
Today

Total Probability: Intuition, pictures, inference.

Bayes Rule.

Balls in Bins.

Birthday Paradox

Coupon Collector

Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

I When rolling two dice, A = sum is 7 and B = red die is 1 are
independent; Pr [A∩B] = 1

36 , Pr [A]Pr [B] =
(1

6

)(1
6

)
.

I When rolling two dice, A = sum is 3 and B = red die is 1 are not
independent; Pr [A∩B] = 1

36 , Pr [A]Pr [B] =
( 2

36

)(1
6

)
.

I When flipping coins, A = coin 1 yields heads and B = coin 2
yields tails are independent; Pr [A∩B] = 1

4 , Pr [A]Pr [B] =
(1

2

)(1
2

)
.

I When throwing 3 balls into 3 bins, A = bin 1 is empty and B =
bin 2 is empty are not independent;
Pr [A∩B] = 1

27 , Pr [A]Pr [B] =
( 8

27

)( 8
27

)
.

Independence and conditional probability

Fact: Two events A and B are independent if and only if

Pr [A|B] = Pr [A].

Indeed: Pr [A|B] = Pr [A∩B]
Pr [B] , so that

Pr [A|B] = Pr [A]⇔ Pr [A∩B]

Pr [B]
= Pr [A]⇔ Pr [A∩B] = Pr [A]Pr [B].

Causality vs. Correlation
Events A and B are positively correlated if

Pr [A∩B] > Pr [A]Pr [B].

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or
that B causes A.

Other examples:

I Tesla owners are more likely to be rich. That does not mean that
poor people should buy a Tesla to get rich.

I People who go to the opera are more likely to have a good
career. That does not mean that going to the opera will improve
your career.

I Rabbits eat more carrots and do not wear glasses. Are carrots
good for eyesight?

Proving Causality

Proving causality is generally difficult. One has to eliminate external
causes of correlation and be able to test the cause/effect relationship
(e.g., randomized clinical trials).

Some difficulties:

I A and B may be positively correlated because they have a
common cause. (E.g., being a rabbit.)

I If B precedes A, then B is more likely to be the cause. (E.g.,
smoking.) However, they could have a common cause that
induces B before A. (E.g., smart, CS70, Tesla.)

More about such questions later. For fun, check “N. Taleb: Fooled by
randomness.”

Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1∩B] + · · ·+ Pr [AN ∩B].

Indeed, B is the union of the disjoint sets An∩B for n = 1, . . . ,N. Thus,

Pr [B] = Pr [A1]Pr [B|A1] + · · ·+ Pr [AN ]Pr [B|AN ].



Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Pr [B] = Pr [A1]Pr [B|A1] + · · ·+ Pr [AN ]Pr [B|AN ].

Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr [H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = ‘coin is fair’,B = ‘outcome is heads’

We want to calculate P[A|B].

We know P[B|A] = 1/2,P[B|Ā] = 0.6,Pr [A] = 1/2 = Pr [Ā]

Now,

Pr [B] = Pr [A∩B] + Pr [Ā∩B] = Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]

= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

Pr [A|B] =
Pr [A]Pr [B|A]

Pr [B]
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)0.6
≈ 0.45.

Is you coin loaded?
A picture:

Imagine 100 situations, among which
m := 100(1/2)(1/2) are such that A and B occur and
n := 100(1/2)(0.6) are such that Ā and B occur.

Thus, among the m + n situations where B occurred, there are m
where A occurred.

Hence,

Pr [A|B] =
m

m + n
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)0.6
.

Bayes Rule
A general picture: We imagine that there are N possible causes
A1, . . . ,AN .

Imagine 100 situations, among which 100pnqn are such that An and
B occur, for n = 1, . . . ,N.
Thus, among the 100∑m pmqm situations where B occurred, there are
100pnqn where An occurred.

Hence,
Pr [An|B] =

pnqn

∑m pmqm
.

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square
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I Left: A and B are independent. Pr [B] = b;Pr [B|A] = b.

I Middle: A and B are positively correlated.
Pr [B|A] = b1 > Pr [B|Ā] = b2. Note: Pr [B] ∈ (b2,b1).

I Right: A and B are negatively correlated.
Pr [B|A] = b1 < Pr [B|Ā] = b2. Note: Pr [B] ∈ (b1,b2).

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

Pr [A] = 0.5;Pr [Ā] = 0.5
Pr [B|A] = 0.5;Pr [B|Ā] = 0.6;Pr [A∩B] = 0.5×0.5
Pr [B] = 0.5×0.5 + 0.5×0.6 = Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]

Pr [A|B] =
0.5×0.5

0.5×0.5 + 0.5×0.6
=

Pr [A]Pr [B|A]

Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]

≈ 0.46 = fraction of B that is inside A



Bayes: General Case

Pick a point uniformly at random in the unit square. Then

Pr [An] = pn,n = 1, . . . ,N
Pr [B|An] = qn,n = 1, . . . ,N;Pr [An ∩B] = pnqn

Pr [B] = p1q1 + · · ·pNqN

Pr [An|B] =
pnqn

p1q1 + · · ·pNqN
= fraction of B inside An.

Why do you have a fever?

Using Bayes’ rule, we find

Pr [Flu|High Fever] =
0.15×0.80

0.15×0.80+10−8×1+0.85×0.1
≈ 0.58

Pr [Ebola|High Fever] =
10−8×1

0.15×0.80+10−8×1+0.85×0.1
≈ 5×10−8

Pr [Other|High Fever] =
0.85×0.1

0.15×0.80+10−8×1+0.85×0.1
≈ 0.42

The values 0.58,5×10−8,0.42 are the posterior probabilities.

Why do you have a fever?
Our “Bayes’ Square” picture:

Flu

Other

Ebola

58% of Fever = Flu

42% of Fever = Other
⇡ 0% of Fever = Ebola

0.15

0.85

⇡ 0

0.80

0.10

1

Green = Fever

Note that even though Pr [Fever|Ebola] = 1, one has

Pr [Ebola|Fever]≈ 0.

This example shows the importance of the prior probabilities.

Why do you have a fever?

We found

Pr [Flu|High Fever]≈ 0.58,

Pr [Ebola|High Fever]≈ 5×10−8,

Pr [Other|High Fever]≈ 0.42

One says that ‘Flu’ is the Most Likely a Posteriori (MAP) cause of the high
fever.
‘Ebola’ is the Maximum Likelihood Estimate (MLE) of the cause: it causes the
fever with the largest probability.
Recall that

pm = Pr [Am],qm = Pr [B|Am],Pr [Am|B] =
pmqm

p1q1 + · · ·+pMqM
.

Thus,

I MAP = value of m that maximizes pmqm.
I MLE = value of m that maximizes qm.

Bayes’ Rule Operations

Bayes’ Rule is the canonical example of how information changes our
opinions.

Thomas Bayes

Source: Wikipedia.



Thomas Bayes

A Bayesian picture of Thomas Bayes.

Testing for disease.

Random Experiment: Pick a random male.
Outcomes: (test ,disease)
A - prostate cancer.
B - positive PSA test.

I Pr [A] = 0.0016, (.16 % of the male population is affected.)

I Pr [B|A] = 0.80 (80% chance of positive test with disease.)

I Pr [B|A] = 0.10 (10% chance of positive test without disease.)

From http://www.cpcn.org/01 psa tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Pr [A|B]???

Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.

Quick Review

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

I Conditional Probability:

Pr [A|B] = Pr [A∩B]
Pr [B]

I Independence: Pr [A∩B] = Pr [A]Pr [B].

I Bayes’ Rule:

Pr [An|B] =
Pr [An]Pr [B|An]

∑m Pr [Am]Pr [B|Am]
.

Pr [An|B] = posterior probability;Pr [An] = prior probability .

I All these are possible:

Pr [A|B] < Pr [A];Pr [A|B] > Pr [A];Pr [A|B] = Pr [A].

Independence
Recall :

A and B are independent
⇔ Pr [A∩B] = Pr [A]Pr [B]

⇔ Pr [A|B] = Pr [A].

Consider the example below:
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(A2,B) are independent: Pr [A2|B] = 0.5 = Pr [A2].
(A2, B̄) are independent: Pr [A2|B̄] = 0.5 = Pr [A2].
(A1,B) are not independent: Pr [A1|B] = 0.1

0.5 = 0.2 6= Pr [A1] = 0.25.

Pairwise Independence
Flip two fair coins. Let

I A = ‘first coin is H’ = {HT ,HH};
I B = ‘second coin is H’ = {TH,HH};
I C = ‘the two coins are different’ = {TH,HT}.

A,C are independent; B,C are independent;

A∩B,C are not independent. (Pr [A∩B∩C] = 0 6= Pr [A∩B]Pr [C].)

If A did not say anything about C and B did not say anything
about C, then A∩B would not say anything about C.



Example 2

Flip a fair coin 5 times. Let An = ‘coin n is H’, for n = 1, . . . ,5.

Then,
Am,An are independent for all m 6= n.

Also,
A1 and A3∩A5 are independent.

Indeed,

Pr [A1∩ (A3∩A5)] =
1
8

= Pr [A1]Pr [A3∩A5].

Similarly,
A1∩A2 and A3∩A4∩A5 are independent.

This leads to a definition ....

Mutual Independence

Definition Mutual Independence

(a) The events A1, . . . ,A5 are mutually independent if

Pr [∩k∈K Ak ] = Πk∈K Pr [Ak ], for all K ⊆ {1, . . . ,5}.

(b) More generally, the events {Aj , j ∈ J} are mutually independent if

Pr [∩k∈K Ak ] = Πk∈K Pr [Ak ], for all finiteK ⊆ J.

Example: Flip a fair coin forever. Let An = ‘coin n is H.’ Then the
events An are mutually independent.

Mutual Independence

Theorem

(a) If the events {Aj , j ∈ J} are mutually independent and if K1 and K2
are disjoint finite subsets of J, then

∩k∈K1Ak and ∩k∈K2 Ak are independent.

(b) More generally, if the Kn are pairwise disjoint finite subsets of J,
then the events

∩k∈KnAk are mutually independent.

(c) Also, the same is true if we replace some of the Ak by Āk .

Proof:
See Notes 25, 2.7.


