

Total Probability: Intuition, pictures, inference. Bayes Rule. Balls in Bins. Birthday Paradox Coupon Collector

Independence

Definition: Two events A and B are independent if

 $Pr[A \cap B] = Pr[A]Pr[B].$

Examples:

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent; Pr[A∩B] = ¹/₃₆, Pr[A]Pr[B] = (¹/₆)(¹/₆).
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent; Pr[A∩B] = ¹/₃₆, Pr[A]Pr[B] = (²/₃₆)(¹/₆).
- When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent; Pr[A∩B] = ¹/₄, Pr[A]Pr[B] = (¹/₂)(¹/₂).
- ▶ When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are not independent; $Pr[A \cap B] = \frac{1}{27}, Pr[A]Pr[B] = \left(\frac{8}{27}\right)\left(\frac{8}{27}\right).$

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that $Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B].$

Causality vs. Correlation

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

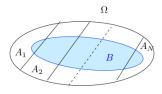
Some difficulties:

- ► A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A. (E.g., smart, CS70, Tesla.)

More about such questions later. For fun, check "N. Taleb: Fooled by randomness."

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .



Then,

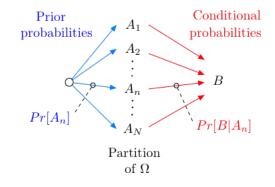
$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N. Thus,

 $Pr[B] = Pr[A_1]Pr[B|A_1] + \dots + Pr[A_N]Pr[B|A_N].$

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .



 $Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_N]Pr[B|A_N].$

Is you coin loaded?

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\overline{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\overline{A}]$ Now,

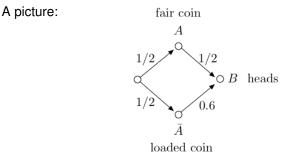
$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

$$Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$$

Is you coin loaded?



Imagine 100 situations, among which m := 100(1/2)(1/2) are such that *A* and *B* occur and n := 100(1/2)(0.6) are such that \overline{A} and *B* occur.

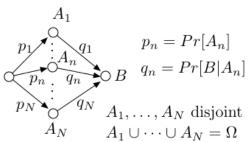
Thus, among the m + n situations where *B* occurred, there are *m* where *A* occurred.

Hence,

$$Pr[A|B] = \frac{m}{m+n} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6}.$$

Bayes Rule

A general picture: We imagine that there are *N* possible causes A_1, \ldots, A_N .



Imagine 100 situations, among which $100p_nq_n$ are such that A_n and B occur, for n = 1, ..., N.

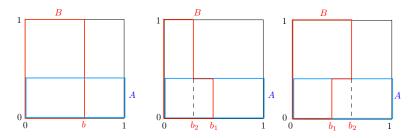
Thus, among the $100\sum_{m} p_m q_m$ situations where *B* occurred, there are $100p_nq_n$ where A_n occurred.

Hence,

$$Pr[A_n|B] = rac{p_n q_n}{\sum_m p_m q_m}.$$

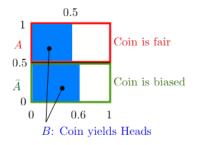
Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square



- Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: *A* and *B* are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- ▶ Right: *A* and *B* are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_1, b_2)$.

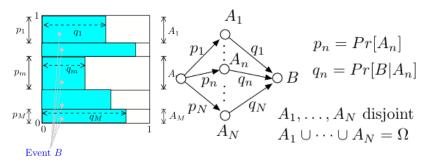
Bayes and Biased Coin



Pick a point uniformly at random in the unit square. Then

$$\begin{aligned} & Pr[A] = 0.5; Pr[\bar{A}] = 0.5\\ & Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5\\ & Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]\\ & Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]}\\ & \approx 0.46 = \text{fraction of B that is inside A} \end{aligned}$$

Bayes: General Case



Pick a point uniformly at random in the unit square. Then

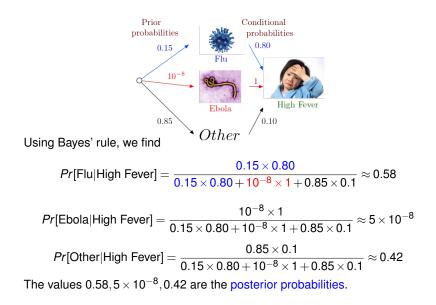
$$Pr[A_n] = p_n, n = 1, \dots, N$$

$$Pr[B|A_n] = q_n, n = 1, \dots, N; Pr[A_n \cap B] = p_n q_n$$

$$Pr[B] = p_1 q_1 + \cdots p_N q_N$$

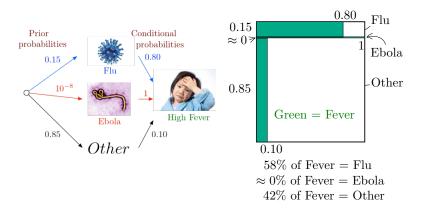
$$Pr[A_n|B] = \frac{p_n q_n}{p_1 q_1 + \cdots p_N q_N} = \text{ fraction of } B \text{ inside } A_n.$$

Why do you have a fever?



Why do you have a fever?

Our "Bayes' Square" picture:



Note that even though Pr[Fever|Ebola] = 1, one has

 $Pr[Ebola|Fever] \approx 0.$

This example shows the importance of the prior probabilities.

Why do you have a fever?

We found

```
Pr[Flu|High Fever] \approx 0.58,
Pr[Ebola|High Fever] \approx 5 \times 10^{-8},
Pr[Other|High Fever] \approx 0.42
```

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.

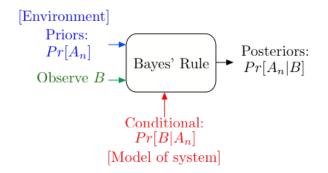
Recall that

$$p_m = Pr[A_m], q_m = Pr[B|A_m], Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \dots + p_M q_M}$$

Thus,

- MAP = value of *m* that maximizes $p_m q_m$.
- MLE = value of *m* that maximizes q_m .

Bayes' Rule Operations



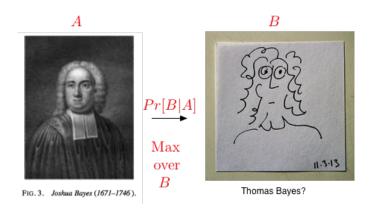
Bayes' Rule is the canonical example of how information changes our opinions.

Thomas Bayes



Source: Wikipedia.

Thomas Bayes



A Bayesian picture of Thomas Bayes.

Testing for disease.

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)

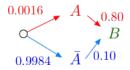
▶ $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Pr[*A*|*B*]???

Bayes Rule.



Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone?

Impotence...

Incontinence..

Death.

Quick Review

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

• Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.

Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

 $Pr[A_n|B] = posterior probability; Pr[A_n] = prior probability .$

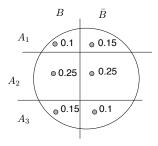
All these are possible:

Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].

Independence Recall :

> A and B are independent $\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$ $\Leftrightarrow Pr[A|B] = Pr[A].$

Consider the example below:

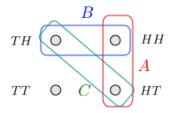


 (A_2, B) are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$. (A_2, \bar{B}) are independent: $Pr[A_2|\bar{B}] = 0.5 = Pr[A_2]$. (A_1, B) are not independent: $Pr[A_1|B] = \frac{0.1}{0.5} = 0.2 \neq Pr[A_1] = 0.25$.

Pairwise Independence

Flip two fair coins. Let

- A = 'first coin is H' = {HT, HH};
- B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT }.



A, C are independent; B, C are independent;

 $A \cap B$, C are not independent. ($Pr[A \cap B \cap C] = 0 \neq Pr[A \cap B]Pr[C]$.)

If A did not say anything about C and B did not say anything about C, then $A \cap B$ would not say anything about C.

Example 2

Flip a fair coin 5 times. Let A_n = 'coin *n* is H', for n = 1, ..., 5. Then,

 A_m, A_n are independent for all $m \neq n$.

Also,

 A_1 and $A_3 \cap A_5$ are independent.

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5].$$

Similarly,

 $A_1 \cap A_2$ and $A_3 \cap A_4 \cap A_5$ are independent.

This leads to a definition

Mutual Independence

Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

 $Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k]$, for all $K \subseteq \{1,\ldots,5\}$.

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k]$$
, for all finite $K \subseteq J$.

Example: Flip a fair coin forever. Let A_n = 'coin *n* is H.' Then the events A_n are mutually independent.

Mutual Independence

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

(b) More generally, if the K_n are pairwise disjoint finite subsets of J, then the events

 $\cap_{k \in K_n} A_k$ are mutually independent.

(c) Also, the same is true if we replace some of the A_k by \bar{A}_k . **Proof:** See Notes 25, 2.7.