

Probability that *m* people all have different birthdays? With *n* = 365, one finds $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$. If *m* = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2\times 365}\} \approx 0.007.$$

If
$$m = 366$$
, then $Pr[no \text{ collision}] = 0$. (No approximation here!)

Coupon Collector Problem: Analysis.

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes' Fail the first time: $(1 - \frac{1}{n})$ Fail the second time: $(1 - \frac{1}{n})$ And so on ... for *m* times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$In(Pr[A_m]) = mIn(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$
$$Pr[A_m] \approx \exp\{-\frac{m}{n}\}.$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69n$ boxes.

Checksums!

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for Pr[share a checksum $] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n=2^b$ be the number of checksums. We know $Pr[\text{no collision}]\approx \exp\{-m^2/(2n)\}\approx 1-m^2/(2n).$ Hence,

 $\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2 / (2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \\ & \Leftrightarrow b+1 \approx 10 + 2\log_2(m) \approx 10 + 2.9\ln(m). \end{aligned}$

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.

Collect all cards?

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

 $p := Pr[E_1 \cup E_2 \cdots \cup E_n]$ How does one estimate *p*? Union Bound:

 $p = Pr[E_1 \cup E_2 \cdots \cup E_n] \le Pr[E_1] + Pr[E_2] \cdots Pr[E_n].$

 $Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \dots, n.$

Plug in and get

 $p \leq ne^{-\frac{m}{n}}$.

Coupon Collector Problem.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...) One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

(a) Pr[miss one specific item $] \approx e^{-\frac{m}{n}}$ (b) Pr[miss any one of the items $] \leq ne^{-\frac{m}{n}}$.

Collect all cards?

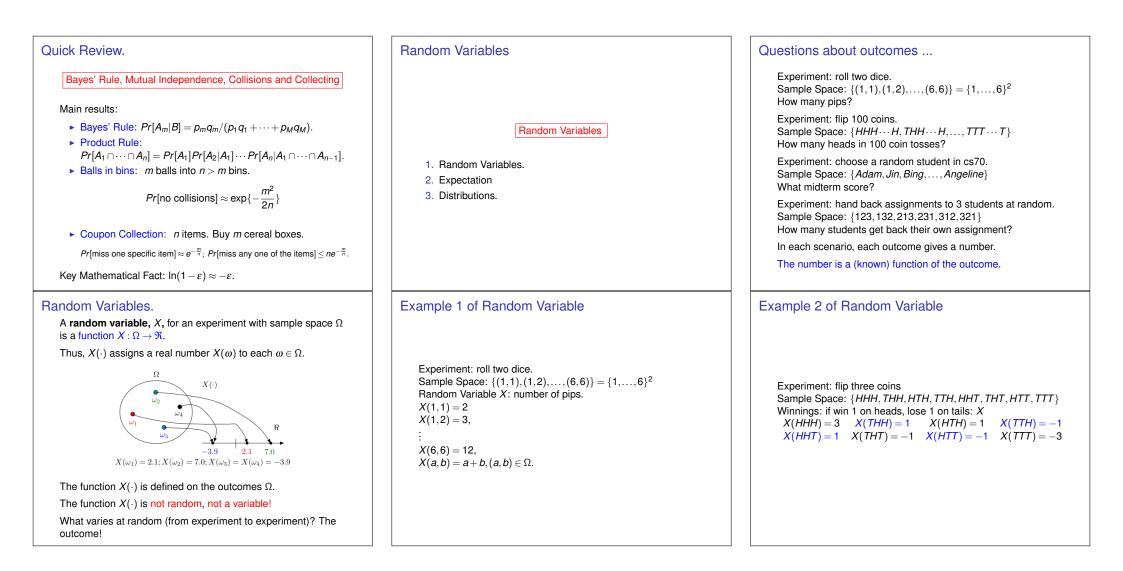
Thus,

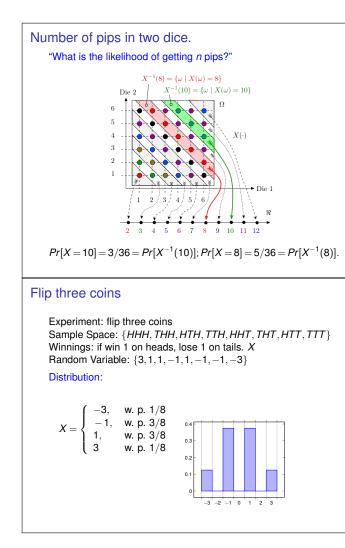
 $Pr[missing at least one card] \leq ne^{-\frac{m}{n}}.$

Hence,

Pr[missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get p = 1/2, set $m = n \ln (2n)$. $(p \le ne^{-\frac{m}{n}} \le ne^{-\ln(n/p)} \le n(\frac{p}{n}) \le p$.) E.g., $n = 10^2 \Rightarrow m = 530$; $n = 10^3 \Rightarrow m = 7600$.

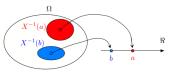




Distribution

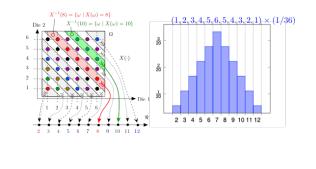
The probability of X taking on a value a.

Definition: The **distribution** of a random variable *X*, is $\{(a, Pr[X = a]) : a \in \mathcal{A}\}$, where \mathcal{A} is the range of *X*.



$$Pr[X = a] := Pr[X^{-1}(a)]$$
 where $X^{-1}(a) := \{\omega \mid X(\omega) = a\}$

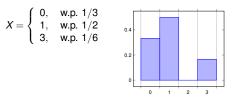
Number of pips.



Handing back assignments

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment? Random Variable: values of $X(\omega) : \{3, 1, 1, 0, 0, 1\}$

Distribution:

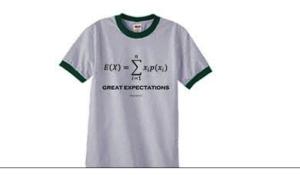


Expectation.

How did people do on the midterm? Distribution.

Summary of distribution?

Average!



Expectation - Definition

Definition: The **expected value** of a random variable *X* is

 $E[X] = \sum a \times \Pr[X = a].$

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an experiment a large number N of times and if X_1, \ldots, X_N are the successive values of the random variable, then

 $\frac{X_1 + \dots + X_N}{N} \approx E[X].$

That is indeed the case, in the same way that the fraction of times that X = x approaches Pr[X = x].

This (nontrivial) result is called the Law of Large Numbers.

The subjectivist(bayesian) interpretation of E[X] is less obvious.

Expectation and Average.

There are *n* students in the class;

X(m) = score of student *m*, for m = 1, 2, ..., n.

"Average score" of the *n* students: add scores and divide by *n*:

Average = $\frac{X(1) + X(1) + \dots + X(n)}{n}$.

Experiment: choose a student uniformly at random. Uniform sample space: $\Omega = \{1, 2, \dots, n\}, Pr[\omega] = 1/n$, for all ω . Random Variable: midterm score: $X(\omega)$. Expectation:

 $E(X) = \sum_{\omega} X(\omega) Pr[\omega] = \sum_{\omega} X(\omega) \frac{1}{n}.$

Hence,

Average = E(X).

This holds for a uniform probability space.

Expectation: A Useful Fact
Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$
Proof:

$$E[X] = \sum_{a} a \times Pr[X = a]$$

$$= \sum_{a} a \times \sum_{\omega: X(\omega) = a} Pr[\omega]$$

$$= \sum_{a} \sum_{\omega: X(\omega) = a} X(\omega) Pr[\omega]$$

$$= \sum_{\omega} X(\omega) Pr[\omega]$$
Distribution property of multiplication proceedition

Distributive property of multiplication over addition.

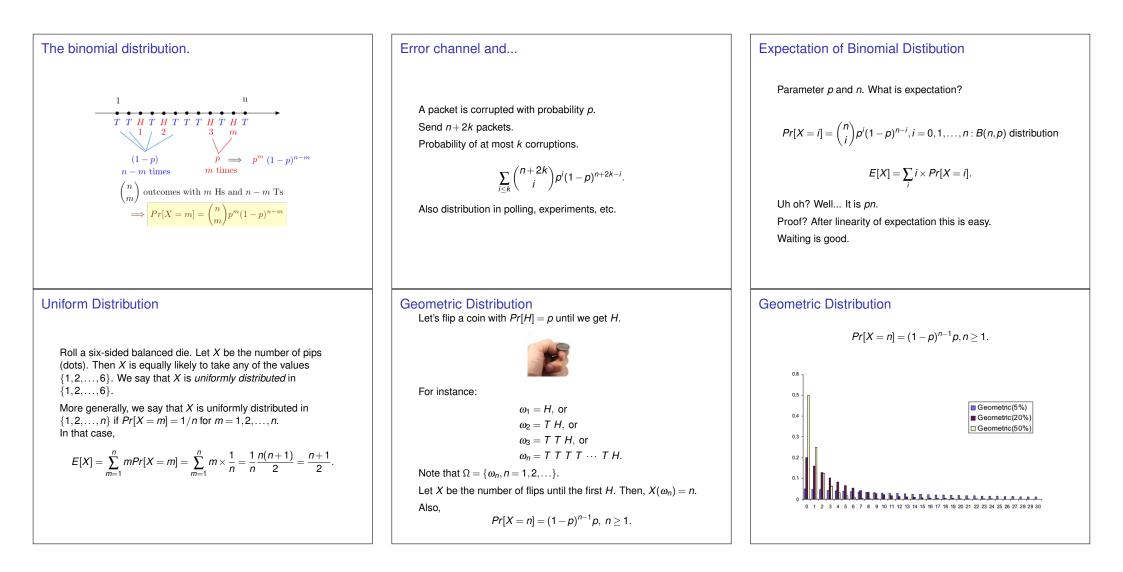
Some distributions come up over and over again. ...like "choose" or "stars and bars"....

Let's cover some.

Named Distributions.

An Example

Flip a fair coin three times. $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$ X = number of *H*'s: {3,2,2,2,1,1,1,0}. Thus. $\sum_{\omega} X(\omega) Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$ Also. $\sum a \times \Pr[X=a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$ What's the answer? Uh.... $\frac{3}{2}$ The binomial distribution. Flip *n* coins with heads probability *p*. Random variable: number of heads. Binomial Distribution: Pr[X = i], for each *i*. How many sample points in event "X = i"? *i* heads out of *n* coin flips $\implies \binom{n}{i}$ What is the probability of ω if ω has *i* heads? Probability of heads in any position is *p*. Probability of tails in any position is (1 - p). So, we get $Pr[\omega] = p^i (1-p)^{n-i}.$ Probability of "X = i" is sum of $Pr[\omega]$, $\omega \in "X = i$ ". $Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n: B(n,p) \text{ distribution}$



Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$
Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1}p = p\sum_{n=1}^{\infty} (1 - p)^{n-1} = p\sum_{n=0}^{\infty} (1 - p)^n.$$
Now, if $|a| < 1$, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1 - a}.$ Indeed,

$$S = 1 + a + a^2 + a^3 + \cdots$$

$$aS = a + a^2 + a^3 + a^4 + \cdots$$

$$(1 - a)S = 1 + a - a + a^2 - a^2 + \cdots = 1.$$
Hence,

$$\sum_{n=1}^{\infty} Pr[X_n] = p \frac{1}{1 - (1 - p)} = 1.$$
Poisson

Experiment: flip a coin *n* times. The coin is such that

 $Pr[H] = \lambda/n.$ Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n).$ **Poisson Distribution** is distribution of X "for large *n*." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$
For (1) we used $m \ll n$; for (2) we used $(1-a/n)^n \approx e^{-a}$.

Geometric Distribution: Expectation

$$X =_{D} G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$
One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.$$
Thus,

$$E[X] = p + 2(1 - p)p + 3(1 - p)^{2}p + 4(1 - p)^{3}p + \cdots$$

$$(1 - p)E[X] = (1 - p)p + 2(1 - p)^{2}p + 3(1 - p)^{3}p + \cdots$$

$$pE[X] = p + (1 - p)p + (1 - p)^{2}p + (1 - p)^{3}p + \cdots$$
by subtracting the previous two identities

$$= \sum_{n=1}^{\infty} Pr[X = n] = 1.$$
Hence,

$$E[X] = \frac{1}{p}.$$

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = rac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

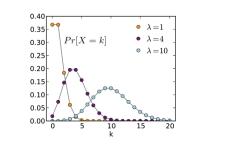
Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Poisson

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of *X* "for large *n*."



Simeon Poisson

The Poisson distribution is named after:

