Total Probability: Intuition, pictures, inference.

Total Probability: Intuition, pictures, inference.

Bayes Rule.

Total Probability: Intuition, pictures, inference.

Bayes Rule.

Balls in Bins.

Total Probability: Intuition, pictures, inference.

Bayes Rule.

Balls in Bins.

Birthday Paradox

Total Probability: Intuition, pictures, inference.

Bayes Rule.

Balls in Bins.

Birthday Paradox

Coupon Collector

Definition: Two events A and B are **independent** if

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

▶ When rolling two dice, A = sum is 7 and B = red die is 1 are

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

When rolling two dice, A = sum is 7 and B = red die is 1 are independent;

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.
- ▶ When rolling two dice, A = sum is 3 and B = red die is 1 are

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.
- ▶ When rolling two dice, A = sum is 3 and B = red die is 1 are not independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{2}{36}\right)\left(\frac{1}{6}\right)$.

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.
- ▶ When rolling two dice, A = sum is 3 and B = red die is 1 are not independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{2}{36}\right)\left(\frac{1}{6}\right)$.
- When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.
- ▶ When rolling two dice, A = sum is 3 and B = red die is 1 are not independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{2}{36}\right)\left(\frac{1}{6}\right)$.
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent;

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.
- ▶ When rolling two dice, A = sum is 3 and B = red die is 1 are not independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{2}{36}\right)\left(\frac{1}{6}\right)$.
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent; $Pr[A \cap B] = \frac{1}{4}$, $Pr[A]Pr[B] = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$.

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.
- ▶ When rolling two dice, A = sum is 3 and B = red die is 1 are not independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{2}{36}\right)\left(\frac{1}{6}\right)$.
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent; $Pr[A \cap B] = \frac{1}{4}$, $Pr[A]Pr[B] = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$.
- When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.
- ▶ When rolling two dice, A = sum is 3 and B = red die is 1 are not independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{2}{36}\right)\left(\frac{1}{6}\right)$.
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent; $Pr[A \cap B] = \frac{1}{4}$, $Pr[A]Pr[B] = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$.
- ▶ When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are not independent; $Pr[A \cap B] = \frac{1}{27}, Pr[A]Pr[B] = \left(\frac{8}{27}\right)\left(\frac{8}{27}\right)$.

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.
- ▶ When rolling two dice, A = sum is 3 and B = red die is 1 are not independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = \left(\frac{2}{36}\right)\left(\frac{1}{6}\right)$.
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent; $Pr[A \cap B] = \frac{1}{4}$, $Pr[A]Pr[B] = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$.
- ▶ When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are not independent; $Pr[A \cap B] = \frac{1}{27}, Pr[A]Pr[B] = \left(\frac{8}{27}\right)\left(\frac{8}{27}\right)$.

Fact: Two events A and B are **independent** if and only if

Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Indeed:

Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

$$Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A]$$

Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

$$Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B].$$

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

Tesla owners are more likely to be rich.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

► Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- ► Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- ► Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- ► Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- ► Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Proving Causality

Proving causality is generally difficult.

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

► A and B may be positively correlated because they have a common cause.

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

► A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

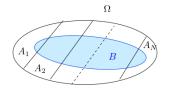
- ➤ A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- ► If B precedes A, then B is more likely to be the cause. (E.g., smoking.)

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

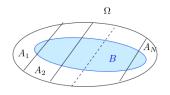
- ➤ A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- ▶ If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A.

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

- ► A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- ▶ If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A. (E.g., smart, CS70, Tesla.)

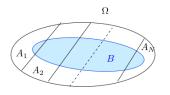

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:


- ➤ A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- ▶ If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A. (E.g., smart, CS70, Tesla.)

More about such questions later. For fun, check "N. Taleb: Fooled by randomness."

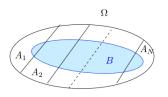
Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .


Assume that Ω is the union of the disjoint sets A_1, \dots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Assume that Ω is the union of the disjoint sets A_1, \dots, A_N .

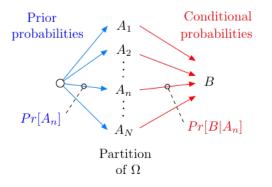


Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N.

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .


Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N. Thus,

$$Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_N]Pr[B|A_N].$$

Assume that Ω is the union of the disjoint sets A_1, \dots, A_N .

$$Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_N]Pr[B|A_N].$$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair',

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] =

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know $P[B|A] = 1/2, P[B|\bar{A}] =$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know $P[B|A] = 1/2, P[B|\bar{A}] = 0.6,$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know
$$P[B|A] = 1/2, P[B|\bar{A}] = 0.6, Pr[A] =$$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know $P[B|A] = 1/2, P[B|\bar{A}] = 0.6, Pr[A] = 1/2$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know
$$P[B|A] = 1/2$$
, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$ Now.

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] =$$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know
$$P[B|A] = 1/2$$
, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$

Now,

$$Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B] = Pr[A]Pr[B|A] + Pr[\overline{A}]Pr[B|\overline{A}]$$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$ Now.

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

= $(1/2)(1/2) + (1/2)0.6 = 0.55.$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

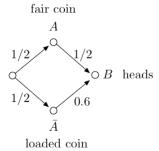
What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

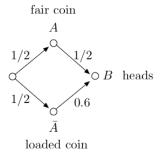
We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$ Now.


$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

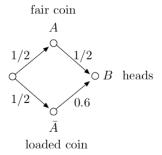
= $(1/2)(1/2) + (1/2)0.6 = 0.55.$

Thus,


$$Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$$

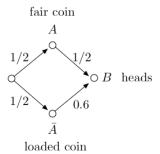
A picture:

A picture:



A picture:

Imagine 100 situations, among which m:=100(1/2)(1/2) are such that \bar{A} and \bar{B} occur and n:=100(1/2)(0.6) are such that \bar{A} and \bar{B} occur.


A picture:

Imagine 100 situations, among which m := 100(1/2)(1/2) are such that \bar{A} and \bar{B} occur and n := 100(1/2)(0.6) are such that \bar{A} and \bar{B} occur.

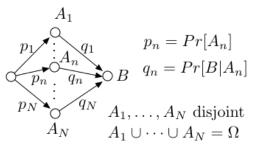
Thus, among the m+n situations where B occurred, there are m where A occurred.

A picture:

Imagine 100 situations, among which m := 100(1/2)(1/2) are such that A and B occur and n := 100(1/2)(0.6) are such that \bar{A} and B occur.

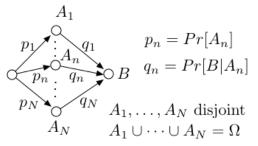
Thus, among the m+n situations where B occurred, there are m where A occurred.

Hence,


$$Pr[A|B] = \frac{m}{m+n} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6}.$$

Bayes Rule

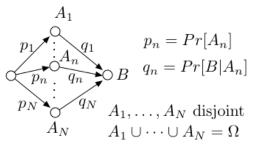
A general picture: We imagine that there are N possible causes A_1, \ldots, A_N .


Bayes Rule

A general picture: We imagine that there are N possible causes A_1, \ldots, A_N .

Bayes Rule

A general picture: We imagine that there are N possible causes A_1, \ldots, A_N .

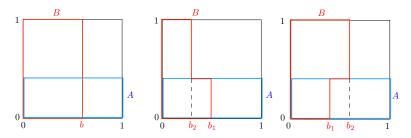


Imagine 100 situations, among which $100p_nq_n$ are such that A_n and B occur, for n = 1,...,N.

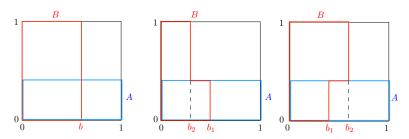
Thus, among the $100\sum_{m}p_{m}q_{m}$ situations where B occurred, there are $100p_{n}q_{n}$ where A_{n} occurred.

Bayes Rule

A general picture: We imagine that there are N possible causes A_1, \ldots, A_N .

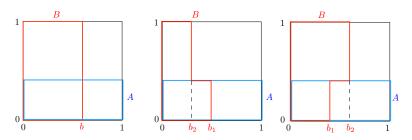


Imagine 100 situations, among which $100p_nq_n$ are such that A_n and B occur, for n = 1, ..., N.

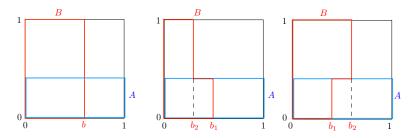

Thus, among the $100\sum_{m}p_{m}q_{m}$ situations where B occurred, there are $100p_{n}q_{n}$ where A_{n} occurred.

Hence,

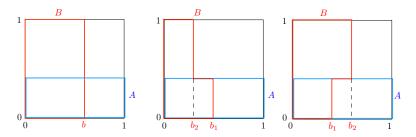
$$Pr[A_n|B] = \frac{p_n q_n}{\sum_m p_m q_m}.$$



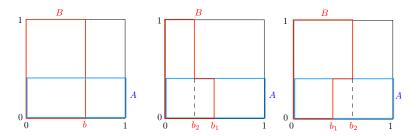
Illustrations: Pick a point uniformly in the unit square


▶ Left: A and B are

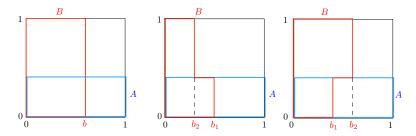
Illustrations: Pick a point uniformly in the unit square


Left: *A* and *B* are independent.

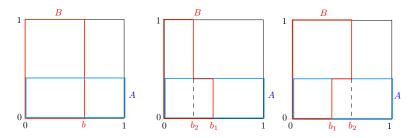
Illustrations: Pick a point uniformly in the unit square


▶ Left: A and B are independent. Pr[B] =

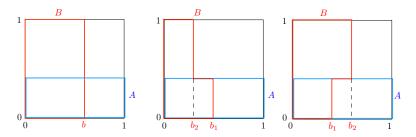
Illustrations: Pick a point uniformly in the unit square

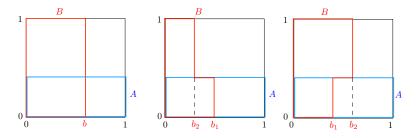

▶ Left: A and B are independent. Pr[B] = b;

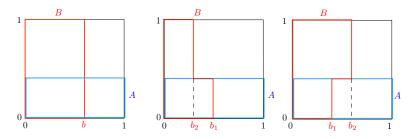
Illustrations: Pick a point uniformly in the unit square

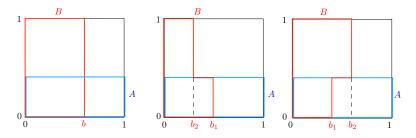


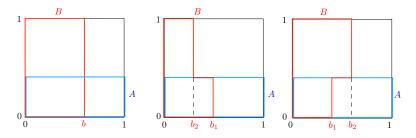
▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] =

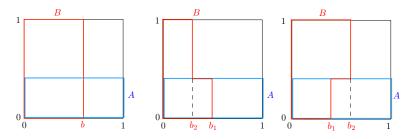

Illustrations: Pick a point uniformly in the unit square

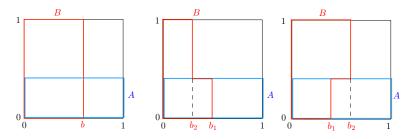

▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.

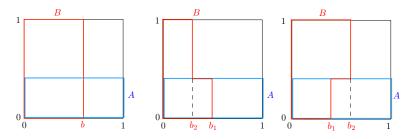

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: A and B are

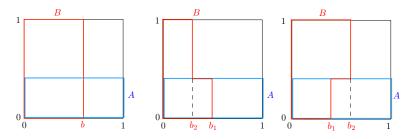

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- Middle: A and B are positively correlated.

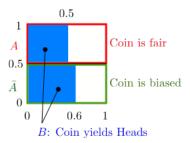

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- Middle: A and B are positively correlated. Pr[B|A] =

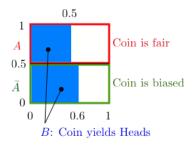

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- Middle: A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] =$

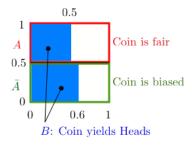

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- Middle: A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$.

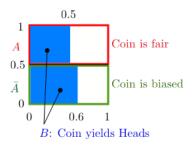

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- Middle: A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.

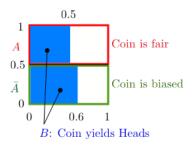

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- ► Right: A and B are

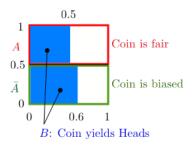

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- Right: A and B are negatively correlated.

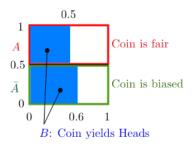


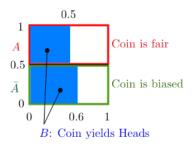

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- ▶ Right: *A* and *B* are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\overline{A}] = b_2$.

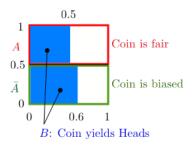

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- ▶ Right: A and B are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_1, b_2)$.

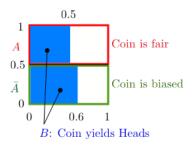



$$Pr[A] =$$

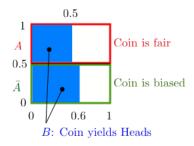

$$Pr[A] = 0.5;$$


$$Pr[A] = 0.5; Pr[\bar{A}] =$$

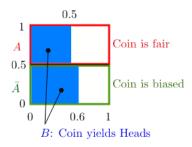

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$


$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

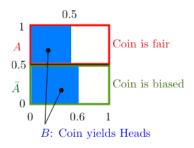
 $Pr[B|A] =$


$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

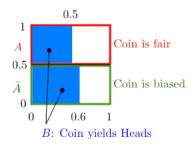
 $Pr[B|A] = 0.5;$


$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

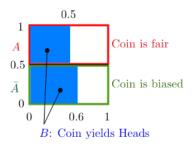
 $Pr[B|A] = 0.5; Pr[B|\bar{A}] =$


$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

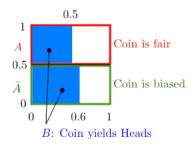
 $Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6;$


$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

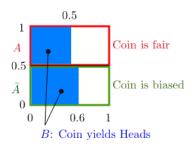
 $Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] =$


$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

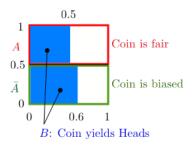
 $Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5$

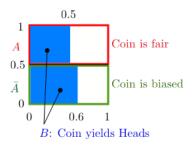

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

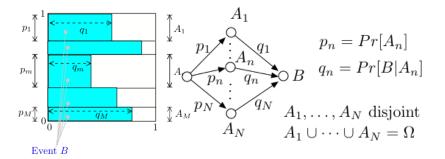
 $Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5$
 $Pr[B] =$

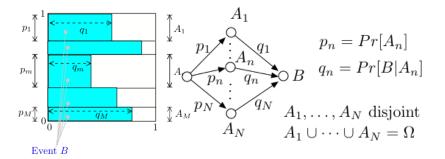

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

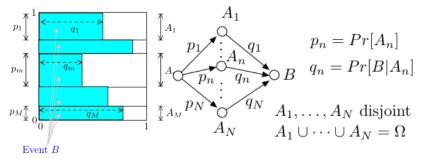
 $Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5$
 $Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6$

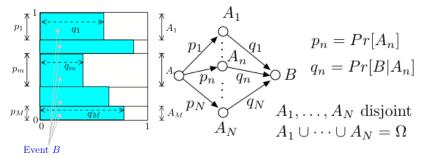

$$\begin{split} & \textit{Pr}[A] = 0.5; \textit{Pr}[\bar{A}] = 0.5 \\ & \textit{Pr}[B|A] = 0.5; \textit{Pr}[B|\bar{A}] = 0.6; \textit{Pr}[A \cap B] = 0.5 \times 0.5 \\ & \textit{Pr}[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = \textit{Pr}[A] \textit{Pr}[B|A] + \textit{Pr}[\bar{A}] \textit{Pr}[B|\bar{A}] \end{split}$$

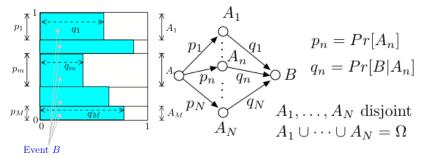

$$\begin{split} & Pr[A] = 0.5; Pr[\bar{A}] = 0.5 \\ & Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5 \\ & Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \\ & Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} \end{split}$$

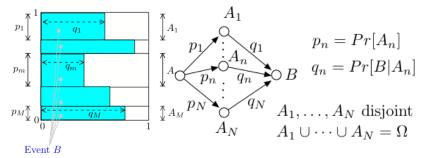

$$\begin{split} & Pr[A] = 0.5; Pr[\bar{A}] = 0.5 \\ & Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5 \\ & Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \\ & Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]} \end{split}$$

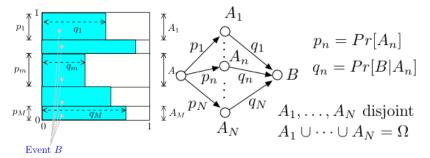


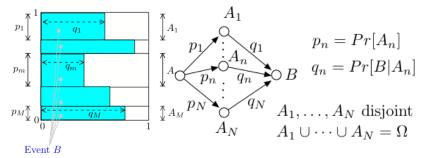

$$\begin{split} Pr[A] &= 0.5; Pr[\bar{A}] = 0.5 \\ Pr[B|A] &= 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5 \\ Pr[B] &= 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \\ Pr[A|B] &= \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]} \\ &\approx 0.46 \end{split}$$


$$\begin{split} & Pr[A] = 0.5; Pr[\bar{A}] = 0.5 \\ & Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5 \\ & Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \\ & Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]} \\ & \approx 0.46 = \text{fraction of } B \text{ that is inside } A \end{split}$$

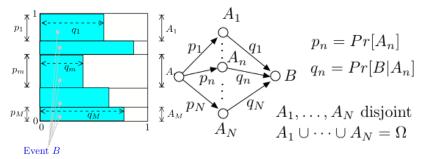



Pick a point uniformly at random in the unit square. Then

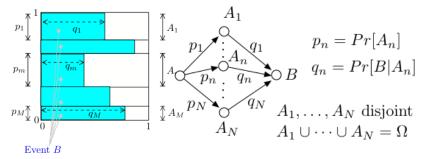

$$Pr[A_n] = p_n, n = 1, \dots, N$$


$$Pr[A_n] = p_n, n = 1,...,N$$

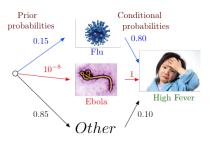
 $Pr[B|A_n] = q_n, n = 1,...,N;$


$$Pr[A_n] = p_n, n = 1,..., N$$

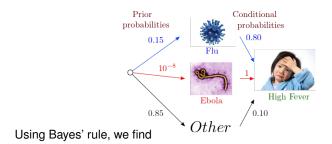
 $Pr[B|A_n] = q_n, n = 1,..., N; Pr[A_n \cap B] =$

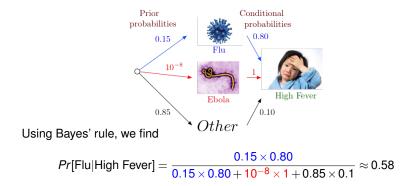

$$Pr[A_n] = p_n, n = 1,..., N$$

 $Pr[B|A_n] = q_n, n = 1,..., N; Pr[A_n \cap B] = p_n q_n$

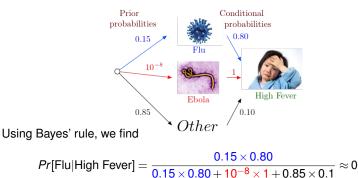

$$Pr[A_n] = p_n, n = 1,..., N$$

 $Pr[B|A_n] = q_n, n = 1,..., N; Pr[A_n \cap B] = p_n q_n$
 $Pr[B] = p_1 q_1 + \cdots p_N q_N$

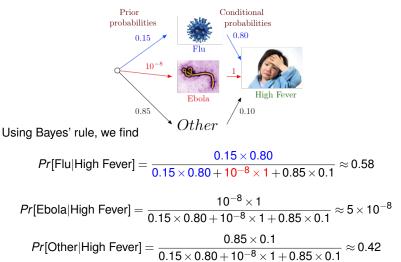


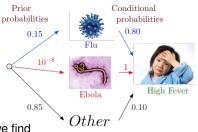

$$Pr[A_n] = p_n, n = 1, ..., N$$

 $Pr[B|A_n] = q_n, n = 1, ..., N; Pr[A_n \cap B] = p_n q_n$
 $Pr[B] = p_1 q_1 + \cdots p_N q_N$
 $Pr[A_n|B] = \frac{p_n q_n}{p_1 q_1 + \cdots p_N q_N}$

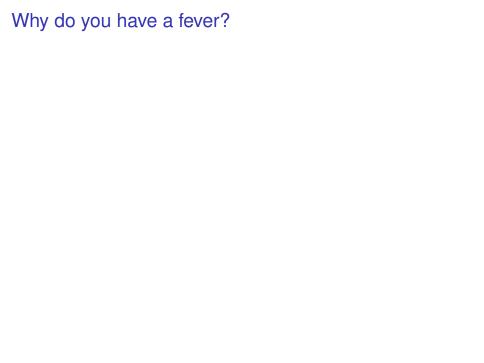


$$\begin{aligned} & Pr[A_n] = p_n, n = 1, \dots, N \\ & Pr[B|A_n] = q_n, n = 1, \dots, N; Pr[A_n \cap B] = p_n q_n \\ & Pr[B] = p_1 q_1 + \dots + p_N q_N \\ & Pr[A_n|B] = \frac{p_n q_n}{p_1 q_1 + \dots + p_N q_N} = \text{ fraction of } B \text{ inside } A_n. \end{aligned}$$



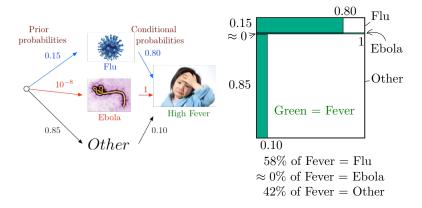


$$Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}$$

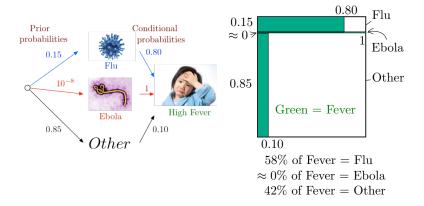


$$Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58$$

$$\textit{Pr}[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}$$

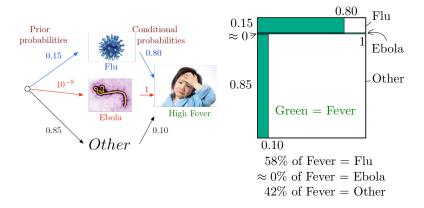

$$\textit{Pr}[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42$$

The values $0.58,5 \times 10^{-8}, 0.42$ are the posterior probabilities.



Our "Bayes' Square" picture:

Our "Bayes' Square" picture:



Our "Bayes' Square" picture:


Note that even though Pr[Fever|Ebola] = 1,

Our "Bayes' Square" picture:

Note that even though Pr[Fever|Ebola] = 1, one has $Pr[\text{Ebola}|\text{Fever}] \approx 0.$

Our "Bayes' Square" picture:

Note that even though Pr[Fever|Ebola] = 1, one has

 $Pr[Ebola|Fever] \approx 0.$

This example shows the importance of the prior probabilities.

We found

We found

 $Pr[{
m Flu}|{
m High\ Fever}] pprox 0.58,$ $Pr[{
m Ebola}|{
m High\ Fever}] pprox 5 imes 10^{-8},$ $Pr[{
m Other}|{
m High\ Fever}] pprox 0.42$

We found

 $Pr[\text{Flu}|\text{High Fever}] \approx 0.58,$ $Pr[\text{Ebola}|\text{High Fever}] \approx 5 \times 10^{-8},$ $Pr[\text{Other}|\text{High Fever}] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

We found

 $Pr[\text{Flu}|\text{High Fever}] \approx 0.58,$ $Pr[\text{Ebola}|\text{High Fever}] \approx 5 \times 10^{-8},$ $Pr[\text{Other}|\text{High Fever}] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.

We found

 $Pr[\text{Flu}|\text{High Fever}] \approx 0.58,$ $Pr[\text{Ebola}|\text{High Fever}] \approx 5 \times 10^{-8},$ $Pr[\text{Other}|\text{High Fever}] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.

Recall that

$$p_m = Pr[A_m], q_m = Pr[B|A_m], Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \dots + p_M q_M}.$$

We found

$$Pr[\text{Flu}|\text{High Fever}] \approx 0.58,$$

 $Pr[\text{Ebola}|\text{High Fever}] \approx 5 \times 10^{-8},$
 $Pr[\text{Other}|\text{High Fever}] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.

Recall that

$$p_m = Pr[A_m], q_m = Pr[B|A_m], Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \dots + p_M q_M}.$$

Thus,

► MAP = value of *m* that maximizes $p_m q_m$.

We found

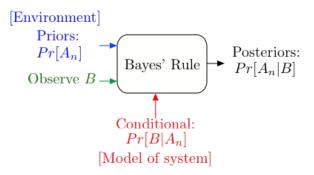
$$Pr[\text{Flu}|\text{High Fever}] \approx 0.58,$$

 $Pr[\text{Ebola}|\text{High Fever}] \approx 5 \times 10^{-8},$
 $Pr[\text{Other}|\text{High Fever}] \approx 0.42$

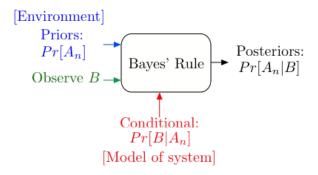
One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.

Recall that

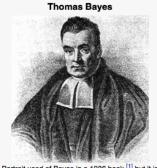

$$p_m = Pr[A_m], q_m = Pr[B|A_m], Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \dots + p_M q_M}.$$

Thus,


- ► MAP = value of m that maximizes $p_m q_m$.
- ▶ MLE = value of m that maximizes q_m .

Bayes' Rule Operations

Bayes' Rule Operations



Bayes' Rule Operations

Bayes' Rule is the canonical example of how information changes our opinions.

Thomas Bayes

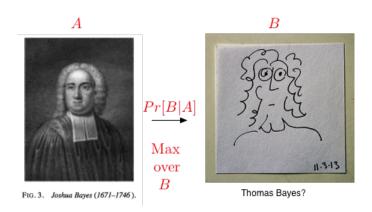
Portrait used of Bayes in a 1936 book, [1] but it is doubtful whether the portrait is actually of him. [2] No earlier portrait or claimed portrait survives.

Born c. 1701

Died

London, England 7 April 1761 (aged 59)

Tunbridge Wells, Kent, England


Residence Tunbridge Wells, Kent, England

Nationality English

Known for Bayes' theorem

Source: Wikipedia.

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Random Experiment: Pick a random male.

Random Experiment: Pick a random male.

Outcomes: (test, disease)

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- ightharpoonup Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- ▶ $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- ightharpoonup Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- ▶ $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- ightharpoonup Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- ▶ $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

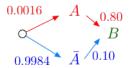
From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

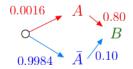
Positive PSA test (B). Do I have disease?

Random Experiment: Pick a random male.

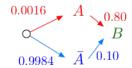
Outcomes: (test, disease)

A - prostate cancer.

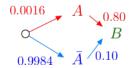

B - positive PSA test.


- ightharpoonup Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- ▶ $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

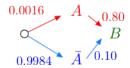
From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)


Positive PSA test (B). Do I have disease?

Pr[A|B]???

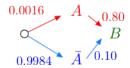


Using Bayes' rule, we find


Using Bayes' rule, we find

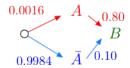
$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10}$$

Using Bayes' rule, we find


$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

Using Bayes' rule, we find

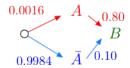
$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$


A 1.3% chance of prostate cancer with a positive PSA test.

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone?


Using Bayes' rule, we find

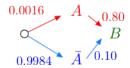
$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Using Bayes' rule, we find


$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.

Events, Conditional Probability, Independence, Bayes' Rule

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

- Independence: Pr[A∩B] = Pr[A]Pr[B].
- ► Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

- ▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.
- ► Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

 $Pr[A_n|B] = posterior probability; Pr[A_n] = prior probability$.

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

- ▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.
- ► Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_{m} Pr[A_m]Pr[B|A_m]}.$$

$$Pr[A_n|B] = posterior probability; Pr[A_n] = prior probability$$
.

All these are possible:

$$Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].$$

Independence Recall:

A and B are independent

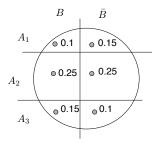
Independence Recall:

A and B are independent

$$\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$$

Independence Recall:

A and B are independent


$$\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$$

$$\Leftrightarrow Pr[A|B] = Pr[A].$$

Recall:

 \boldsymbol{A} and \boldsymbol{B} are independent


$$\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$$
$$\Leftrightarrow Pr[A|B] = Pr[A].$$

Recall:

A and B are independent $\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$ $\Leftrightarrow Pr[A|B] = Pr[A].$

Consider the example below:

 (A_2, B) are independent:

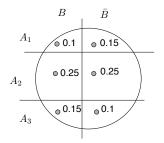
Recall:

A and B are independent

$$\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$$

$$\Leftrightarrow Pr[A|B] = Pr[A].$$

Consider the example below:

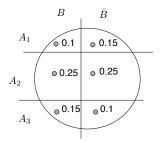

 (A_2, B) are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$.

Recall:

A and B are independent

$$\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$$

$$\Leftrightarrow Pr[A|B] = Pr[A].$$

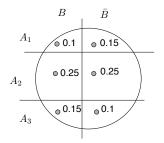

$$(A_2, B)$$
 are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$. (A_2, \bar{B}) are independent:

Recall:

A and B are independent

$$\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$$

$$\Leftrightarrow Pr[A|B] = Pr[A].$$

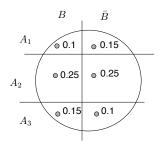

$$(A_2, B)$$
 are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$. (A_2, \bar{B}) are independent: $Pr[A_2|\bar{B}] = 0.5 = Pr[A_2]$.

Recall:

A and B are independent

$$\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$$

$$\Leftrightarrow Pr[A|B] = Pr[A].$$

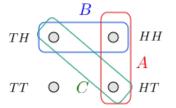

$$(A_2,B)$$
 are independent: $Pr[A_2|B]=0.5=Pr[A_2]$. (A_2,\bar{B}) are independent: $Pr[A_2|\bar{B}]=0.5=Pr[A_2]$. (A_1,B) are not independent:

Recall:

A and B are independent

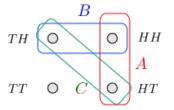
$$\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$$

$$\Leftrightarrow Pr[A|B] = Pr[A].$$


$$(A_2, B)$$
 are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$. (A_2, \bar{B}) are independent: $Pr[A_2|\bar{B}] = 0.5 = Pr[A_2]$. (A_1, B) are not independent: $Pr[A_1|B] = \frac{0.1}{0.5} = 0.2 \neq Pr[A_1] = 0.25$.

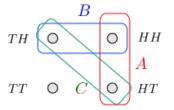
Flip two fair coins. Let

- ► A = 'first coin is H' = {HT, HH};
- ▶ B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT}.


Flip two fair coins. Let

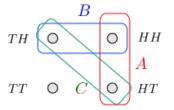
- ► A = 'first coin is H' = {HT, HH};
- ▶ B = 'second coin is H' = {TH, HH};
- ► C = 'the two coins are different' = {TH, HT}.

Flip two fair coins. Let


- ► A = 'first coin is H' = {HT, HH};
- ▶ B = 'second coin is H' = {TH, HH};
- ► C = 'the two coins are different' = {TH, HT}.

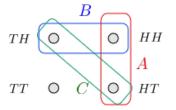
A, C are independent;

Flip two fair coins. Let


- ► A = 'first coin is H' = {HT, HH};
- ▶ B = 'second coin is H' = {TH, HH};
- ► C = 'the two coins are different' = {TH, HT}.

A, C are independent; B, C are independent;

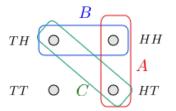
Flip two fair coins. Let


- ► A = 'first coin is H' = {HT, HH};
- ▶ B = 'second coin is H' = {TH, HH};
- ► C = 'the two coins are different' = {TH, HT}.

A, C are independent; B, C are independent; $A \cap B, C$ are not independent.

Flip two fair coins. Let

- ► A = 'first coin is H' = {HT, HH};
- ▶ B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT}.



A, C are independent; B, C are independent;

 $A \cap B$, C are not independent. $(Pr[A \cap B \cap C] = 0 \neq Pr[A \cap B]Pr[C]$.)

Flip two fair coins. Let

- ► A = 'first coin is H' = {HT, HH};
- ▶ B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT}.

A, C are independent; B, C are independent;

$$A \cap B$$
, C are not independent. $(Pr[A \cap B \cap C] = 0 \neq Pr[A \cap B]Pr[C]$.)

If A did not say anything about C and B did not say anything about C, then $A \cap B$ would not say anything about C.

Flip a fair coin 5 times.

Flip a fair coin 5 times. Let A_n = 'coin n is H', for n = 1, ..., 5.

Flip a fair coin 5 times. Let A_n = 'coin n is H', for $n=1,\ldots,5$. Then, A_m,A_n are independent for all $m\neq n$.

Flip a fair coin 5 times. Let A_n = 'coin n is H', for n = 1, ..., 5.

Then,

 A_m , A_n are independent for all $m \neq n$.

Also,

 A_1 and $A_3 \cap A_5$ are independent.

Flip a fair coin 5 times. Let A_n = 'coin n is H', for n = 1, ..., 5.

Then,

 A_m , A_n are independent for all $m \neq n$.

Also,

 A_1 and $A_3 \cap A_5$ are independent.

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5].$$

Flip a fair coin 5 times. Let A_n = 'coin n is H', for n = 1, ..., 5.

Then,

 A_m , A_n are independent for all $m \neq n$.

Also,

 A_1 and $A_3 \cap A_5$ are independent.

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5].$$

Similarly,

 $A_1 \cap A_2$ and $A_3 \cap A_4 \cap A_5$ are independent.

Flip a fair coin 5 times. Let A_n = 'coin n is H', for n = 1, ..., 5.

Then,

 A_m , A_n are independent for all $m \neq n$.

Also,

 A_1 and $A_3 \cap A_5$ are independent.

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5].$$

Similarly,

 $A_1 \cap A_2$ and $A_3 \cap A_4 \cap A_5$ are independent.

This leads to a definition

Definition Mutual Independence

Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k]$$
, for all $K\subseteq \{1,\ldots,5\}$.

Definition Mutual Independence

(a) The events $A_1, ..., A_5$ are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k]$$
, for all $K\subseteq \{1,\ldots,5\}$.

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

Definition Mutual Independence

(a) The events $A_1, ..., A_5$ are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k]$$
, for all $K\subseteq \{1,\ldots,5\}$.

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k]$$
, for all finite $K\subseteq J$.

Definition Mutual Independence

(a) The events $A_1, ..., A_5$ are mutually independent if

$$Pr[\cap_{k\in\mathcal{K}}A_k] = \prod_{k\in\mathcal{K}}Pr[A_k], \text{ for all } \mathcal{K}\subseteq\{1,\ldots,5\}.$$

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k]$$
, for all finite $K\subseteq J$.

Example: Flip a fair coin forever. Let A_n = 'coin n is H.' Then the events A_n are mutually independent.

Theorem

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

(b) More generally, if the K_n are pairwise disjoint finite subsets of J, then the events

 $\cap_{k \in K_n} A_k$ are mutually independent.

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

(b) More generally, if the K_n are pairwise disjoint finite subsets of J, then the events

 $\cap_{k \in K_n} A_k$ are mutually independent.

(c) Also, the same is true if we replace some of the A_k by \bar{A}_k .

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

$$\cap_{k \in K_1} A_k$$
 and $\cap_{k \in K_2} A_k$ are independent.

(b) More generally, if the K_n are pairwise disjoint finite subsets of J, then the events

$$\cap_{k \in K_n} A_k$$
 are mutually independent.

(c) Also, the same is true if we replace some of the A_k by \bar{A}_k .

Proof:

See Notes 25, 2.7.