}
\operatorname{Pr}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i} . \\
E[X]=\sum_{i} i \times \operatorname{Pr}[X=i]=\sum_{i} i \times\binom{ n}{i} p^{i}(1-p)^{n-i} .
\end{gathered}
$$

No no no no no. NO ... Or... a better approach: Let

$$
X_{i}=\left\{\begin{array}{lr}
1 & \text { if } i \text { th flip is heads } \\
0 & \text { otherwise }
\end{array}\right.
$$

$E\left[X_{i}\right]=1 \times \operatorname{Pr}\left[{ }^{\text {"heads" }}\right]+0 \times \operatorname{Pr}[$ "tails" $]=p$.
Moreover $X=X_{1}+\cdots X_{n}$ and
$E[X]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots E\left[X_{n}\right]=n \times E\left[X_{i}\right]=n p$.

Using Linearity - 1: Pips (dots) on dice

Roll a die n times.
$X_{m}=$ number of pips on roll m.
$X=X_{1}+\cdots+X_{n}=$ total number of pips in n rolls
$E[X]=E\left[X_{1}+\cdots+X_{n}\right]$
$=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]$, by linearity
$=n E\left[X_{1}\right]$, because the X_{m} have the same distribution
Now,

$$
E\left[X_{1}\right]=1 \times \frac{1}{6}+\cdots+6 \times \frac{1}{6}=(1+2+\cdots+6) \times \frac{1}{6}=\frac{7}{2} .
$$

Hence,

$$
E[X]=\frac{7 n}{2}
$$

Note: Computing $\Sigma_{x} x \operatorname{Pr}[X=x]$ directly is not easy
Using Linearity - 4: Expected number of times a word appears.

Alex is typing a document randomly: Each letter has a probability of $\frac{1}{26}$ of being typed. The document will be
$100,000,000$ letters long. What is the expected number of times that the word "pizza" will appear?

Let X be a random variable that counts the number of times the word "pizza" appears. We want $E(X)$.

$$
E(X)=\sum_{\omega} X(\omega) \operatorname{Pr}[\omega] .
$$

Better approach: Let X_{i} be the indicator variable that takes value 1 if "pizza" starts on the i-th letter, and 0 otherwise. i takes values from 1 to $100,000,000-4=99,999,996$
hpizzafgnpizzadjgbidgne...
$X_{2}=1, X_{10}=1, \ldots$

Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.
$X=$ number of students that get their own assignment back.
$X=X_{1}+\cdots+X_{n}$ where
$X_{m}=1$ \{student m gets his/her own assignment back\}.
One has
$E[X]=E\left[X_{1}+\cdots+X_{n}\right]$
$=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]$, by linearity
$=n E\left[X_{1}\right]$, because all the X_{m} have the same distribution
$=n \operatorname{Pr}\left[X_{1}=1\right]$, because X_{1} is an indicator
$=n(1 / n)$, because student 1 is equally likely to get any one of the n assignments
$=1$.
whatever that means
Note: What is $\operatorname{Pr}[X=m]$? Tricky
Using Linearity - 4: Expected number of times a word appears.

$$
E\left(X_{i}\right)=\left(\frac{1}{26}\right)^{5}
$$

Therefore,

$$
E(X)=E\left(\sum_{i} X_{i}\right)=\sum_{i} E\left(X_{i}\right)=99,999,996\left(\frac{1}{26}\right)^{5} \approx 8.4
$$

Calculating $E[g(X)]$
Let $Y=g(X)$. Assume that we know the distribution of X
We want to calculate $E[Y]$.
Method 1: We calculate the distribution of Y :
$\operatorname{Pr}[Y=y]=\operatorname{Pr}\left[X \in g^{-1}(y)\right]$ where $g^{-1}(x)=\{x \in \Re: g(x)=y\}$
This is typically rather tedious
Method 2: We use the following result.
Theorem:
$E[g(X)]=\sum_{v} g(v) \operatorname{Pr}[X=v]$.

Proof:

$E[g(X)]=\sum_{\omega} g(X(\omega)) \operatorname{Pr}[\omega]=\sum_{v} \sum_{\omega \in X^{-1}(v)} g(X(\omega)) \operatorname{Pr}[\omega]$
$=\sum_{v} \sum_{\omega \in X^{-1}(v)} g(v) \operatorname{Pr}[\omega]=\sum_{v} g(v) \sum_{\omega \in X^{-1}(v)} \operatorname{Pr}[\omega]$
$=\sum_{v} g(v) \operatorname{Pr}[X=v]$.

An Example
Let X be uniform in $\{-2,-1,0,1,2,3\}$.
Let also $g(X)=X^{2}$. Then (method 2$)$

$$
\begin{aligned}
E[g(X)] & =\sum_{x=-2}^{3} x^{2} \frac{1}{6} \\
& =\{4+1+0+1+4+9\} \frac{1}{6}=\frac{19}{6} .
\end{aligned}
$$

Method 1 - We find the distribution of $Y=X^{2}$:

$$
Y= \begin{cases}4, & \text { w.p. } \frac{2}{6} \\ 1, & \text { w.p. } \frac{2}{6} \\ 0, & \text { w.p. } \frac{1}{6} \\ 9, & \text { w.p. } \frac{1}{6} .\end{cases}
$$

Thus,

$$
E[Y]=4 \frac{2}{6}+1 \frac{2}{6}+0 \frac{1}{6}+9 \frac{1}{6}=\frac{19}{6}
$$

Summary Random Variables

- A random variable X is a function $X: \Omega \rightarrow \Re$.
- $\operatorname{Pr}[X=a]:=\operatorname{Pr}\left[X^{-1}(a)\right]=\operatorname{Pr}[\{\omega \mid X(\omega)=a\}]$
- $\operatorname{Pr}[X \in A]:=\operatorname{Pr}\left[X^{-1}(A)\right]$.
- The distribution of X is the list of possible values and their probability: $\{(a, \operatorname{Pr}[X=a]), a \in \mathscr{A}\}$.
- Joint distributions.
- $g(X, Y, Z)$ assigns the value
- $E[X]:=\sum_{a} a \operatorname{Pr}[X=a]$.
- Expectation is Linear.

