Lecture 16: Continuing Probability.

Wrap up: Probability Formalism.

Lecture 16: Continuing Probability.

Wrap up: Probability Formalism.
Events, Conditional Probability, Independence, Bayes' Rule

Probability Space: Formalism

Simplest physical model of a uniform probability space:

Probability Space: Formalism

Simplest physical model of a uniform probability space:

Probability model

Probability Space: Formalism

Simplest physical model of a uniform probability space:

Probability model

A bag of identical balls, except for their color (or a label).

Probability Space: Formalism

Simplest physical model of a uniform probability space:

Probability model

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

Probability Space: Formalism

Simplest physical model of a uniform probability space:

Probability model

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.
$\Omega=\{$ white, red, yellow, grey, purple, blue, maroon, green $\}$

Probability Space: Formalism

Simplest physical model of a uniform probability space:

Probability model

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.
$\Omega=\{$ white, red, yellow, grey, purple, blue, maroon, green $\}$

$$
\operatorname{Pr}[\text { blue }]=
$$

Probability Space: Formalism

Simplest physical model of a uniform probability space:

Probability model

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.
$\Omega=\{$ white, red, yellow, grey, purple, blue, maroon, green $\}$

$$
\operatorname{Pr}[\text { blue }]=\frac{1}{8}
$$

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

Ω

Probability model

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

Probability model

$$
\Omega=\{\text { Red, Green, Yellow, Blue }\}
$$

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

Probability model
$\Omega=\{$ Red, Green, Yellow, Blue $\}$
$\operatorname{Pr}[$ Red $]=$

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

Probability model

$$
\begin{aligned}
& \Omega=\{\text { Red, Green, Yellow, Blue }\} \\
& \operatorname{Pr}[\operatorname{Red}]=\frac{3}{10},
\end{aligned}
$$

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

Probability model

$$
\begin{aligned}
& \Omega=\{\text { Red, Green, Yellow, Blue }\} \\
& \operatorname{Pr}[\text { Red }]=\frac{3}{10}, \operatorname{Pr}[\text { Green }]=
\end{aligned}
$$

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

Probability model

$$
\begin{gathered}
\Omega=\{\text { Red, Green, Yellow, Blue }\} \\
\operatorname{Pr}[\text { Red }]=\frac{3}{10}, \operatorname{Pr}[\text { Green }]=\frac{4}{10}, \text { etc. } .
\end{gathered}
$$

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

Probability model

$$
\begin{gathered}
\Omega=\{\text { Red, Green, Yellow, Blue }\} \\
\operatorname{Pr}[\text { Red }]=\frac{3}{10}, \operatorname{Pr}[\text { Green }]=\frac{4}{10}, \text { etc. }
\end{gathered}
$$

Note: Probabilities are restricted to rational numbers: $\frac{N_{k}}{N}$.

Probability Space: Formalism

Physical model of a general non-uniform probability space:

Probability Space: Formalism

Physical model of a general non-uniform probability space:

Physical experiment

Probability model

Probability Space: Formalism

Physical model of a general non-uniform probability space:

Physical experiment

Probability model

The roulette wheel stops in sector ω with probability p_{ω}.

Probability Space: Formalism

Physical model of a general non-uniform probability space:

Physical experiment

Probability model

The roulette wheel stops in sector ω with probability p_{ω}.

$$
\Omega=\{1,2,3, \ldots, N\},
$$

Probability Space: Formalism

Physical model of a general non-uniform probability space:

Physical experiment

Probability model

The roulette wheel stops in sector ω with probability p_{ω}.

$$
\Omega=\{1,2,3, \ldots, N\}, \operatorname{Pr}[\omega]=p_{\omega} .
$$

An important remark

- The random experiment selects one and only one outcome in Ω.

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
- $\Omega=\{H H, T H, H T, T T\}$

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
- $\Omega=\{H H, T H, H T, T T\}$
- The experiment selects one of the elements of Ω.

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
- $\Omega=\{H H, T H, H T, T T\}$
- The experiment selects one of the elements of Ω.
- In this case, its wrong to think that $\Omega=\{H, T\}$ and that the experiment selects two outcomes.

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
- $\Omega=\{H H, T H, H T, T T\}$
- The experiment selects one of the elements of Ω.
- In this case, its wrong to think that $\Omega=\{H, T\}$ and that the experiment selects two outcomes.
- Why?

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
- $\Omega=\{H H, T H, H T, T T\}$
- The experiment selects one of the elements of Ω.
- In this case, its wrong to think that $\Omega=\{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
- $\Omega=\{H H, T H, H T, T T\}$
- The experiment selects one of the elements of Ω.
- In this case, its wrong to think that $\Omega=\{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way.

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
- $\Omega=\{H H, T H, H T, T T\}$
- The experiment selects one of the elements of Ω.
- In this case, its wrong to think that $\Omega=\{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets $H H$ or $T T$ with probability 50\% each.

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
- $\Omega=\{H H, T H, H T, T T\}$
- The experiment selects one of the elements of Ω.
- In this case, its wrong to think that $\Omega=\{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets $H H$ or $T T$ with probability 50% each. This is not captured by 'picking two outcomes.'

Lecture 15: Summary

Modeling Uncertainty: Probability Space

Lecture 15: Summary

> Modeling Uncertainty: Probability Space

1. Random Experiment

Lecture 15: Summary

> Modeling Uncertainty: Probability Space

1. Random Experiment
2. Probability Space: $\Omega ; \operatorname{Pr}[\omega] \in[0,1] ; \Sigma_{\omega} \operatorname{Pr}[\omega]=1$.

Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment
2. Probability Space: $\Omega ; \operatorname{Pr}[\omega] \in[0,1] ; \Sigma_{\omega} \operatorname{Pr}[\omega]=1$.
3. Uniform Probability Space: $\operatorname{Pr}[\omega]=1 /|\Omega|$ for all $\omega \in \Omega$.

Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment
2. Probability Space: $\Omega ; \operatorname{Pr}[\omega] \in[0,1] ; \Sigma_{\omega} \operatorname{Pr}[\omega]=1$.
3. Uniform Probability Space: $\operatorname{Pr}[\omega]=1 /|\Omega|$ for all $\omega \in \Omega$.

CS70: On to Calculation.

Events, Conditional Probability, Independence, Bayes' Rule

CS70: On to Calculation.

Events, Conditional Probability, Independence, Bayes' Rule

1. Probability Basics Review
2. Events
3. Conditional Probability
4. Independence of Events
5. Bayes' Rule

Probability Basics Review

Probability Basics Review

Setup:

Probability Basics Review

Setup:

- Random Experiment.

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.
- Probability Space.

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.
- Probability Space.
- Sample Space: Set of outcomes, Ω.

Probability Basics Review

Setup:

- Random Experiment.

Flip a fair coin twice.

- Probability Space.
- Sample Space: Set of outcomes, Ω. $\Omega=\{H H, H T, T H, T T\}$

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.
- Probability Space.
- Sample Space: Set of outcomes, Ω. $\Omega=\{H H, H T, T H, T T\}$
(Note: Not $\Omega=\{H, T\}$ with two picks!)

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.
- Probability Space.
- Sample Space: Set of outcomes, Ω. $\Omega=\{H H, H T, T H, T T\}$
(Note: Not $\Omega=\{H, T\}$ with two picks!)
- Probability: $\operatorname{Pr}[\omega]$ for all $\omega \in \Omega$.

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.
- Probability Space.
- Sample Space: Set of outcomes, Ω. $\Omega=\{H H, H T, T H, T T\}$
(Note: Not $\Omega=\{H, T\}$ with two picks!)
- Probability: $\operatorname{Pr}[\omega]$ for all $\omega \in \Omega$. $\operatorname{Pr}[H H]=\cdots=\operatorname{Pr}[T T]=1 / 4$

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.
- Probability Space.
- Sample Space: Set of outcomes, Ω. $\Omega=\{H H, H T, T H, T T\}$
(Note: Not $\Omega=\{H, T\}$ with two picks!)
- Probability: $\operatorname{Pr}[\omega]$ for all $\omega \in \Omega$. $\operatorname{Pr}[H H]=\cdots=\operatorname{Pr}[T T]=1 / 4$

1. $0 \leq \operatorname{Pr}[\omega] \leq 1$.

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.
- Probability Space.
- Sample Space: Set of outcomes, Ω. $\Omega=\{H H, H T, T H, T T\}$
(Note: Not $\Omega=\{H, T\}$ with two picks!)
- Probability: $\operatorname{Pr}[\omega]$ for all $\omega \in \Omega$.
$\operatorname{Pr}[H H]=\cdots=\operatorname{Pr}[T T]=1 / 4$

1. $0 \leq \operatorname{Pr}[\omega] \leq 1$.
2. $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1$.

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.
- Probability Space.
- Sample Space: Set of outcomes, Ω. $\Omega=\{H H, H T, T H, T T\}$
(Note: Not $\Omega=\{H, T\}$ with two picks!)
- Probability: $\operatorname{Pr}[\omega]$ for all $\omega \in \Omega$.
$\operatorname{Pr}[H H]=\cdots=\operatorname{Pr}[T T]=1 / 4$

1. $0 \leq \operatorname{Pr}[\omega] \leq 1$.
2. $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1$.

Set notation review

Set notation review

Figure : Two events

Set notation review

Figure : Two events

Figure : Complement (not)

Set notation review

Figure : Two events

Figure : Complement (not)

Figure : Union (or)

Set notation review

Figure : Two events

Figure : Complement (not)

Figure : Union (or)

Figure: Intersection (and)

Set notation review

Figure : Two events

Figure : Complement (not)

Figure : Union (or)

Figure: Intersection (and)

Figure : Difference (A, not B)

Set notation review

Figure : Two events

Figure : Complement (not)

Figure : Union (or)

Figure: Intersection (and)

Figure : Difference (A, not B)

Figure : Symmetric difference (only one)

Probability of exactly one 'heads' in two coin flips?

Probability of exactly one 'heads' in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': $H T, T H$.

Probability of exactly one 'heads' in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': $H T, T H$.
This leads to a definition!

Probability of exactly one 'heads' in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': $H T, T H$.
This leads to a definition!

Definition:

Probability of exactly one 'heads' in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': $H T, T H$.
This leads to a definition!

Definition:

- An event, E, is a subset of outcomes: $E \subset \Omega$.

Probability of exactly one 'heads' in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': $H T, T H$.
This leads to a definition!

Definition:

- An event, E, is a subset of outcomes: $E \subset \Omega$.
- The probability of E is defined as $\operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]$.

Probability of exactly one 'heads' in two coin flips?

 Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': $H T, T H$.This leads to a definition!

Definition:

- An event, E, is a subset of outcomes: $E \subset \Omega$.
- The probability of E is defined as $\operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]$.

Probability of exactly one 'heads' in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': HT,TH.
This leads to a definition!

Definition:

- An event, E, is a subset of outcomes: $E \subset \Omega$.
- The probability of E is defined as $\operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]$.

Uniform Probability Space

Event: Example

Event: Example

Probability model

Event: Example

$\Omega=\{$ Red, Green, Yellow, Blue $\}$

Event: Example

$\Omega=\{$ Red, Green, Yellow, Blue $\}$
$\operatorname{Pr}[$ Red $]=$

Event: Example

$\Omega=\{$ Red, Green, Yellow, Blue $\}$
$\operatorname{Pr}[\operatorname{Red}]=\frac{3}{10}$,

Event: Example

$\Omega=\{$ Red, Green, Yellow, Blue $\}$
$\operatorname{Pr}[$ Red $]=\frac{3}{10}, \operatorname{Pr}[$ Green $]=$

Event: Example

$\Omega=\{$ Red, Green, Yellow, Blue $\}$
$\operatorname{Pr}[$ Red $]=\frac{3}{10}, \operatorname{Pr}[$ Green $]=\frac{4}{10}$, etc.

Event: Example

$\Omega=\{$ Red, Green, Yellow, Blue $\}$
$\operatorname{Pr}[$ Red $]=\frac{3}{10}, \operatorname{Pr}[$ Green $]=\frac{4}{10}$, etc.
$E=\{$ Red, Green $\}$

Event: Example

$\Omega=\{$ Red, Green, Yellow, Blue $\}$
$\operatorname{Pr}[$ Red $]=\frac{3}{10}, \operatorname{Pr}[$ Green $]=\frac{4}{10}$, etc.
$E=\{$ Red, Green $\} \Rightarrow \operatorname{Pr}[E]=$

Event: Example

$$
\begin{gathered}
\Omega=\{\text { Red, Green, Yellow, Blue }\} \\
\operatorname{Pr}[\text { Red }]=\frac{3}{10}, \operatorname{Pr}[\text { Green }]=\frac{4}{10}, \text { etc. }
\end{gathered}
$$

$E=\{$ Red, Green $\} \Rightarrow \operatorname{Pr}[E]=\frac{3+4}{10}=$

Event: Example

$$
\begin{gathered}
\Omega=\{\text { Red, Green, Yellow, Blue }\} \\
\operatorname{Pr}[\text { Red }]=\frac{3}{10}, \operatorname{Pr}[\text { Green }]=\frac{4}{10}, \text { etc. }
\end{gathered}
$$

$E=\{$ Red, Green $\} \Rightarrow \operatorname{Pr}[E]=\frac{3+4}{10}=\frac{3}{10}+\frac{4}{10}=$

Event: Example

$$
\begin{gathered}
\Omega=\{\text { Red, Green, Yellow, Blue }\} \\
\operatorname{Pr}[\text { Red }]=\frac{3}{10}, \operatorname{Pr}[\text { Green }]=\frac{4}{10}, \text { etc. }
\end{gathered}
$$

$$
E=\{\text { Red }, \text { Green }\} \Rightarrow \operatorname{Pr}[E]=\frac{3+4}{10}=\frac{3}{10}+\frac{4}{10}=\operatorname{Pr}[\text { Red }]+\operatorname{Pr}[\text { Green }]
$$

Probability of exactly one heads in two coin flips?

Probability of exactly one heads in two coin flips?

Sample Space, $\Omega=\{H H, H T, T H, T T\}$.

Probability of exactly one heads in two coin flips?

Sample Space, $\Omega=\{H H, H T, T H, T T\}$.
Uniform probability space: $\operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=\frac{1}{4}$.

Probability of exactly one heads in two coin flips?

Sample Space, $\Omega=\{H H, H T, T H, T T\}$.
Uniform probability space: $\operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=\frac{1}{4}$.
Event, E, "exactly one heads": $\{T H, H T\}$.

Probability of exactly one heads in two coin flips?

Sample Space, $\Omega=\{H H, H T, T H, T T\}$.
Uniform probability space: $\operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=\frac{1}{4}$.
Event, E, "exactly one heads": $\{T H, H T\}$.

Probability of exactly one heads in two coin flips?

Sample Space, $\Omega=\{H H, H T, T H, T T\}$.
Uniform probability space: $\operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=\frac{1}{4}$.
Event, E, "exactly one heads": $\{T H, H T\}$.

Probability of exactly one heads in two coin flips?

Sample Space, $\Omega=\{H H, H T, T H, T T\}$.
Uniform probability space: $\operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=\frac{1}{4}$.
Event, E, "exactly one heads": $\{T H, H T\}$.

Probability of exactly one heads in two coin flips?

Sample Space, $\Omega=\{H H, H T, T H, T T\}$.
Uniform probability space: $\operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=\frac{1}{4}$.
Event, E, "exactly one heads": $\{T H, H T\}$.

Example: 20 coin tosses.

20 coin tosses
Sample space: $\Omega=$ set of 20 fair coin tosses.

Example: 20 coin tosses.

20 coin tosses
Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20}$;

Example: 20 coin tosses.

20 coin tosses
Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

Example: 20 coin tosses.

20 coin tosses
Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer:

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\left.\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{\Omega} \right\rvert\,$.

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{\mid \Omega}$.

- What is more likely?

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{\mid \Omega}$.

- What is more likely?
$\left(E_{1}\right)$ Twenty Hs out of twenty, or

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\left.\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{\Omega} \right\rvert\,$.

- What is more likely?
$\left(E_{1}\right)$ Twenty Hs out of twenty, or
$\left(E_{2}\right)$ Ten Hs out of twenty?

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{|\Omega|}$.

- What is more likely?
$\left(E_{1}\right)$ Twenty Hs out of twenty, or
$\left(E_{2}\right)$ Ten Hs out of twenty?
Answer: Ten Hs out of twenty.

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{\mid \Omega}$.

- What is more likely?
$\left(E_{1}\right)$ Twenty Hs out of twenty, or
$\left(E_{2}\right)$ Ten Hs out of twenty?
Answer: Ten Hs out of twenty.
Why?

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{|\Omega|}$.

- What is more likely?
$\left(E_{1}\right)$ Twenty Hs out of twenty, or
$\left(E_{2}\right)$ Ten Hs out of twenty?
Answer: Ten Hs out of twenty.
Why? There are many sequences of 20 tosses with ten Hs;

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{\Omega}$.

- What is more likely?
$\left(E_{1}\right)$ Twenty Hs out of twenty, or
$\left(E_{2}\right)$ Ten Hs out of twenty?
Answer: Ten Hs out of twenty.
Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs .

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{\Omega}$.

- What is more likely?
$\left(E_{1}\right)$ Twenty Hs out of twenty, or
$\left(E_{2}\right)$ Ten Hs out of twenty?
Answer: Ten Hs out of twenty.
Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs. $\Rightarrow \operatorname{Pr}\left[E_{1}\right]=\frac{1}{|\Omega|} \ll \operatorname{Pr}\left[E_{2}\right]=\frac{\left|E_{2}\right|}{|\Omega|}$.

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{|\Omega|}$.

- What is more likely?
$\left(E_{1}\right)$ Twenty Hs out of twenty, or
$\left(E_{2}\right)$ Ten Hs out of twenty?
Answer: Ten Hs out of twenty.
Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs. $\Rightarrow \operatorname{Pr}\left[E_{1}\right]=\frac{1}{|\Omega|} \ll \operatorname{Pr}\left[E_{2}\right]=\frac{\left|E_{2}\right|}{|\Omega|}$.

$$
\left|E_{2}\right|=
$$

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{\Omega}$.

- What is more likely?
$\left(E_{1}\right)$ Twenty Hs out of twenty, or
$\left(E_{2}\right)$ Ten Hs out of twenty?
Answer: Ten Hs out of twenty.
Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs. $\Rightarrow \operatorname{Pr}\left[E_{1}\right]=\frac{1}{|\Omega|} \ll \operatorname{Pr}\left[E_{2}\right]=\frac{\left|E_{2}\right|}{|\Omega|}$.

$$
\left|E_{2}\right|=\binom{20}{10}=
$$

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{\Omega}$.

- What is more likely?
$\left(E_{1}\right)$ Twenty Hs out of twenty, or
$\left(E_{2}\right)$ Ten Hs out of twenty?
Answer: Ten Hs out of twenty.
Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs. $\Rightarrow \operatorname{Pr}\left[E_{1}\right]=\frac{1}{|\Omega|} \ll \operatorname{Pr}\left[E_{2}\right]=\frac{\left|E_{2}\right|}{|\Omega|}$.

$$
\left|E_{2}\right|=\binom{20}{10}=184,756
$$

Probability of n heads in 100 coin tosses.

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;
$$

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100} .
$$

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100} .
$$

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100} .
$$

Event $E_{n}=$ ' n heads';

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100} .
$$

Event $E_{n}=$ ' n heads'; $\left|E_{n}\right|=$

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100} .
$$

Event $E_{n}=$ ' n heads'; $\left|E_{n}\right|=\binom{100}{n}$

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100}
$$

Event $E_{n}=$ ' n heads'; $\left|E_{n}\right|=\binom{100}{n}$
$p_{n}:=\operatorname{Pr}\left[E_{n}\right]=$

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100}
$$

Event $E_{n}=$ ' n heads'; $\left|E_{n}\right|=\binom{100}{n}$
$p_{n}:=\operatorname{Pr}\left[E_{n}\right]=\frac{\left|E_{n}\right|}{|\Omega|}=$

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100}
$$

Event $E_{n}=$ ' n heads'; $\left|E_{n}\right|=\binom{100}{n}$
$p_{n}:=\operatorname{Pr}\left[E_{n}\right]=\frac{\left|E_{n}\right|}{|\Omega|}=\frac{\left(\begin{array}{c}100 \\ 2^{100}\end{array}\right.}{2^{100}}$

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100}
$$

Event $E_{n}=' n$ heads'; $\left|E_{n}\right|=\binom{100}{n}$
$p_{n}:=\operatorname{Pr}\left[E_{n}\right]=\frac{\left|E_{n}\right|}{|\Omega|}=\frac{\binom{100}{2^{100}}}{2^{100}}$
Observe:

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100}
$$

Event $E_{n}=' n$ heads'; $\left|E_{n}\right|=\binom{100}{n}$
$p_{n}:=\operatorname{Pr}\left[E_{n}\right]=\frac{\left|E_{n}\right|}{|\Omega|}=\frac{\binom{100}{2^{100}}}{2^{100}}$
Observe:

- Concentration around mean:

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100}
$$

Event $E_{n}=' n$ heads'; $\left|E_{n}\right|=\binom{100}{n}$
$p_{n}:=\operatorname{Pr}\left[E_{n}\right]=\frac{\left|E_{n}\right|}{|\Omega|}=\frac{\binom{100}{2^{100}}}{2^{100}}$
Observe:

- Concentration around mean: Law of Large Numbers;

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100}
$$

Event $E_{n}=' n$ heads'; $\left|E_{n}\right|=\binom{100}{n}$
$p_{n}:=\operatorname{Pr}\left[E_{n}\right]=\frac{\left|E_{n}\right|}{|\Omega|}=\frac{\binom{100}{2^{100}}}{2^{100}}$
Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape:

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100}
$$

Event $E_{n}=' n$ heads'; $\left|E_{n}\right|=\binom{100}{n}$
$p_{n}:=\operatorname{Pr}\left[E_{n}\right]=\frac{\left|E_{n}\right|}{|\Omega|}=\frac{\binom{100}{2^{100}}}{2^{100}}$
Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape: Central Limit Theorem.

Roll a red and a blue die.

Roll a red and a blue die.

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega=$ set of 100 coin tosses

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega=$ set of 100 coin tosses $=\{H, T\}^{100}$.

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega=$ set of 100 coin tosses $=\{H, T\}^{100}$. $|\Omega|=2 \times 2 \times \cdots \times 2$

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega=$ set of 100 coin tosses $=\{H, T\}^{100}$. $|\Omega|=2 \times 2 \times \cdots \times 2=2^{100}$.

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega=$ set of 100 coin tosses $=\{H, T\}^{100}$. $|\Omega|=2 \times 2 \times \cdots \times 2=2^{100}$.
Uniform probability space: $\operatorname{Pr}[\omega]=\frac{1}{2^{100}}$.

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega=$ set of 100 coin tosses $=\{H, T\}^{100}$.
$|\Omega|=2 \times 2 \times \cdots \times 2=2^{100}$.
Uniform probability space: $\operatorname{Pr}[\omega]=\frac{1}{2^{100}}$.
Event $E=$ "100 coin tosses with exactly 50 heads"

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega=$ set of 100 coin tosses $=\{H, T\}^{100}$.
$|\Omega|=2 \times 2 \times \cdots \times 2=2^{100}$.
Uniform probability space: $\operatorname{Pr}[\omega]=\frac{1}{2^{100}}$.
Event $E=$ "100 coin tosses with exactly 50 heads"
$|E|$?
Choose 50 positions out of 100 to be heads.

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega=$ set of 100 coin tosses $=\{H, T\}^{100}$.
$|\Omega|=2 \times 2 \times \cdots \times 2=2^{100}$.
Uniform probability space: $\operatorname{Pr}[\omega]=\frac{1}{2^{100}}$.
Event $E=$ "100 coin tosses with exactly 50 heads"
$|E|$?
Choose 50 positions out of 100 to be heads.
$|E|=\binom{100}{50}$.

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega=$ set of 100 coin tosses $=\{H, T\}^{100}$.
$|\Omega|=2 \times 2 \times \cdots \times 2=2^{100}$.
Uniform probability space: $\operatorname{Pr}[\omega]=\frac{1}{2^{100}}$.
Event $E=$ "100 coin tosses with exactly 50 heads"
$|E|$?
Choose 50 positions out of 100 to be heads.
$|E|=\binom{100}{50}$.

$$
\operatorname{Pr}[E]=\frac{\binom{100}{50}}{2^{100}}
$$

Calculation.

Stirling formula (for large n):

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Calculation.

Stirling formula (for large n):

$$
\begin{aligned}
n! & \approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} . \\
\binom{2 n}{n} & \approx \frac{\sqrt{4 \pi n}(2 n / e)^{2 n}}{\left[\sqrt{2 \pi n}(n / e)^{n}\right]^{2}}
\end{aligned}
$$

Calculation.

Stirling formula (for large n):

$$
\begin{gathered}
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} . \\
\binom{2 n}{n} \approx \frac{\sqrt{4 \pi n}(2 n / e)^{2 n}}{\left[\sqrt{2 \pi n}(n / e)^{n}\right]^{2}} \approx \frac{4^{n}}{\sqrt{\pi n}} .
\end{gathered}
$$

Calculation.

Stirling formula (for large n):

$$
\begin{gathered}
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} . \\
\binom{2 n}{n} \approx \frac{\sqrt{4 \pi n}(2 n / e)^{2 n}}{\left[\sqrt{2 \pi n}(n / e)^{n}\right]^{2}} \approx \frac{4^{n}}{\sqrt{\pi n}} . \\
\operatorname{Pr}[E]=\frac{|E|}{|\Omega|}=
\end{gathered}
$$

Calculation.

Stirling formula (for large n):

$$
\begin{gathered}
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} . \\
\binom{2 n}{n} \approx \frac{\sqrt{4 \pi n}(2 n / e)^{2 n}}{\left[\sqrt{2 \pi n}(n / e)^{n}\right]^{2}} \approx \frac{4^{n}}{\sqrt{\pi n}} . \\
\operatorname{Pr}[E]=\frac{|E|}{|\Omega|}=\frac{|E|}{2^{2 n}}=
\end{gathered}
$$

Calculation.

Stirling formula (for large n):

$$
\begin{gathered}
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} . \\
\binom{2 n}{n} \approx \frac{\sqrt{4 \pi n}(2 n / e)^{2 n}}{\left[\sqrt{2 \pi n}(n / e)^{n}\right]^{2}} \approx \frac{4^{n}}{\sqrt{\pi n}} . \\
\operatorname{Pr}[E]=\frac{|E|}{|\Omega|}=\frac{|E|}{2^{2 n}}=\frac{1}{\sqrt{\pi n}}=
\end{gathered}
$$

Calculation.

Stirling formula (for large n):

$$
\begin{gathered}
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} . \\
\binom{2 n}{n} \approx \frac{\sqrt{4 \pi n}(2 n / e)^{2 n}}{\left[\sqrt{2 \pi n}(n / e)^{n}\right]^{2}} \approx \frac{4^{n}}{\sqrt{\pi n}} . \\
\operatorname{Pr}[E]=\frac{|E|}{|\Omega|}=\frac{|E|}{2^{2 n}}=\frac{1}{\sqrt{\pi n}}=\frac{1}{\sqrt{50 \pi}} \approx .08 .
\end{gathered}
$$

Exactly 50 heads in 100 coin tosses.

Probability is Additive

Theorem

Probability is Additive

Theorem

(a) If events A and B are disjoint,

Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B=\emptyset$,

Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B=\emptyset$, then

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B] .
$$

Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B=\emptyset$, then

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B] .
$$

(b) If events A_{1}, \ldots, A_{n} are pairwise disjoint,

Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B=\emptyset$, then

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B] .
$$

(b) If events A_{1}, \ldots, A_{n} are pairwise disjoint, i.e., $A_{k} \cap A_{m}=\emptyset, \forall k \neq m$,

Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B=\emptyset$, then

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B] .
$$

(b) If events A_{1}, \ldots, A_{n} are pairwise disjoint, i.e., $A_{k} \cap A_{m}=\emptyset, \forall k \neq m$, then

$$
\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right]=\operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right] .
$$

Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B=\emptyset$, then

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B] .
$$

(b) If events A_{1}, \ldots, A_{n} are pairwise disjoint,
i.e., $A_{k} \cap A_{m}=\emptyset, \forall k \neq m$, then

$$
\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right]=\operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right] .
$$

Proof:

Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B=\emptyset$, then

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B] .
$$

(b) If events A_{1}, \ldots, A_{n} are pairwise disjoint, i.e., $A_{k} \cap A_{m}=\emptyset, \forall k \neq m$, then

$$
\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right]=\operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right] .
$$

Proof:

Obvious.

Consequences of Additivity

Theorem

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)
(b) $\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right]$;

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)
(b) $\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right]$;
(union bound)

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)
(b) $\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right]$;
(union bound)
(c) If $A_{1}, \ldots A_{N}$ are a partition of Ω,

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)
(b) $\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right]$;
(union bound)
(c) If $A_{1}, \ldots A_{N}$ are a partition of Ω, i.e., pairwise disjoint and $\cup_{m=1}^{N} A_{m}=\Omega$,

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)
(b) $\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right]$;
(union bound)
(c) If $A_{1}, \ldots A_{N}$ are a partition of Ω, i.e., pairwise disjoint and $\cup_{m=1}^{N} A_{m}=\Omega$, then

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[B \cap A_{1}\right]+\cdots+\operatorname{Pr}\left[B \cap A_{N}\right] .
$$

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)
(b) $\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right]$;
(union bound)
(c) If $A_{1}, \ldots A_{N}$ are a partition of Ω, i.e., pairwise disjoint and $\cup_{m=1}^{N} A_{m}=\Omega$, then

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[B \cap A_{1}\right]+\cdots+\operatorname{Pr}\left[B \cap A_{N}\right] .
$$

(law of total probability)

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)
(b) $\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right]$;
(union bound)
(c) If $A_{1}, \ldots A_{N}$ are a partition of Ω, i.e., pairwise disjoint and $\cup_{m=1}^{N} A_{m}=\Omega$, then

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[B \cap A_{1}\right]+\cdots+\operatorname{Pr}\left[B \cap A_{N}\right] .
$$

(law of total probability)
Proof:

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)
(b) $\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right]$;
(union bound)
(c) If $A_{1}, \ldots A_{N}$ are a partition of Ω, i.e., pairwise disjoint and $\cup_{m=1}^{N} A_{m}=\Omega$, then

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[B \cap A_{1}\right]+\cdots+\operatorname{Pr}\left[B \cap A_{N}\right] .
$$

(law of total probability)
Proof:
(b) is obvious.

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)
(b) $\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right]$;
(union bound)
(c) If $A_{1}, \ldots A_{N}$ are a partition of Ω, i.e., pairwise disjoint and $\cup_{m=1}^{N} A_{m}=\Omega$, then

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[B \cap A_{1}\right]+\cdots+\operatorname{Pr}\left[B \cap A_{N}\right] .
$$

(law of total probability)
Proof:
(b) is obvious.

Proofs for (a) and (c)?

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)
(b) $\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right]$;
(union bound)
(c) If $A_{1}, \ldots A_{N}$ are a partition of Ω, i.e., pairwise disjoint and $\cup_{m=1}^{N} A_{m}=\Omega$, then

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[B \cap A_{1}\right]+\cdots+\operatorname{Pr}\left[B \cap A_{N}\right] .
$$

(law of total probability)

Proof:

(b) is obvious.

Proofs for (a) and (c)? Next...

Inclusion/Exclusion

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Inclusion/Exclusion

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

$$
A \cap B
$$

$$
\begin{aligned}
\operatorname{Pr}[A] & =x+y \\
\operatorname{Pr}[B] & =y+z \\
\operatorname{Pr}[A \cap B] & =y \\
\operatorname{Pr}[A \cup B] & =x+y+z
\end{aligned}
$$

Inclusion/Exclusion

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

$$
\begin{aligned}
\operatorname{Pr}[A] & =x+y \\
\operatorname{Pr}[B] & =y+z \\
\operatorname{Pr}[A \cap B] & =y \\
\operatorname{Pr}[A \cup B] & =x+y+z
\end{aligned}
$$

Another view.

Inclusion/Exclusion

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

$$
A \cap B
$$

$$
\begin{aligned}
\operatorname{Pr}[A] & =x+y \\
\operatorname{Pr}[B] & =y+z \\
\operatorname{Pr}[A \cap B] & =y \\
\operatorname{Pr}[A \cup B] & =x+y+z
\end{aligned}
$$

Another view. Any $\omega \in A \cup B$ is in $A \cap \bar{B}, A \cup B$, or $\bar{A} \cap B$. So, add it up.

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Indeed, B is the union of the disjoint sets $A_{n} \cap B$ for $n=1, \ldots, N$.

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Indeed, B is the union of the disjoint sets $A_{n} \cap B$ for $n=1, \ldots, N$. In "math": $\omega \in B$ is in exactly one of $A_{i} \cap B$.

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Indeed, B is the union of the disjoint sets $A_{n} \cap B$ for $n=1, \ldots, N$. In "math": $\omega \in B$ is in exactly one of $A_{i} \cap B$.
Adding up probability of them, get $\operatorname{Pr}[\omega]$ in sum.

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Indeed, B is the union of the disjoint sets $A_{n} \cap B$ for $n=1, \ldots, N$.
In "math": $\omega \in B$ is in exactly one of $A_{i} \cap B$.
Adding up probability of them, get $\operatorname{Pr}[\omega]$ in sum.
..Did I say...

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Indeed, B is the union of the disjoint sets $A_{n} \cap B$ for $n=1, \ldots, N$.
In "math": $\omega \in B$ is in exactly one of $A_{i} \cap B$.
Adding up probability of them, get $\operatorname{Pr}[\omega]$ in sum.
..Did I say...
Add it up.

Roll a Red and a Blue Die.

Roll a Red and a Blue Die.

$$
\begin{aligned}
& \begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& \left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|
\end{aligned}
$$

Roll a Red and a Blue Die.

$E_{1}=$ 'Red die shows 6';

Roll a Red and a Blue Die.

$E_{1}=$ 'Red die shows 6 '; $E_{2}=$ 'Blue die shows 6 '

Roll a Red and a Blue Die.

$$
\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|
$$

$E_{1}=$ 'Red die shows 6'; $E_{2}=$ 'Blue die shows 6'
$E_{1} \cup E_{2}=$ 'At least one die shows 6'

Roll a Red and a Blue Die.

$$
\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|
$$

$E_{1}=$ 'Red die shows 6'; $E_{2}=$ 'Blue die shows 6'
$E_{1} \cup E_{2}=$ 'At least one die shows 6'
$\operatorname{Pr}\left[E_{1}\right]=\frac{6}{36}$,

Roll a Red and a Blue Die.

$$
\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|
$$

$E_{1}=$ 'Red die shows 6'; $E_{2}=$ 'Blue die shows 6'
$E_{1} \cup E_{2}=$ 'At least one die shows 6'
$\operatorname{Pr}\left[E_{1}\right]=\frac{6}{36}, \operatorname{Pr}\left[E_{2}\right]=\frac{6}{36}$,

Roll a Red and a Blue Die.

$E_{1}=$ 'Red die shows 6'; $E_{2}=$ 'Blue die shows 6'
$E_{1} \cup E_{2}=$ 'At least one die shows 6'
$\operatorname{Pr}\left[E_{1}\right]=\frac{6}{36}, \operatorname{Pr}\left[E_{2}\right]=\frac{6}{36}, \operatorname{Pr}\left[E_{1} \cup E_{2}\right]=\frac{11}{36}$.

Conditional probability: example.

Two coin flips.

Conditional probability: example.

Two coin flips. First flip is heads.

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
$\Omega=\{H H, H T, T H, T T\} ;$

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.
Event $A=$ first flip is heads:

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.
Event $A=$ first flip is heads: $A=\{H H, H T\}$.

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.
Event $A=$ first flip is heads: $A=\{H H, H T\}$.
Ω : uniform

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.
Event $A=$ first flip is heads: $A=\{H H, H T\}$.
Ω : uniform

New sample space: A;

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.
Event $A=$ first flip is heads: $A=\{H H, H T\}$.
Ω : uniform

New sample space: A; uniform still.

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.
Event $A=$ first flip is heads: $A=\{H H, H T\}$.
Ω : uniform

New sample space: A; uniform still.

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.
Event $A=$ first flip is heads: $A=\{H H, H T\}$.
Ω : uniform

New sample space: A; uniform still.

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.
Event $A=$ first flip is heads: $A=\{H H, H T\}$.
Ω : uniform

New sample space: A; uniform still.

The probability of two heads if the first flip is heads.

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.
Event $A=$ first flip is heads: $A=\{H H, H T\}$.
Ω : uniform

New sample space: A; uniform still.

The probability of two heads if the first flip is heads.
The probability of B given A

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.
Event $A=$ first flip is heads: $A=\{H H, H T\}$.
Ω : uniform

New sample space: A; uniform still.

The probability of two heads if the first flip is heads.
The probability of B given A is $1 / 2$.

A similar example.

Two coin flips.

A similar example.

Two coin flips. At least one of the flips is heads.

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\} ;$

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.
Event $A=$ at least one flip is heads.

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.
Event $A=$ at least one flip is heads. $A=\{H H, H T, T H\}$.

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.
Event $A=$ at least one flip is heads. $A=\{H H, H T, T H\}$.

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.
Event $A=$ at least one flip is heads. $A=\{H H, H T, T H\}$.

New sample space: A;

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.
Event $A=$ at least one flip is heads. $A=\{H H, H T, T H\}$.

New sample space: A; uniform still.

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.
Event $A=$ at least one flip is heads. $A=\{H H, H T, T H\}$.

New sample space: A; uniform still.

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.
Event $A=$ at least one flip is heads. $A=\{H H, H T, T H\}$.

New sample space: A; uniform still.

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.
Event $A=$ at least one flip is heads. $A=\{H H, H T, T H\}$.

New sample space: A; uniform still.

Event $B=$ two heads.
The probability of two heads if at least one flip is heads.

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.
Event $A=$ at least one flip is heads. $A=\{H H, H T, T H\}$.

New sample space: A; uniform still.

Event $B=$ two heads.
The probability of two heads if at least one flip is heads.
The probability of B given A

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.
Event $A=$ at least one flip is heads. $A=\{H H, H T, T H\}$.

New sample space: A; uniform still.

Event $B=$ two heads.
The probability of two heads if at least one flip is heads. The probability of B given A is $1 / 3$.

Conditional Probability: A non-uniform example

Conditional Probability: A non-uniform example

Probability model

Conditional Probability: A non-uniform example

$\Omega=\{$ Red, Green, Yellow, Blue $\}$

Conditional Probability: A non-uniform example

$$
\Omega=\{\text { Red, Green, Yellow, Blue }\}
$$

$\operatorname{Pr}[$ Red \mid Red or Green $]=$

Conditional Probability: A non-uniform example

$\Omega=\{$ Red, Green, Yellow, Blue $\}$
$\operatorname{Pr}[$ Red \mid Red or Green $]=\frac{3}{7}=$

Conditional Probability: A non-uniform example

$\Omega=\{$ Red, Green, Yellow, Blue $\}$
$\operatorname{Pr}[$ Red \mid Red or Green $]=\frac{3}{7}=\frac{\operatorname{Pr}[\text { Red } \cap(\text { Red or Green })]}{\operatorname{Pr}[\text { Red or Green }]}$

Another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$.

Another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$.
Let $A=\{3,4\}, B=\{1,2,3\}$.

Another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$.
Let $A=\{3,4\}, B=\{1,2,3\}$.

Another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$.
Let $A=\{3,4\}, B=\{1,2,3\}$.

$\operatorname{Pr}[A \mid B]=$

Another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$.
Let $A=\{3,4\}, B=\{1,2,3\}$.

$$
\operatorname{Pr}[A \mid B]=\frac{p_{3}}{p_{1}+p_{2}+p_{3}}=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} .
$$

Yet another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$.

Yet another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$. Let $A=\{2,3,4\}, B=\{1,2,3\}$.

Yet another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$.
Let $A=\{2,3,4\}, B=\{1,2,3\}$.

Yet another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$. Let $A=\{2,3,4\}, B=\{1,2,3\}$.

$\operatorname{Pr}[A \mid B]=$

Yet another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$. Let $A=\{2,3,4\}, B=\{1,2,3\}$.

$$
\operatorname{Pr}[A \mid B]=\frac{p_{2}+p_{3}}{p_{1}+p_{2}+p_{3}}=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} .
$$

Conditional Probability.

Definition: The conditional probability of B given A is

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

Conditional Probability.

Definition: The conditional probability of B given A is

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

$\ln A!$

Conditional Probability.

Definition: The conditional probability of B given A is

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

> In $A!$
> In $B ?$

Conditional Probability.

Definition: The conditional probability of B given A is

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

$\ln A!$
In B ?
Must be in $A \cap B$.

Conditional Probability.

Definition: The conditional probability of B given A is

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]} .
$$

More fun with conditional probability.

Toss a red and a blue die, sum is 4 ,

More fun with conditional probability.

Toss a red and a blue die, sum is 4 , What is probability that red is 1 ?

More fun with conditional probability.

Toss a red and a blue die, sum is 4 , What is probability that red is 1 ?

$$
\Omega: \text { Uniform }
$$

More fun with conditional probability.

Toss a red and a blue die, sum is 4 , What is probability that red is 1 ?

```
                    \(\Omega\) : Uniform
```



```
\(\operatorname{Pr}[B \mid A]=\frac{|B \cap A|}{|A|}=\frac{1}{3} ;\)
```


More fun with conditional probability.

Toss a red and a blue die, sum is 4 , What is probability that red is 1 ?

$$
\Omega: \text { Uniform }
$$

$\operatorname{Pr}[B \mid A]=\frac{|B \cap A|}{|A|}=\frac{1}{3} ;$ versus $\operatorname{Pr}[B]=1 / 6$.

More fun with conditional probability.

Toss a red and a blue die, sum is 4 , What is probability that red is 1 ?

$$
\Omega: \text { Uniform }
$$

$\operatorname{Pr}[B \mid A]=\frac{|B \cap A|}{|A|}=\frac{1}{3} ;$ versus $\operatorname{Pr}[B]=1 / 6$.
B is more likely given A.

Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7 , what is probability that red is 1 ?

Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7 , what is probability that red is 1 ?
Ω : Uniform

Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7 , what is probability that red is 1 ?
Ω : Uniform

$\operatorname{Pr}[B \mid A]=\frac{|B \cap A|}{|A|}=\frac{1}{6} ;$

Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7 , what is probability that red is 1 ?
Ω : Uniform

$\operatorname{Pr}[B \mid A]=\frac{|B \cap A|}{|A|}=\frac{1}{6} ;$ versus $\operatorname{Pr}[B]=\frac{1}{6}$.

Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7 , what is probability that red is 1 ?
Ω : Uniform

$\operatorname{Pr}[B \mid A]=\frac{|B \cap A|}{|A|}=\frac{1}{6} ;$ versus $\operatorname{Pr}[B]=\frac{1}{6}$.
Observing A does not change your mind about the likelihood of B.

Emptiness..

Suppose I toss 3 balls into 3 bins.

Emptiness..

Suppose I toss 3 balls into 3 bins.
A ="1st bin empty";

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=$ "1st bin empty"; $B=$ "2nd bin empty."

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$\omega=($ bin of red ball, bin of blue ball, bin of green ball $)$

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$\omega=($ bin of red ball, bin of blue ball, bin of green ball $)$
$\operatorname{Pr}[B]$

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$\omega=($ bin of red ball, bin of blue ball, bin of green ball $)$
$\operatorname{Pr}[B]=\operatorname{Pr}[\{(a, b, c) \mid a, b, c \in\{1,3\}]=$

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$\omega=($ bin of red ball, bin of blue ball, bin of green ball)

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\right.
$$

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$$
\Omega=\{1,2,3\}^{3}
$$

$\omega=($ bin of red ball, bin of blue ball, bin of green ball)
$\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\frac{8}{27}\right.$

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$\omega=($ bin of red ball, bin of blue ball, bin of green ball)
$\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\frac{8}{27}\right.$
$\operatorname{Pr}[A \cap B]$

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$\omega=($ bin of red ball, bin of blue ball, bin of green ball)
$\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\frac{8}{27}\right.$
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[(3,3,3)]=$

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$\omega=($ bin of red ball, bin of blue ball, bin of green ball)
$\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\frac{8}{27}\right.$
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[(3,3,3)]=\frac{1}{27}$

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$\omega=($ bin of red ball, bin of blue ball, bin of green ball)
$\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\frac{8}{27}\right.$
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[(3,3,3)]=\frac{1}{27}$
$\operatorname{Pr}[A \mid B]$

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$\omega=($ bin of red ball, bin of blue ball, bin of green ball)
$\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\frac{8}{27}\right.$
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[(3,3,3)]=\frac{1}{27}$
$\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$\omega=($ bin of red ball, bin of blue ball, bin of green ball)
$\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\frac{8}{27}\right.$
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[(3,3,3)]=\frac{1}{27}$
$\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\frac{(1 / 27)}{(8 / 27)}=1 / 8 ;$

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$\omega=($ bin of red ball, bin of blue ball, bin of green ball)
$\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\frac{8}{27}\right.$
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[(3,3,3)]=\frac{1}{27}$
$\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\frac{(1 / 27)}{(8 / 27)}=1 / 8 ;$ vs. $\operatorname{Pr}[A]=\frac{8}{27}$.

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$$
\Omega=\{1,2,3\}^{3}
$$

$\omega=$ (bin of red ball, bin of blue ball, bin of green ball)
$\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\frac{8}{27}\right.$
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[(3,3,3)]=\frac{1}{27}$
$\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\frac{(1 / 27)}{(8 / 27)}=1 / 8 ;$ vs. $\operatorname{Pr}[A]=\frac{8}{27}$.
A is less likely given B :

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=" 1$ st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$$
\Omega=\{1,2,3\}^{3}
$$

$\omega=$ (bin of red ball, bin of blue ball, bin of green ball)
$\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\frac{8}{27}\right.$
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[(3,3,3)]=\frac{1}{27}$
$\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\frac{(1 / 27)}{(8 / 27)}=1 / 8 ;$ vs. $\operatorname{Pr}[A]=\frac{8}{27}$.
A is less likely given B : If second bin is empty the first is more likely to have balls in it.

Gambler's fallacy.

Flip a fair coin 51 times.

Gambler's fallacy.

Flip a fair coin 51 times.
$A=$ "first 50 flips are heads"

Gambler's fallacy.

Flip a fair coin 51 times.
$A=$ "first 50 flips are heads"
$B=$ "the 51 st is heads"

Gambler's fallacy.

Flip a fair coin 51 times.
$A=$ "first 50 flips are heads"
$B=$ "the 51st is heads"
$\operatorname{Pr}[B \mid A]$?

Gambler's fallacy.

Flip a fair coin 51 times.
$A=$ "first 50 flips are heads"
$B=$ "the 51st is heads"
$\operatorname{Pr}[B \mid A]$?
$A=\{H H \cdots H T, H H \cdots H H\}$

Gambler's fallacy.

Flip a fair coin 51 times.
$A=$ "first 50 flips are heads"
$B=$ "the 51st is heads"
$\operatorname{Pr}[B \mid A]$?
$A=\{H H \cdots H T, H H \cdots H H\}$
$B \cap A=\{H H \cdots H H\}$

Gambler's fallacy.

Flip a fair coin 51 times.
$A=$ "first 50 flips are heads"
$B=$ "the 51st is heads"
$\operatorname{Pr}[B \mid A]$?
$A=\{H H \cdots H T, H H \cdots H H\}$
$B \cap A=\{H H \cdots H H\}$
Uniform probability space.

Gambler's fallacy.

Flip a fair coin 51 times.
$A=$ "first 50 flips are heads"
$B=$ "the 51st is heads"
$\operatorname{Pr}[B \mid A]$?
$A=\{H H \cdots H T, H H \cdots H H\}$
$B \cap A=\{H H \cdots H H\}$
Uniform probability space.
$\operatorname{Pr}[B \mid A]=\frac{|B \cap A|}{|A|}=\frac{1}{2}$.

Gambler's fallacy.

Flip a fair coin 51 times.
$A=$ "first 50 flips are heads"
$B=$ "the 51st is heads"
$\operatorname{Pr}[B \mid A]$?
$A=\{H H \cdots H T, H H \cdots H H\}$
$B \cap A=\{H H \cdots H H\}$
Uniform probability space.
$\operatorname{Pr}[B \mid A]=\frac{|B \cap A|}{|A|}=\frac{1}{2}$.
Same as $\operatorname{Pr}[B]$.

Gambler's fallacy.

Flip a fair coin 51 times.
$A=$ "first 50 flips are heads"
$B=$ "the 51st is heads"
$\operatorname{Pr}[B \mid A]$?
$A=\{H H \cdots H T, H H \cdots H H\}$
$B \cap A=\{H H \cdots H H\}$
Uniform probability space.
$\operatorname{Pr}[B \mid A]=\frac{|B \cap A|}{|A|}=\frac{1}{2}$.
Same as $\operatorname{Pr}[B]$.
The likelihood of 51 st heads does not depend on the previous flips.

Product Rule

Recall the definition:

Product Rule

Recall the definition:

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

Product Rule

Recall the definition:

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]} .
$$

Hence,

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] .
$$

Product Rule

Recall the definition:

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]} .
$$

Hence,

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] .
$$

Consequently,

$$
\operatorname{Pr}[A \cap B \cap C]=\operatorname{Pr}[(A \cap B) \cap C]
$$

Product Rule

Recall the definition:

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]} .
$$

Hence,

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] .
$$

Consequently,

$$
\begin{aligned}
\operatorname{Pr}[A \cap B \cap C] & =\operatorname{Pr}[(A \cap B) \cap C] \\
& =\operatorname{Pr}[A \cap B] \operatorname{Pr}[C \mid A \cap B]
\end{aligned}
$$

Product Rule

Recall the definition:

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]} .
$$

Hence,

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] .
$$

Consequently,

$$
\begin{aligned}
\operatorname{Pr}[A \cap B \cap C] & =\operatorname{Pr}[(A \cap B) \cap C] \\
& =\operatorname{Pr}[A \cap B] \operatorname{Pr}[C \mid A \cap B] \\
& =\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] \operatorname{Pr}[C \mid A \cap B] .
\end{aligned}
$$

Product Rule

Theorem Product Rule
Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

Product Rule

Theorem Product Rule
Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

Product Rule

Theorem Product Rule
Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

Proof:

Product Rule

Theorem Product Rule
Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

Proof: By induction.

Product Rule

Theorem Product Rule
Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

Proof: By induction.
Assume the result is true for n.

Product Rule

Theorem Product Rule
Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

Proof: By induction.
Assume the result is true for n. (It holds for $n=2$.)

Product Rule

Theorem Product Rule
Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

Proof: By induction.
Assume the result is true for n. (It holds for $n=2$.) Then,

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n} \cap A_{n+1}\right] \\
& \quad=\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right] \operatorname{Pr}\left[A_{n+1} \mid A_{1} \cap \cdots \cap A_{n}\right]
\end{aligned}
$$

Product Rule

Theorem Product Rule
Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

Proof: By induction.
Assume the result is true for n. (It holds for $n=2$.) Then,

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n} \cap A_{n+1}\right] \\
& \quad=\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right] \operatorname{Pr}\left[A_{n+1} \mid A_{1} \cap \cdots \cap A_{n}\right] \\
& \quad=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] \operatorname{Pr}\left[A_{n+1} \mid A_{1} \cap \cdots \cap A_{n}\right],
\end{aligned}
$$

Product Rule

Theorem Product Rule
Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

Proof: By induction.
Assume the result is true for n. (It holds for $n=2$.) Then,

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n} \cap A_{n+1}\right] \\
& \quad=\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right] \operatorname{Pr}\left[A_{n+1} \mid A_{1} \cap \cdots \cap A_{n}\right] \\
& \quad=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] \operatorname{Pr}\left[A_{n+1} \mid A_{1} \cap \cdots \cap A_{n}\right],
\end{aligned}
$$

so that the result holds for $n+1$.

Correlation

An example.

Correlation

An example.
Random experiment: Pick a person at random.

Correlation

An example.
Random experiment: Pick a person at random. Event A : the person has lung cancer.

Correlation

An example.
Random experiment: Pick a person at random.
Event A : the person has lung cancer.
Event B : the person is a heavy smoker.

Correlation

An example.
Random experiment: Pick a person at random.
Event A : the person has lung cancer.
Event B : the person is a heavy smoker.
Fact:

$$
\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A] .
$$

Correlation

An example.
Random experiment: Pick a person at random.
Event A : the person has lung cancer.
Event B : the person is a heavy smoker.
Fact:

$$
\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A] .
$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.

Correlation

An example.
Random experiment: Pick a person at random.
Event A : the person has lung cancer.
Event B : the person is a heavy smoker.
Fact:

$$
\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A] .
$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.
- Smoking causes lung cancer.

Correlation

Event A : the person has lung cancer. Event B : the person is a heavy smoker. $\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A]$.

Correlation

Event A : the person has lung cancer. Event B : the person is a heavy smoker. $\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A]$.

A second look.

Correlation

Event A : the person has lung cancer. Event B : the person is a heavy smoker. $\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A]$.

A second look.

Note that

$$
\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A] \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=1.17 \times \operatorname{Pr}[A]
$$

Correlation

Event A : the person has lung cancer. Event B : the person is a heavy smoker. $\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A]$.

A second look.

Note that

$$
\begin{aligned}
\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A] & \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=1.17 \times \operatorname{Pr}[A] \\
& \Leftrightarrow \operatorname{Pr}[A \cap B]=1.17 \times \operatorname{Pr}[A] \operatorname{Pr}[B]
\end{aligned}
$$

Correlation

Event A : the person has lung cancer. Event B : the person is a heavy smoker. $\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A]$.

A second look.

Note that

$$
\begin{aligned}
\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A] & \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=1.17 \times \operatorname{Pr}[A] \\
& \Leftrightarrow \operatorname{Pr}[A \cap B]=1.17 \times \operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[B \mid A]=1.17 \times \operatorname{Pr}[B] .
\end{aligned}
$$

Correlation

Event A : the person has lung cancer. Event B : the person is a heavy smoker. $\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A]$.

A second look.

Note that

$$
\begin{aligned}
\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A] & \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=1.17 \times \operatorname{Pr}[A] \\
& \Leftrightarrow \operatorname{Pr}[A \cap B]=1.17 \times \operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[B \mid A]=1.17 \times \operatorname{Pr}[B] .
\end{aligned}
$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.

Correlation

Event A : the person has lung cancer. Event B : the person is a heavy smoker. $\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A]$.

A second look.

Note that

$$
\begin{aligned}
\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A] & \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=1.17 \times \operatorname{Pr}[A] \\
& \Leftrightarrow \operatorname{Pr}[A \cap B]=1.17 \times \operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[B \mid A]=1.17 \times \operatorname{Pr}[B] .
\end{aligned}
$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking.

Correlation

Event A : the person has lung cancer. Event B : the person is a heavy smoker. $\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A]$.

A second look.

Note that

$$
\begin{aligned}
\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A] & \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=1.17 \times \operatorname{Pr}[A] \\
& \Leftrightarrow \operatorname{Pr}[A \cap B]=1.17 \times \operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[B \mid A]=1.17 \times \operatorname{Pr}[B] .
\end{aligned}
$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking. Really?

Causality vs. Correlation

Events A and B are positively correlated if

$$
\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Causality vs. Correlation

Events A and B are positively correlated if

$$
\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

(E.g., smoking and lung cancer.)

Causality vs. Correlation

Events A and B are positively correlated if

$$
\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

(E.g., smoking and lung cancer.)
A and B being positively correlated does not mean that A causes B or that B causes A.

Causality vs. Correlation

Events A and B are positively correlated if

$$
\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

(E.g., smoking and lung cancer.)
A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich.

Causality vs. Correlation

Events A and B are positively correlated if

$$
\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

(E.g., smoking and lung cancer.)
A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.

Causality vs. Correlation

Events A and B are positively correlated if

$$
\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

(E.g., smoking and lung cancer.)
A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career.

Causality vs. Correlation

Events A and B are positively correlated if

$$
\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

(E.g., smoking and lung cancer.)
A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.

Causality vs. Correlation

Events A and B are positively correlated if

$$
\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

(E.g., smoking and lung cancer.)
A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses.

Causality vs. Correlation

Events A and B are positively correlated if

$$
\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

(E.g., smoking and lung cancer.)
A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Proving Causality

Proving causality is generally difficult.

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

- A and B may be positively correlated because they have a common cause.

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

- A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

- A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- If B precedes A, then B is more likely to be the cause. (E.g., smoking.)

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

- A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A.

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

- A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A. (E.g., smart, CS70, Tesla.)

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

- A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A. (E.g., smart, CS70, Tesla.)

More about such questions later. For fun, check "N. Taleb: Fooled by randomness."

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Indeed, B is the union of the disjoint sets $A_{n} \cap B$ for $n=1, \ldots, N$.

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Indeed, B is the union of the disjoint sets $A_{n} \cap B$ for $n=1, \ldots, N$. Thus,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[B \mid A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{N}\right] \operatorname{Pr}\left[B \mid A_{N}\right] .
$$

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', }
$$

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair' }, B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $P[B \mid A]=$

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $P[B \mid A]=1 / 2, P[B \mid \bar{A}]=$

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $P[B \mid A]=1 / 2, P[B \mid \bar{A}]=0.6$,

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $P[B \mid A]=1 / 2, P[B \mid \bar{A}]=0.6, \operatorname{Pr}[A]=$

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $P[B \mid A]=1 / 2, P[B \mid \bar{A}]=0.6, \operatorname{Pr}[A]=1 / 2$

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $P[B \mid A]=1 / 2, P[B \mid \bar{A}]=0.6, \operatorname{Pr}[A]=1 / 2=\operatorname{Pr}[\bar{A}]$

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $P[B \mid A]=1 / 2, P[B \mid \bar{A}]=0.6, \operatorname{Pr}[A]=1 / 2=\operatorname{Pr}[\bar{A}]$
Now,

$$
\operatorname{Pr}[B]=\operatorname{Pr}[A \cap B]+\operatorname{Pr}[\bar{A} \cap B]=
$$

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $P[B \mid A]=1 / 2, P[B \mid \bar{A}]=0.6, \operatorname{Pr}[A]=1 / 2=\operatorname{Pr}[\bar{A}]$
Now,

$$
\operatorname{Pr}[B]=\operatorname{Pr}[A \cap B]+\operatorname{Pr}[\bar{A} \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}]
$$

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $P[B \mid A]=1 / 2, P[B \mid \bar{A}]=0.6, \operatorname{Pr}[A]=1 / 2=\operatorname{Pr}[\bar{A}]$
Now,

$$
\begin{aligned}
\operatorname{Pr}[B] & =\operatorname{Pr}[A \cap B]+\operatorname{Pr}[\bar{A} \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& =(1 / 2)(1 / 2)+(1 / 2) 0.6=0.55 .
\end{aligned}
$$

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $P[B \mid A]=1 / 2, P[B \mid \bar{A}]=0.6, \operatorname{Pr}[A]=1 / 2=\operatorname{Pr}[\bar{A}]$
Now,

$$
\begin{aligned}
\operatorname{Pr}[B] & =\operatorname{Pr}[A \cap B]+\operatorname{Pr}[\bar{A} \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& =(1 / 2)(1 / 2)+(1 / 2) 0.6=0.55 .
\end{aligned}
$$

Thus,

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]}=\frac{(1 / 2)(1 / 2)}{(1 / 2)(1 / 2)+(1 / 2) 0.6} \approx 0.45
$$

Is you coin loaded?

A picture:

Is you coin loaded?

A picture:

Is you coin loaded?

A picture:

loaded coin
Imagine 100 situations, among which
$m:=100(1 / 2)(1 / 2)$ are such that A and B occur and $n:=100(1 / 2)(0.6)$ are such that \bar{A} and B occur.

Is you coin loaded?

A picture:

loaded coin
Imagine 100 situations, among which
$m:=100(1 / 2)(1 / 2)$ are such that A and B occur and
$n:=100(1 / 2)(0.6)$ are such that \bar{A} and B occur.
Thus, among the $m+n$ situations where B occurred, there are m where A occurred.

Is you coin loaded?

A picture:

loaded coin
Imagine 100 situations, among which
$m:=100(1 / 2)(1 / 2)$ are such that A and B occur and
$n:=100(1 / 2)(0.6)$ are such that \bar{A} and B occur.
Thus, among the $m+n$ situations where B occurred, there are m where A occurred.

Hence,

$$
\operatorname{Pr}[A \mid B]=\frac{m}{m+n}=\frac{(1 / 2)(1 / 2)}{(1 / 2)(1 / 2)+(1 / 2) 0.6}
$$

Independence

Definition: Two events A and B are independent if

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent;

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent;
- When flipping coins, $A=$ coin 1 yields heads and $B=$ coin 2 yields tails are

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent;
- When flipping coins, $A=$ coin 1 yields heads and $B=$ coin 2 yields tails are independent;

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent;
- When flipping coins, $A=$ coin 1 yields heads and $B=$ coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, $A=$ bin 1 is empty and $B=$ bin 2 is empty are

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent;
- When flipping coins, $A=$ coin 1 yields heads and $B=$ coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, $A=$ bin 1 is empty and $B=$ bin 2 is empty are not independent;

Independence and conditional probability

Fact: Two events A and B are independent if and only if

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Indeed:

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Indeed: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$, so that

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Indeed: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$, so that

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\operatorname{Pr}[A]
$$

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Indeed: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$, so that

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\operatorname{Pr}[A] \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Bayes Rule

Another picture: We imagine that there are N possible causes A_{1}, \ldots, A_{N}.

Bayes Rule

Another picture: We imagine that there are N possible causes A_{1}, \ldots, A_{N}.

Bayes Rule

Another picture: We imagine that there are N possible causes A_{1}, \ldots, A_{N}.

Imagine 100 situations, among which $100 p_{n} q_{n}$ are such that A_{n} and B occur, for $n=1, \ldots, N$.
Thus, among the $100 \sum_{m} p_{m} q_{m}$ situations where B occurred, there are $100 p_{n} q_{n}$ where A_{n} occurred.

Bayes Rule

Another picture: We imagine that there are N possible causes A_{1}, \ldots, A_{N}.

Imagine 100 situations, among which $100 p_{n} q_{n}$ are such that A_{n} and B occur, for $n=1, \ldots, N$.
Thus, among the $100 \sum_{m} p_{m} q_{m}$ situations where B occurred, there are $100 p_{n} q_{n}$ where A_{n} occurred.

Hence,

$$
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{p_{n} q_{n}}{\sum_{m} p_{m} q_{m}} .
$$

Why do you have a fever?

Why do you have a fever?

Why do you have a fever?

Using Bayes' rule, we find

$$
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }]=\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\begin{aligned}
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }] & =\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58 \\
\operatorname{Pr}[\text { Ebola|High Fever }] & =\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8}
\end{aligned}
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\begin{aligned}
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }] & =\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58 \\
\operatorname{Pr}[\text { Ebola| } \mid \text { High Fever }] & =\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8} \\
\operatorname{Pr}[\text { Other } \mid \text { High Fever }] & =\frac{0.85 \times 0.1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.42
\end{aligned}
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\begin{aligned}
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }] & =\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58 \\
\operatorname{Pr}[\text { Ebola| } \mid \text { High Fever }] & =\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8} \\
\operatorname{Pr}[\text { Other } \mid \text { High Fever }] & =\frac{0.85 \times 0.1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.42
\end{aligned}
$$

These are the posterior probabilities.

Why do you have a fever?

Using Bayes' rule, we find

$$
\begin{aligned}
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }] & =\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58 \\
\operatorname{Pr}[\text { Ebola } \mid \text { High Fever }] & =\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8} \\
\operatorname{Pr}[\text { Other } \mid \text { High Fever }] & =\frac{0.85 \times 0.1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.42
\end{aligned}
$$

These are the posterior probabilities. One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

Bayes' Rule Operations

Bayes' Rule Operations

[Environment]

[Model of system]

Bayes' Rule Operations

[Environment]

Bayes' Rule is the canonical example of how information changes our opinions.

Thomas Bayes

Source: Wikipedia.

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Testing for disease.

Let's watch TV!!

Testing for disease.

Let's watch TV!!

Random Experiment: Pick a random male.

Testing for disease.

Let's watch TV!!
Random Experiment: Pick a random male.
Outcomes: (test, disease)

Testing for disease.

Let's watch TV!!
Random Experiment: Pick a random male.
Outcomes: (test, disease)
A - prostate cancer.
B - positive PSA test.

Testing for disease.

Let's watch TV!!
Random Experiment: Pick a random male.
Outcomes: (test, disease)
A - prostate cancer.
B - positive PSA test.
$-\operatorname{Pr}[A]=0.0016,(.16 \%$ of the male population is affected.)

- $\operatorname{Pr}[B \mid A]=0.80(80 \%$ chance of positive test with disease.)
$-\operatorname{Pr}[B \mid \bar{A}]=0.10$ (10\% chance of positive test without disease.)

Testing for disease.

Let's watch TV!!
Random Experiment: Pick a random male.
Outcomes: (test, disease)
A - prostate cancer.
B - positive PSA test.
$-\operatorname{Pr}[A]=0.0016,(.16 \%$ of the male population is affected.)

- $\operatorname{Pr}[B \mid A]=0.80(80 \%$ chance of positive test with disease.)
$-\operatorname{Pr}[B \mid \bar{A}]=0.10$ (10% chance of positive test without disease.)
From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Testing for disease.

Let's watch TV!!
Random Experiment: Pick a random male.
Outcomes: (test, disease)
A - prostate cancer.
B - positive PSA test.
$-\operatorname{Pr}[A]=0.0016,(.16 \%$ of the male population is affected.)

- $\operatorname{Pr}[B \mid A]=0.80(80 \%$ chance of positive test with disease.)
$-\operatorname{Pr}[B \mid \bar{A}]=0.10$ (10% chance of positive test without disease.)
From http://www.cpen.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)
Positive PSA test (B). Do I have disease?

Testing for disease.

Let's watch TV!!
Random Experiment: Pick a random male.
Outcomes: (test, disease)
A - prostate cancer.
B - positive PSA test.

- $\operatorname{Pr}[A]=0.0016,(.16 \%$ of the male population is affected.)
- $\operatorname{Pr}[B \mid A]=0.80(80 \%$ chance of positive test with disease.)
$-\operatorname{Pr}[B \mid \bar{A}]=0.10$ (10% chance of positive test without disease.)
From http://www.cpen.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)
Positive PSA test (B). Do I have disease?

$$
\operatorname{Pr}[A \mid B] ? ? ?
$$

Bayes Rule.

Bayes Rule.

Using Bayes' rule, we find

Bayes Rule.

Using Bayes' rule, we find

$$
P[A \mid B]=\frac{0.0016 \times 0.80}{0.0016 \times 0.80+0.9984 \times 0.10}
$$

Bayes Rule.

Using Bayes' rule, we find

$$
P[A \mid B]=\frac{0.0016 \times 0.80}{0.0016 \times 0.80+0.9984 \times 0.10}=.013
$$

Bayes Rule.

Using Bayes' rule, we find

$$
P[A \mid B]=\frac{0.0016 \times 0.80}{0.0016 \times 0.80+0.9984 \times 0.10}=.013
$$

A 1.3% chance of prostate cancer with a positive PSA test.

Bayes Rule.

Using Bayes' rule, we find

$$
P[A \mid B]=\frac{0.0016 \times 0.80}{0.0016 \times 0.80+0.9984 \times 0.10}=.013
$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone?

Bayes Rule.

Using Bayes' rule, we find

$$
P[A \mid B]=\frac{0.0016 \times 0.80}{0.0016 \times 0.80+0.9984 \times 0.10}=.013
$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone?
Impotence...

Bayes Rule.

Using Bayes' rule, we find

$$
P[A \mid B]=\frac{0.0016 \times 0.80}{0.0016 \times 0.80+0.9984 \times 0.10}=.013
$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone?
Impotence...
Incontinence..

Bayes Rule.

Using Bayes' rule, we find

$$
P[A \mid B]=\frac{0.0016 \times 0.80}{0.0016 \times 0.80+0.9984 \times 0.10}=.013
$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone?
Impotence...
Incontinence..
Death.

Summary

Events, Conditional Probability, Independence, Bayes' Rule

Summary

Events, Conditional Probability, Independence, Bayes' Rule
Key Ideas:

- Conditional Probability:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

Summary

Events, Conditional Probability, Independence, Bayes' Rule
Key Ideas:

- Conditional Probability:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Independence: $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.

Summary

Events, Conditional Probability, Independence, Bayes' Rule
Key Ideas:

- Conditional Probability:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Independence: $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Bayes' Rule:

$$
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{\operatorname{Pr}\left[A_{n}\right] \operatorname{Pr}\left[B \mid A_{n}\right]}{\sum_{m} \operatorname{Pr}\left[A_{m}\right] \operatorname{Pr}\left[B \mid A_{m}\right]} .
$$

Summary

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

- Conditional Probability:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Independence: $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Bayes' Rule:

$$
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{\operatorname{Pr}\left[A_{n}\right] \operatorname{Pr}\left[B \mid A_{n}\right]}{\sum_{m} \operatorname{Pr}\left[A_{m}\right] \operatorname{Pr}\left[B \mid A_{m}\right]} .
$$

$\operatorname{Pr}\left[A_{n} \mid B\right]=$ posterior probability $; \operatorname{Pr}\left[A_{n}\right]=$ prior probability .

Summary

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

- Conditional Probability:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Independence: $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Bayes' Rule:

$$
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{\operatorname{Pr}\left[A_{n}\right] \operatorname{Pr}\left[B \mid A_{n}\right]}{\sum_{m} \operatorname{Pr}\left[A_{m}\right] \operatorname{Pr}\left[B \mid A_{m}\right]} .
$$

$\operatorname{Pr}\left[A_{n} \mid B\right]=$ posterior probability $; \operatorname{Pr}\left[A_{n}\right]=$ prior probability .

- All these are possible:

$$
\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A] ; \operatorname{Pr}[A \mid B]>\operatorname{Pr}[A] ; \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

