Today	Independence	Independence and conditional probability
Total Probability: Intuition, pictures, inference. Bayes Rule. Balls in Bins. Birthday Paradox Coupon Collector	Definition: Two events <i>A</i> and <i>B</i> are independent if $Pr[A \cap B] = Pr[A]Pr[B].$ Examples: • When rolling two dice, $A = \text{sum}$ is 7 and $B = \text{red}$ die is 1 are independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = (\frac{1}{6})(\frac{1}{6})$. • When rolling two dice, $A = \text{sum}$ is 3 and $B = \text{red}$ die is 1 are not independent; $Pr[A \cap B] = \frac{1}{36}$, $Pr[A]Pr[B] = (\frac{2}{36})(\frac{1}{6})$. • When flipping coins, $A = \text{coin 1}$ yields heads and $B = \text{coin 2}$ yields tails are independent; $Pr[A \cap B] = \frac{1}{4}$, $Pr[A]Pr[B] = (\frac{1}{2})(\frac{1}{2})$. • When throwing 3 balls into 3 bins, $A = \text{bin 1}$ is empty and $B =$ bin 2 is empty are not independent; $Pr[A \cap B] = \frac{1}{27}$, $Pr[A]Pr[B] = (\frac{8}{27})(\frac{8}{27})$.	Fact: Two events <i>A</i> and <i>B</i> are independent if and only if Pr[A B] = Pr[A]. Indeed: $Pr[A B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that $Pr[A B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B].$
 Causality vs. Correlation Events <i>A</i> and <i>B</i> are positively correlated if Pr[A∩B] > Pr[A]Pr[B]. (E.g., smoking and lung cancer.) A and <i>B</i> being positively correlated does not mean that <i>A</i> causes <i>B</i> or that <i>B</i> causes <i>A</i>. Other examples: Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich. People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career. Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight? 	 Proving Causality Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials). Some difficulties: A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.) If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A. (E.g., smart, CS70, Tesla.) More about such questions later. For fun, check "N. Taleb: Fooled by randomness." 	Total probability Assume that Ω is the union of the disjoint sets A_1, \dots, A_N . Ω A_1 A_2 B A_1 A_2 B A_1 B A_2 A_3 B A_1 B A_2 A_3 B A_1 B A_2 A_3 B A_3 A_3 B A_3 A_3 B A_3 A_3 B A_3 A_3 B A_3 B A_3 B A_3 B A_3 B A_3 B A_3 B A_3 B A_3 B A_3 B B B B B B B B

Example 2

Flip a fair coin 5 times. Let A_n = 'coin *n* is H', for n = 1, ..., 5. Then, A_m, A_n are independent for all $m \neq n$. Also, A_1 and $A_3 \cap A_5$ are independent. Indeed, $Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5].$ Similarly, $A_1 \cap A_2$ and $A_3 \cap A_4 \cap A_5$ are independent. This leads to a definition

Mutual Independence

Definition Mutual Independence
(a) The events A₁,..., A₅ are mutually independent if
Pr[∩_{k∈K}A_k] = Π_{k∈K}Pr[A_k], for all K ⊆ {1,...,5}.

(b) More generally, the events {A_j, j ∈ J} are mutually independent if
Pr[∩_{k∈K}A_k] = Π_{k∈K}Pr[A_k], for all finiteK ⊆ J.
Example: Flip a fair coin forever. Let A_n = 'coin n is H.' Then the events A_n are mutually independent.

Mutual Independence

Theorem

(a) If the events $\{A_{j}, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

(b) More generally, if the K_n are pairwise disjoint finite subsets of J, then the events

 $\cap_{k \in K_n} A_k$ are mutually independent.

(c) Also, the same is true if we replace some of the A_k by \bar{A}_k . **Proof:** See Notes 25, 2.7.