Today

Total Probability: Intuition, pictures, inference.
Bayes Rule.
Balls in Bins.
Birthday Paradox
Coupon Collector

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent; $\operatorname{Pr}[A \cap B]=\frac{1}{36}, \operatorname{Pr}[A] \operatorname{Pr}[B]=\left(\frac{1}{6}\right)\left(\frac{1}{6}\right)$.
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent; $\operatorname{Pr}[A \cap B]=\frac{1}{36}, \operatorname{Pr}[A] \operatorname{Pr}[B]=\left(\frac{2}{36}\right)\left(\frac{1}{6}\right)$.
- When flipping coins, $A=$ coin 1 yields heads and $B=\operatorname{coin} 2$ yields tails are independent; $\operatorname{Pr}[A \cap B]=\frac{1}{4}, \operatorname{Pr}[A] \operatorname{Pr}[B]=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$.
- When throwing 3 balls into 3 bins, $A=$ bin 1 is empty and $B=$ bin 2 is empty are not independent;
$\operatorname{Pr}[A \cap B]=\frac{1}{27}, \operatorname{Pr}[A] \operatorname{Pr}[B]=\left(\frac{8}{27}\right)\left(\frac{8}{27}\right)$.

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Indeed: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$, so that

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\operatorname{Pr}[A] \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Causality vs. Correlation

Events A and B are positively correlated if

$$
\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

(E.g., smoking and lung cancer.)
A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

- A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A. (E.g., smart, CS70, Tesla.)

More about such questions later. For fun, check "N. Taleb: Fooled by randomness."

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Indeed, B is the union of the disjoint sets $A_{n} \cap B$ for $n=1, \ldots, N$. Thus,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[B \mid A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{N}\right] \operatorname{Pr}\left[B \mid A_{N}\right] .
$$

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $P[B \mid A]=1 / 2, P[B \mid \bar{A}]=0.6, \operatorname{Pr}[A]=1 / 2=\operatorname{Pr}[\bar{A}]$
Now,

$$
\begin{aligned}
\operatorname{Pr}[B] & =\operatorname{Pr}[A \cap B]+\operatorname{Pr}[\bar{A} \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& =(1 / 2)(1 / 2)+(1 / 2) 0.6=0.55 .
\end{aligned}
$$

Thus,

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]}=\frac{(1 / 2)(1 / 2)}{(1 / 2)(1 / 2)+(1 / 2) 0.6} \approx 0.45
$$

Is you coin loaded?

A picture:

loaded coin
Imagine 100 situations, among which
$m:=100(1 / 2)(1 / 2)$ are such that A and B occur and
$n:=100(1 / 2)(0.6)$ are such that \bar{A} and B occur.
Thus, among the $m+n$ situations where B occurred, there are m where A occurred.

Hence,

$$
\operatorname{Pr}[A \mid B]=\frac{m}{m+n}=\frac{(1 / 2)(1 / 2)}{(1 / 2)(1 / 2)+(1 / 2) 0.6}
$$

Bayes Rule

A general picture: We imagine that there are N possible causes A_{1}, \ldots, A_{N}.

Imagine 100 situations, among which $100 p_{n} q_{n}$ are such that A_{n} and B occur, for $n=1, \ldots, N$.
Thus, among the $100 \sum_{m} p_{m} q_{m}$ situations where B occurred, there are $100 p_{n} q_{n}$ where A_{n} occurred.
Hence,

$$
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{p_{n} q_{n}}{\sum_{m} p_{m} q_{m}}
$$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right) .
$$

- Right: A and B are negatively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}<\operatorname{Pr}[B \mid \vec{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{1}, b_{2}\right) .
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& \operatorname{Pr}[A \mid B]=\frac{0.5 \times 0.5}{0.5 \times 0.5+0.5 \times 0.6}=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}]} \\
& \quad \approx 0.46=\text { fraction of } B \text { that is inside } A
\end{aligned}
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{n}\right]=p_{n}, n=1, \ldots, N \\
& \operatorname{Pr}\left[B \mid A_{n}\right]=q_{n}, n=1, \ldots, N ; \operatorname{Pr}\left[A_{n} \cap B\right]=p_{n} q_{n} \\
& \operatorname{Pr}[B]=p_{1} q_{1}+\cdots p_{N} q_{N} \\
& \operatorname{Pr}\left[A_{n} \mid B\right]=\frac{p_{n} q_{n}}{p_{1} q_{1}+\cdots p_{N} q_{N}}=\text { fraction of } B \text { inside } A_{n} .
\end{aligned}
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }]=\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58
$$

$$
\operatorname{Pr}[\text { Ebola } \mid \text { High Fever }]=\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8}
$$

$$
\operatorname{Pr}[\text { Other } \mid \text { High Fever }]=\frac{0.85 \times 0.1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.42
$$

The values $0.58,5 \times 10^{-8}, 0.42$ are the posterior probabilities.

Why do you have a fever?

Our "Bayes' Square" picture:

Note that even though $\operatorname{Pr}[$ Fever \mid Ebola $]=1$, one has

$$
\operatorname{Pr}[\text { Ebola|Fever }] \approx 0 .
$$

This example shows the importance of the prior probabilities.

Why do you have a fever?

We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola \mid High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.
Recall that

$$
p_{m}=\operatorname{Pr}\left[A_{m}\right], q_{m}=\operatorname{Pr}\left[B \mid A_{m}\right], \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots+p_{M} q_{M}}
$$

Thus,

- MAP $=$ value of m that maximizes $p_{m} q_{m}$.
- MLE $=$ value of m that maximizes q_{m}.

Bayes' Rule Operations

[Environment]

Bayes' Rule is the canonical example of how information changes our opinions.

Thomas Bayes

Source: Wikipedia.

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Testing for disease.

Random Experiment: Pick a random male.
Outcomes: (test, disease)
A - prostate cancer.
B - positive PSA test.

- $\operatorname{Pr}[A]=0.0016,(.16 \%$ of the male population is affected.)
- $\operatorname{Pr}[B \mid A]=0.80(80 \%$ chance of positive test with disease.)
$-\operatorname{Pr}[B \mid \bar{A}]=0.10$ (10% chance of positive test without disease.)
From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)
Positive PSA test (B). Do I have disease?

$$
\operatorname{Pr}[A \mid B] ? ? ?
$$

Bayes Rule.

Using Bayes' rule, we find

$$
P[A \mid B]=\frac{0.0016 \times 0.80}{0.0016 \times 0.80+0.9984 \times 0.10}=.013
$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone?
Impotence...
Incontinence..
Death.

Quick Review

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

- Conditional Probability:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Independence: $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Bayes' Rule:

$$
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{\operatorname{Pr}\left[A_{n}\right] \operatorname{Pr}\left[B \mid A_{n}\right]}{\sum_{m} \operatorname{Pr}\left[A_{m}\right] \operatorname{Pr}\left[B \mid A_{m}\right]} .
$$

$\operatorname{Pr}\left[A_{n} \mid B\right]=$ posterior probability $; \operatorname{Pr}\left[A_{n}\right]=$ prior probability .

- All these are possible:

$$
\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A] ; \operatorname{Pr}[A \mid B]>\operatorname{Pr}[A] ; \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Independence

Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{2}, \bar{B}\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid \bar{B}\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{1}, B\right)$ are not independent: $\operatorname{Pr}\left[A_{1} \mid B\right]=\frac{0.1}{0.5}=0.2 \neq \operatorname{Pr}\left[A_{1}\right]=0.25$.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $\mathrm{H}^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

A, C are independent; B, C are independent;
$A \cap B, C$ are not independent. $(\operatorname{Pr}[A \cap B \cap C]=0 \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.
If A did not say anything about C and B did not say anything about C, then $A \cap B$ would not say anything about C.

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,
A_{m}, A_{n} are independent for all $m \neq n$.
Also,

$$
A_{1} \text { and } A_{3} \cap A_{5} \text { are independent. }
$$

Indeed,

$$
\operatorname{Pr}\left[A_{1} \cap\left(A_{3} \cap A_{5}\right)\right]=\frac{1}{8}=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{3} \cap A_{5}\right] .
$$

Similarly,
$A_{1} \cap A_{2}$ and $A_{3} \cap A_{4} \cap A_{5}$ are independent.
This leads to a definition

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\} .
$$

(b) More generally, the events $\left\{A_{j}, j \in J\right\}$ are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{K}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{K}\right], \text { for all finite } K \subseteq J
$$

Example: Flip a fair coin forever. Let $A_{n}=$ 'coin n is H .' Then the events A_{n} are mutually independent.

Mutual Independence

Theorem

(a) If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then

$$
\cap_{k \in K_{1}} A_{k} \text { and } \cap_{k \in K_{2}} A_{k} \text { are independent. }
$$

(b) More generally, if the K_{n} are pairwise disjoint finite subsets of J, then the events

$$
\cap_{k \in K_{n}} A_{k} \text { are mutually independent. }
$$

(c) Also, the same is true if we replace some of the A_{k} by \bar{A}_{k}.

Proof:

See Notes 25, 2.7.

