Balls in bins

One throws m balls into $n>m$ bins.

Balls in bins

One throws m balls into $n>m$ bins.

Theorem:

$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

Balls in bins

Theorem:

$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

Balls in bins

Theorem:
$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

In particular, $\operatorname{Pr}[$ no collision $] \approx 1 / 2$ for $m^{2} /(2 n) \approx \ln (2)$, i.e.,

$$
m \approx \sqrt{2 \ln (2) n} \approx 1.2 \sqrt{n}
$$

E.g., $1.2 \sqrt{20} \approx 5.4$.

Roughly, $\operatorname{Pr}[$ collision $] \approx 1 / 2$ for $m=\sqrt{n} .\left(e^{-0.5} \approx 0.6.\right)$

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:

$$
\begin{array}{r}
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{m}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \cdots \cap A_{m-1}\right] \\
\quad \Rightarrow \operatorname{Pr}[\text { no collision }]=\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) .
\end{array}
$$

Hence,

$$
\begin{aligned}
\ln (\operatorname{Pr}[\text { no collision }]) & =\sum_{k=1}^{m-1} \ln \left(1-\frac{k}{n}\right) \approx \sum_{k=1}^{m-1}\left(-\frac{k}{n}\right)^{(*)} \\
& =-\frac{1}{n} \frac{m(m-1)^{(\dagger)}}{2} \approx-\frac{m^{2}}{2 n}
\end{aligned}
$$

${ }^{(*)}$ We used $\ln (1-\varepsilon) \approx-\varepsilon$ for $|\varepsilon| \ll 1$.
${ }^{(\dagger)} 1+2+\cdots+m-1=(m-1) m / 2$.

Approximation

$$
\exp \{-x\}=1-x+\frac{1}{2!} x^{2}+\cdots \approx 1-x, \text { for }|x| \ll 1
$$

Hence, $-x \approx \ln (1-x)$ for $|x| \ll 1$.

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With $n=365$, one finds
$\operatorname{Pr}[$ collision $] \approx 1 / 2$ if $m \approx 1.2 \sqrt{365} \approx 23$.
If $m=60$, we find that

$$
\operatorname{Pr}[\text { no collision }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}=\exp \left\{-\frac{60^{2}}{2 \times 365}\right\} \approx 0.007
$$

If $m=366$, then $\operatorname{Pr}[$ no collision $]=0$. (No approximation here!)

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:
Let $n=2^{b}$ be the number of checksums.
We know $\operatorname{Pr}[$ no collision $] \approx \exp \left\{-m^{2} /(2 n)\right\} \approx 1-m^{2} /(2 n)$. Hence,
$\operatorname{Pr}[$ no collision $] \approx 1-10^{-3} \Leftrightarrow m^{2} /(2 n) \approx 10^{-3}$

$$
\begin{aligned}
& \Leftrightarrow 2 n \approx m^{2} 10^{3} \Leftrightarrow 2^{b+1} \approx m^{2} 2^{10} \\
& \Leftrightarrow b+1 \approx 10+2 \log _{2}(m) \approx 10+2.9 \ln (m) .
\end{aligned}
$$

Note: $\log _{2}(x)=\log _{2}(e) \ln (x) \approx 1.44 \ln (x)$.

Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)
One random baseball card in each cereal box.

Theorem: If you buy m boxes,
(a) $\operatorname{Pr}[$ miss one specific item $] \approx e^{-\frac{m}{n}}$
(b) $\operatorname{Pr}[$ miss any one of the items $] \leq n e^{-\frac{m}{n}}$.

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$
Fail the second time: $\left(1-\frac{1}{n}\right)$
And so on ... for m times. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m}\right] & =\left(1-\frac{1}{n}\right) \times \cdots \times\left(1-\frac{1}{n}\right) \\
& =\left(1-\frac{1}{n}\right)^{m} \\
\operatorname{In}\left(\operatorname{Pr}\left[A_{m}\right]\right) & =m \ln \left(1-\frac{1}{n}\right) \approx m \times\left(-\frac{1}{n}\right) \\
\operatorname{Pr}\left[A_{m}\right] & \approx \exp \left\{-\frac{m}{n}\right\} .
\end{aligned}
$$

For $p_{m}=\frac{1}{2}$, we need around $n \ln 2 \approx 0.69 n$ boxes.

Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_{k}=$ 'fail to get player k ', for $\mathrm{k}=1, \ldots, \mathrm{n}$
Probability of failing to get at least one of these n players:

$$
p:=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right]
$$

How does one estimate p ? Union Bound:

$$
\begin{gathered}
p=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right] \cdots \operatorname{Pr}\left[E_{n}\right] . \\
\operatorname{Pr}\left[E_{k}\right] \approx e^{-\frac{m}{n}}, k=1, \ldots, n .
\end{gathered}
$$

Plug in and get

$$
p \leq n e^{-\frac{m}{n}} .
$$

Collect all cards?

Thus,

$$
\operatorname{Pr}[\text { missing at least one card }] \leq n e^{-\frac{m}{n}} \text {. }
$$

Hence,

$$
\operatorname{Pr}[\text { missing at least one card }] \leq p \text { when } m \geq n \ln \left(\frac{n}{p}\right) \text {. }
$$

To get $p=1 / 2$, set $m=n \ln (2 n)$.

$$
\left(p \leq n e^{-\frac{m}{n}} \leq n e^{-\ln (n / p)} \leq n\left(\frac{p}{n}\right) \leq p .\right)
$$

E.g., $n=10^{2} \Rightarrow m=530 ; n=10^{3} \Rightarrow m=7600$.

Quick Review.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.
- Product Rule:

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

- Balls in bins: m balls into $n>m$ bins.

$$
\operatorname{Pr}[\text { no collisions }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}
$$

- Coupon Collection: n items. Buy m cereal boxes.
$\operatorname{Pr}[$ miss one specific item $] \approx e^{-\frac{m}{n}} ; \operatorname{Pr}[$ miss any one of the items $] \leq n e^{-\frac{m}{n}}$.
Key Mathematical Fact: $\ln (1-\varepsilon) \approx-\varepsilon$.

Random Variables

Random Variables

1. Random Variables.
2. Expectation
3. Distributions.

Questions about outcomes ...

Experiment: roll two dice.
Sample Space: $\{(1,1),(1,2), \ldots,(6,6)\}=\{1, \ldots, 6\}^{2}$ How many pips?
Experiment: flip 100 coins.
Sample Space: $\{H H H \cdots H, T H H \cdots H, \ldots, T T T \cdots T\}$ How many heads in 100 coin tosses?
Experiment: choose a random student in cs70. Sample Space: \{Adam, Jin, Bing, ..., Angeline\} What midterm score?

Experiment: hand back assignments to 3 students at random. Sample Space: $\{123,132,213,231,312,321\}$ How many students get back their own assignment?

In each scenario, each outcome gives a number.
The number is a (known) function of the outcome.

Random Variables.

A random variable, X, for an experiment with sample space Ω is a function $X: \Omega \rightarrow \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

The function $X(\cdot)$ is defined on the outcomes Ω.
The function $X(\cdot)$ is not random, not a variable!
What varies at random (from experiment to experiment)? The outcome!

Example 1 of Random Variable

Experiment: roll two dice.
Sample Space: $\{(1,1),(1,2), \ldots,(6,6)\}=\{1, \ldots, 6\}^{2}$
Random Variable X : number of pips.
$X(1,1)=2$
$X(1,2)=3$,
!
$X(6,6)=12$,
$X(a, b)=a+b,(a, b) \in \Omega$.

Example 2 of Random Variable

Experiment: flip three coins
Sample Space: $\{H H H$, THH, HTH, TTH, HHT, THT, HTT, TTT $\}$
Winnings: if win 1 on heads, lose 1 on tails: X

$$
\begin{array}{lccc}
X(H H H)=3 & X(T H H)=1 & X(H T H)=1 & X(T T H)=-1 \\
X(H H T)=1 & X(T H T)=-1 & X(H T T)=-1 & X(T T T)=-3
\end{array}
$$

Number of pips in two dice.
"What is the likelihood of getting n pips?"

$$
\operatorname{Pr}[X=10]=3 / 36=\operatorname{Pr}\left[X^{-1}(10)\right] ; \operatorname{Pr}[X=8]=5 / 36=\operatorname{Pr}\left[X^{-1}(8)\right]
$$

Distribution

The probability of X taking on a value a.
Definition: The distribution of a random variable X, is $\{(a, \operatorname{Pr}[X=a]): a \in \mathscr{A}\}$, where \mathscr{A} is the range of X.

$$
\operatorname{Pr}[X=a]:=\operatorname{Pr}\left[X^{-1}(a)\right] \text { where } X^{-1}(a):=\{\omega \mid X(\omega)=a\} .
$$

Handing back assignments

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega=\{123,132,213,231,312,321\}$ How many students get back their own assignment?
Random Variable: values of $X(\omega)$: $\{3,1,1,0,0,1\}$
Distribution:

$$
X= \begin{cases}0, & \text { w.p. } 1 / 3 \\ 1, & \text { w.p. } 1 / 2 \\ 3, & \text { w.p. } 1 / 6\end{cases}
$$

Flip three coins

Experiment: flip three coins
Sample Space: $\{H H H, T H H, H T H, T T H, H H T, T H T, H T T, T T T\}$ Winnings: if win 1 on heads, lose 1 on tails. X
Random Variable: $\{3,1,1,-1,1,-1,-1,-3\}$
Distribution:

$$
X= \begin{cases}-3, & \text { w. p. } 1 / 8 \\ -1, & \text { w. p. } 3 / 8 \\ 1, & \text { w. p. } 3 / 8 \\ 3 & \text { w. p. } 1 / 8\end{cases}
$$

Number of pips.

Experiment: roll two dice.

Expectation.

How did people do on the midterm?
Distribution.
Summary of distribution?
Average!

Expectation - Definition

Definition: The expected value of a random variable X is

$$
E[X]=\sum_{a} a \times \operatorname{Pr}[X=a]
$$

The expected value is also called the mean.
According to our intuition, we expect that if we repeat an experiment a large number N of times and if X_{1}, \ldots, X_{N} are the successive values of the random variable, then

$$
\frac{X_{1}+\cdots+X_{N}}{N} \approx E[X]
$$

That is indeed the case, in the same way that the fraction of times that $X=x$ approaches $\operatorname{Pr}[X=x]$.
This (nontrivial) result is called the Law of Large Numbers.
The subjectivist(bayesian) interpretation of $E[X]$ is less obvious.

Expectation: A Useful Fact

Theorem:

$$
E[X]=\sum_{\omega} X(\omega) \times \operatorname{Pr}[\omega]
$$

Proof:

$$
\begin{aligned}
E[X] & =\sum_{a} a \times \operatorname{Pr}[X=a] \\
& =\sum_{a} a \times \sum_{\omega: X(\omega)=a} \operatorname{Pr}[\omega] \\
& =\sum_{a} \sum_{\omega: X(\omega)=a} X(\omega) \operatorname{Pr}[\omega] \\
& =\sum_{\omega} X(\omega) \operatorname{Pr}[\omega]
\end{aligned}
$$

Distributive property of multiplication over addition.

An Example

Flip a fair coin three times.
$\Omega=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T\}$.
$X=$ number of H 's: $\{3,2,2,2,1,1,1,0\}$.
Thus,

$$
\sum_{\omega} X(\omega) \operatorname{Pr}[\omega]=\{3+2+2+2+1+1+1+0\} \times \frac{1}{8} .
$$

Also,

$$
\sum_{a} a \times \operatorname{Pr}[X=a]=3 \times \frac{1}{8}+2 \times \frac{3}{8}+1 \times \frac{3}{8}+0 \times \frac{1}{8} .
$$

What's the answer? Uh.... $\frac{3}{2}$

Expectation and Average.

There are n students in the class;
$X(m)=$ score of student m, for $m=1,2, \ldots, n$.
"Average score" of the n students: add scores and divide by n :

$$
\text { Average }=\frac{X(1)+X(1)+\cdots+X(n)}{n}
$$

Experiment: choose a student uniformly at random.
Uniform sample space: $\Omega=\{1,2, \cdots, n\}, \operatorname{Pr}[\omega]=1 / n$, for all ω. Random Variable: midterm score: $X(\omega)$.
Expectation:

$$
E(X)=\sum_{\omega} X(\omega) \operatorname{Pr}[\omega]=\sum_{\omega} X(\omega) \frac{1}{n}
$$

Hence,

$$
\text { Average }=E(X)
$$

This holds for a uniform probability space.

Named Distributions.

Some distributions come up over and over again.
...like "choose" or "stars and bars"....
Let's cover some.

The binomial distribution.

Flip n coins with heads probability p.
Random variable: number of heads.
Binomial Distribution: $\operatorname{Pr}[X=i]$, for each i.
How many sample points in event " $X=i$ "?
i heads out of n coin flips $\Longrightarrow\binom{n}{i}$
What is the probability of ω if ω has i heads?
Probability of heads in any position is p.
Probability of tails in any position is $(1-p)$.
So, we get

$$
\operatorname{Pr}[\omega]=p^{i}(1-p)^{n-i}
$$

Probability of " $X=i$ " is sum of $\operatorname{Pr}[\omega], \omega \in " X=i$ ".

$$
\operatorname{Pr}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i}, i=0,1, \ldots, n: B(n, p) \text { distribution }
$$

The binomial distribution.

Error channel and...

A packet is corrupted with probability p.
Send $n+2 k$ packets.
Probability of at most k corruptions.

$$
\sum_{i \leq k}\binom{n+2 k}{i} p^{i}(1-p)^{n+2 k-i}
$$

Also distribution in polling, experiments, etc.

Expectation of Binomial Distibution

Parameter p and n. What is expectation?

$$
\begin{gathered}
\operatorname{Pr}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i}, i=0,1, \ldots, n: B(n, p) \text { distribution } \\
E[X]=\sum_{i} i \times \operatorname{Pr}[X=i] .
\end{gathered}
$$

Uh oh? Well... It is pn.
Proof? After linearity of expectation this is easy.
Waiting is good.

Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2, \ldots, 6\}$. We say that X is uniformly distributed in $\{1,2, \ldots, 6\}$.
More generally, we say that X is uniformly distributed in $\{1,2, \ldots, n\}$ if $\operatorname{Pr}[X=m]=1 / n$ for $m=1,2, \ldots, n$.
In that case,

$$
E[X]=\sum_{m=1}^{n} m \operatorname{Pr}[X=m]=\sum_{m=1}^{n} m \times \frac{1}{n}=\frac{1}{n} \frac{n(n+1)}{2}=\frac{n+1}{2}
$$

Geometric Distribution

Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get H.

For instance:

$$
\begin{aligned}
& \omega_{1}=H, \text { or } \\
& \omega_{2}=T H, \text { or } \\
& \omega_{3}=T T H, \text { or } \\
& \omega_{n}=T T T T \cdots T H .
\end{aligned}
$$

Note that $\Omega=\left\{\omega_{n}, n=1,2, \ldots\right\}$.
Let X be the number of flips until the first H. Then, $X\left(\omega_{n}\right)=n$. Also,

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1
$$

Geometric Distribution

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1 .
$$

Geometric Distribution

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1 .
$$

Note that

$$
\sum_{n=1}^{\infty} \operatorname{Pr}\left[X_{n}\right]=\sum_{n=1}^{\infty}(1-p)^{n-1} p=p \sum_{n=1}^{\infty}(1-p)^{n-1}=p \sum_{n=0}^{\infty}(1-p)^{n} .
$$

Now, if $|a|<1$, then $S:=\sum_{n=0}^{\infty} a^{n}=\frac{1}{1-a}$. Indeed,

$$
\begin{aligned}
S & =1+a+a^{2}+a^{3}+\cdots \\
a S & =\quad a+a^{2}+a^{3}+a^{4}+\cdots \\
(1-a) S & =1+a-a+a^{2}-a^{2}+\cdots=1 .
\end{aligned}
$$

Hence,

$$
\sum_{n=1}^{\infty} \operatorname{Pr}\left[X_{n}\right]=p \frac{1}{1-(1-p)}=1 .
$$

Geometric Distribution: Expectation

$$
X={ }_{D} G(p), \text { i.e., } \operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1
$$

One has

$$
E[X]=\sum_{n=1}^{\infty} n \operatorname{Pr}[X=n]=\sum_{n=1}^{\infty} n(1-p)^{n-1} p
$$

Thus,

$$
\begin{array}{rlr}
E[X] & = & p+2(1-p) p+3(1-p)^{2} p+4(1-p)^{3} p+\cdots \\
(1-p) E[X] & = & (1-p) p+2(1-p)^{2} p+3(1-p)^{3} p+\cdots \\
p E[X] & =p+(1-p) p+(1-p)^{2} p+(1-p)^{3} p+\cdots
\end{array}
$$

by subtracting the previous two identities

$$
=\sum_{n=1}^{\infty} \operatorname{Pr}[X=n]=1
$$

Hence,

$$
E[X]=\frac{1}{p}
$$

Poisson

Experiment: flip a coin n times. The coin is such that $\operatorname{Pr}[H]=\lambda / n$.
Random Variable: X - number of heads. Thus, $X=B(n, \lambda / n)$.
Poisson Distribution is distribution of X "for large n."

Poisson

Experiment: flip a coin n times. The coin is such that $\operatorname{Pr}[H]=\lambda / n$.
Random Variable: X - number of heads. Thus, $X=B(n, \lambda / n)$.
Poisson Distribution is distribution of X "for large n."
We expect $X \ll n$. For $m \ll n$ one has

$$
\begin{aligned}
\operatorname{Pr}[X=m] & =\binom{n}{m} p^{m}(1-p)^{n-m}, \text { with } p=\lambda / n \\
& =\frac{n(n-1) \cdots(n-m+1)}{m!}\left(\frac{\lambda}{n}\right)^{m}\left(1-\frac{\lambda}{n}\right)^{n-m} \\
& =\frac{n(n-1) \cdots(n-m+1)}{n^{m}} \frac{\lambda^{m}}{m!}\left(1-\frac{\lambda}{n}\right)^{n-m} \\
& \approx(1) \frac{\lambda^{m}}{m!}\left(1-\frac{\lambda}{n}\right)^{n-m} \approx(2) \frac{\lambda^{m}}{m!}\left(1-\frac{\lambda}{n}\right)^{n} \approx \frac{\lambda^{m}}{m!} e^{-\lambda}
\end{aligned}
$$

For (1) we used $m \ll n$; for (2) we used $(1-a / n)^{n} \approx e^{-a}$.

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda>0$

$$
X=P(\lambda) \Leftrightarrow \operatorname{Pr}[X=m]=\frac{\lambda^{m}}{m!} e^{-\lambda}, m \geq 0
$$

Fact: $E[X]=\lambda$.
Proof:

$$
\begin{aligned}
E[X] & =\sum_{m=1}^{\infty} m \times \frac{\lambda^{m}}{m!} e^{-\lambda}=e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^{m}}{(m-1)!} \\
& =e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}=e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^{m}}{m!} \\
& =e^{-\lambda} \lambda e^{\lambda}=\lambda
\end{aligned}
$$

Simeon Poisson

The Poisson distribution is named after:
Siméon Poisson

Equal Time: B. Geometric

The geometric distribution is named after:

I could not find a picture of D. Binomial, sorry.

Summary

Random Variables

- A random variable X is a function $X: \Omega \rightarrow \Re$.
- $\operatorname{Pr}[X=a]:=\operatorname{Pr}\left[X^{-1}(a)\right]=\operatorname{Pr}[\{\omega \mid X(\omega)=a\}]$.
- $\operatorname{Pr}[X \in A]:=\operatorname{Pr}\left[X^{-1}(A)\right]$.
- The distribution of X is the list of possible values and their probability: $\{(a, \operatorname{Pr}[X=a]), a \in \mathscr{A}\}$.
- $E[X]:=\sum_{a} a \operatorname{Pr}[X=a]$.
- Expectation is Linear.
- $B(n, p), U[1: n], G(p), P(\lambda)$.

