Next Topic: Undecidability.

- Undecidability.

Barber paradox.

Barber announces:

Barber paradox.

Barber announces:
"The barber shaves every person who does not shave themselves."

Barber paradox.

Barber announces:
"The barber shaves every person who does not shave themselves."

Who shaves the barber?

Barber paradox.

Barber announces:
"The barber shaves every person who does not shave themselves."

Who shaves the barber?
Get around paradox?

Barber paradox.

Barber announces:
"The barber shaves every person who does not shave themselves."

Who shaves the barber?
Get around paradox?
The barber lies.

Russell's Paradox.

Naive Set Theory: Any definable collection is a set.

Russell's Paradox.

Naive Set Theory: Any definable collection is a set.

$$
\begin{equation*}
\exists y \forall x(x \in y \Longleftrightarrow P(x)) \tag{1}
\end{equation*}
$$

Russell's Paradox.

Naive Set Theory: Any definable collection is a set.

$$
\begin{equation*}
\exists y \forall x(x \in y \Longleftrightarrow P(x)) \tag{1}
\end{equation*}
$$

y is the set of elements that satifies the proposition $P(x)$.

Russell's Paradox.

Naive Set Theory: Any definable collection is a set.

$$
\begin{equation*}
\exists y \forall x(x \in y \Longleftrightarrow P(x)) \tag{1}
\end{equation*}
$$

y is the set of elements that satifies the proposition $P(x)$.

$$
P(x)=x \notin x
$$

Russell's Paradox.

Naive Set Theory: Any definable collection is a set.

$$
\begin{equation*}
\exists y \forall x(x \in y \Longleftrightarrow P(x)) \tag{1}
\end{equation*}
$$

y is the set of elements that satifies the proposition $P(x)$.

$$
P(x)=x \notin x
$$

There exists a y that satisfies statement 1 for $P(\cdot)$.

Russell's Paradox.

Naive Set Theory: Any definable collection is a set.

$$
\begin{equation*}
\exists y \forall x(x \in y \Longleftrightarrow P(x)) \tag{1}
\end{equation*}
$$

y is the set of elements that satifies the proposition $P(x)$.

$$
P(x)=x \notin x
$$

There exists a y that satisfies statement 1 for $P(\cdot)$.
Take $x=y$.

Russell's Paradox.

Naive Set Theory: Any definable collection is a set.

$$
\begin{equation*}
\exists y \forall x(x \in y \Longleftrightarrow P(x)) \tag{1}
\end{equation*}
$$

y is the set of elements that satifies the proposition $P(x)$.

$$
P(x)=x \notin x
$$

There exists a y that satisfies statement 1 for $P(\cdot)$.
Take $x=y$.

$$
y \in y \Longleftrightarrow y \notin y
$$

Russell's Paradox.

Naive Set Theory: Any definable collection is a set.

$$
\begin{equation*}
\exists y \forall x(x \in y \Longleftrightarrow P(x)) \tag{1}
\end{equation*}
$$

y is the set of elements that satifies the proposition $P(x)$.

$$
P(x)=x \notin x
$$

There exists a y that satisfies statement 1 for $P(\cdot)$.
Take $x=y$.

$$
y \in y \Longleftrightarrow y \notin y
$$

Oops!

Russell's Paradox.

Naive Set Theory: Any definable collection is a set.

$$
\begin{equation*}
\exists y \forall x(x \in y \Longleftrightarrow P(x)) \tag{1}
\end{equation*}
$$

y is the set of elements that satifies the proposition $P(x)$.

$$
P(x)=x \notin x
$$

There exists a y that satisfies statement 1 for $P(\cdot)$.
Take $x=y$.

$$
y \in y \Longleftrightarrow y \notin y
$$

Oops!
What type of object is a set that contain sets?

Russell's Paradox.

Naive Set Theory: Any definable collection is a set.

$$
\begin{equation*}
\exists y \forall x(x \in y \Longleftrightarrow P(x)) \tag{1}
\end{equation*}
$$

y is the set of elements that satifies the proposition $P(x)$.

$$
P(x)=x \notin x
$$

There exists a y that satisfies statement 1 for $P(\cdot)$.
Take $x=y$.

$$
y \in y \Longleftrightarrow y \notin y
$$

Oops!
What type of object is a set that contain sets?
Axioms changed.

Changing Axioms?

Goedel:
Any set of axioms is either

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
BTW:

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
BTW:
Cantor

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
BTW:
Cantor ..bipolar disorder..

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
BTW:
Cantor ..bipolar disorder..
Goedel

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine...

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine.....but for ...

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine.....but for ...two schizophrenic children..

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine.....but for ...two schizophrenic children..
Dangerous work?

Changing Axioms?

Goedel:
Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)
Concrete example:
Continuum hypothesis: "no cardinatity between reals and naturals."
Continuum hypothesis not disprovable in ZFC
(Goedel 1940.)
Continuum hypothesis not provable.
(Cohen 1963: only Fields medal in logic)
BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine.....but for ...two schizophrenic children..
Dangerous work?
See Logicomix by Doxiaidis, Papadimitriou (professor here),

Is it actually useful?

Write me a program checker!

Is it actually useful?

Write me a program checker!
Check that the compiler works!

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Notice:

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Notice:
Need a computer

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Notice:
Need a computer
...with the notion of a stored program!!!!

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine!

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)
Program is a text string.

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)
Program is a text string.
Text string can be an input to a program.

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)
Program is a text string.
Text string can be an input to a program.
Program can be an input to a program.

Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)
Program is a text string.
Text string can be an input to a program.
Program can be an input to a program.

Implementing HALT.

Implementing HALT.

$\operatorname{HALT}(P, I)$

Implementing HALT.

$\operatorname{HALT}(P, I)$
P - program

Implementing HALT.

$\operatorname{HALT}(P, I)$
P - program
I-input.

Implementing HALT.

HALT (P, I)
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.

Implementing HALT.

HALT (P, I)
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Run P on I and check!

Implementing HALT.

$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Run P on I and check!
How long do you wait?

Implementing HALT.

$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Run P on I and check!
How long do you wait?
Something about infinity here, maybe?

Halt does not exist.

Halt does not exist.

$\operatorname{HALT}(P, I)$

Halt does not exist.

HALT (P, I)
P - program

Halt does not exist.

$\operatorname{HALT}(P, I)$
P - program
I - input.

Halt does not exist.

$\operatorname{HALT}(P, I)$
P - program
l - input.
Determines if $P(I)$ (P run on I) halts or loops forever.

Halt does not exist.

$\operatorname{HALT}(P, I)$
P - program
I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.

Halt does not exist.

$\operatorname{HALT}(P, I)$
P - program
I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes!

Halt does not exist.

$\operatorname{HALT}(P, I)$
P - program
I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No!

Halt does not exist.

$\operatorname{HALT}(P, I)$
P - program
I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes!

Halt does not exist.

$\operatorname{HALT}(P, I)$
P - program
I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No!

Halt does not exist.

$\operatorname{HALT}(P, I)$
P - program
I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No! No!

Halt does not exist.

HALT (P, I)
P - program
l - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No! No! Yes!

Halt does not exist.

HALT (P, I)
P - program
l - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No! No! Yes! No!

Halt does not exist.

HALT (P, I)
P - program
l - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No! No! Yes! No! Yes!

Halt does not exist.

HALT (P, I)
P - program
l - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

Halt does not exist.

HALT (P, I)
P - program
l - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

Halt does not exist.

$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..
What is he talking about?

Halt does not exist.

$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..
What is he talking about?
(A) He is confused.

Halt does not exist.

$\operatorname{HALT}(P, I)$
P - program
I - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..
What is he talking about?
(A) He is confused.
(B) Fermat's Theorem.

Halt does not exist.

HALT (P, I)
P - program
l - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..
What is he talking about?
(A) He is confused.
(B) Fermat's Theorem.
(C) Diagonalization.

Halt does not exist.

HALT (P, I)
P - program
l - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT.
Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..
What is he talking about?
(A) He is confused.
(B) Fermat's Theorem.
(C) Diagonalization.
(C).

Halt and Turing.
Proof:

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing (P)

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.

Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.

Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.

Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.

Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT.
There is text that is the program Turing.

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.

Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?
Turing(Turing) halts

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?
Turing(Turing) halts
\Longrightarrow then HALTS(Turing, Turing) $=$ halts

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?
Turing(Turing) halts
\Longrightarrow then HALTS(Turing, Turing) $=$ halts
\Longrightarrow Turing(Turing) loops forever.

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?
Turing(Turing) halts
\Longrightarrow then HALTS(Turing, Turing) $=$ halts
\Longrightarrow Turing(Turing) loops forever.
Turing(Turing) loops forever

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?
Turing(Turing) halts
\Longrightarrow then HALTS(Turing, Turing) $=$ halts
\Longrightarrow Turing(Turing) loops forever.
Turing(Turing) loops forever
\Longrightarrow then HALTS(Turing, Turing) \neq halts

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?
Turing(Turing) halts
\Longrightarrow then HALTS(Turing, Turing) $=$ halts
\Longrightarrow Turing(Turing) loops forever.
Turing(Turing) loops forever
\Longrightarrow then HALTS(Turing, Turing) \neq halts
\Longrightarrow Turing(Turing) halts.

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?
Turing(Turing) halts
\Longrightarrow then HALTS(Turing, Turing) $=$ halts
\Longrightarrow Turing(Turing) loops forever.
Turing(Turing) loops forever
\Longrightarrow then HALTS(Turing, Turing) \neq halts
\Longrightarrow Turing(Turing) halts.
Contradiction.

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?
Turing(Turing) halts
\Longrightarrow then HALTS(Turing, Turing) $=$ halts
\Longrightarrow Turing(Turing) loops forever.
Turing(Turing) loops forever
\Longrightarrow then HALTS(Turing, Turing) \neq halts
\Longrightarrow Turing(Turing) halts.
Contradiction. Program HALT does not exist!

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?
Turing(Turing) halts
\Longrightarrow then HALTS(Turing, Turing) $=$ halts
\Longrightarrow Turing(Turing) loops forever.
Turing(Turing) loops forever
\Longrightarrow then HALTS(Turing, Turing) \neq halts
\Longrightarrow Turing(Turing) halts.
Contradiction. Program HALT does not exist!

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?
Turing(Turing) halts
\Longrightarrow then HALTS(Turing, Turing) $=$ halts
\Longrightarrow Turing(Turing) loops forever.
Turing(Turing) loops forever
\Longrightarrow then HALTS(Turing, Turing) \neq halts
\Longrightarrow Turing(Turing) halts.
Contradiction. Program HALT does not exist! Questions?

Another view of proof: diagonalization.

Any program is a fixed length string.

Another view of proof: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable.

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

	P_{1}	P_{2}	P_{3}	\cdots
P_{1}	H	H	L	\cdots
P_{2}	L	L	H	\cdots
P_{3}	L	H	H	\cdots
\vdots	\vdots	\vdots	\vdots	\ddots

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

	P_{1}	P_{2}	P_{3}	\cdots
P_{1}	H	H	L	\cdots
P_{2}	L	L	H	\cdots
P_{3}	L	H	H	\cdots
\vdots	\vdots	\vdots	\vdots	\ddots
Halt - diagonal.				

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

	P_{1}	P_{2}	P_{3}	\cdots
P_{1}	H	H	L	\cdots
P_{2}	L	L	H	\cdots
P_{3}	L	H	H	\cdots
\vdots	\vdots	\vdots	\vdots	\ddots
Halt - diagonal.				
Turing - is not Halt.				

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

	P_{1}	P_{2}	P_{3}	\cdots		
P_{1}	H	H	L	\cdots		
P_{2}	L	L	H	\cdots		
P_{3}	L	H	H	\cdots		
\vdots	\vdots	\vdots	\vdots	\ddots		Halt - diagonal.
:---						
Turing - is not Halt.						
and is different from every P_{i} on the diagonal.						

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

	P_{1}	P_{2}	P_{3}	\cdots		
P_{1}	H	H	L	\cdots		
P_{2}	L	L	H	\cdots		
P_{3}	L	H	H	\cdots		
\vdots	\vdots	\vdots	\vdots	\ddots		Halt - diagonal.
:---						
Turing - is not Halt.						
Turing is different from every P_{i} on the diagonal.						

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

	P_{1}	P_{2}	P_{3}	\cdots
P_{1}	H	H	L	\cdots
P_{2}	L	L	H	\cdots
P_{3}	L	H	H	\cdots
\vdots	\vdots	\vdots	\vdots	\ddots
Halt - diagonal.				

Turing - is not Halt.
and is different from every P_{i} on the diagonal.
Turing is not on list. Turing is not a program.

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

	P_{1}	P_{2}	P_{3}	\cdots
P_{1}	H	H	L	\cdots
P_{2}	L	L	H	\cdots
P_{3}	L	H	H	\cdots
\vdots	\vdots	\vdots	\vdots	\ddots
Halt - diagonal.				

Turing - is not Halt.
and is different from every P_{i} on the diagonal.
Turing is not on list. Turing is not a program.
Turing can be constructed from Halt.

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

	P_{1}	P_{2}	P_{3}	\cdots
P_{1}	H	H	L	\cdots
P_{2}	L	L	H	\cdots
P_{3}	L	H	H	\cdots
\vdots	\vdots	\vdots	\vdots	\ddots
Halt - diagonal.				

Turing - is not Halt.
and is different from every P_{i} on the diagonal.
Turing is not on list. Turing is not a program.
Turing can be constructed from Halt.
Halt does not exist!

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

	P_{1}	P_{2}	P_{3}	\cdots
P_{1}	H	H	L	\cdots
P_{2}	L	L	H	\cdots
P_{3}	L	H	H	\cdots
\vdots	\vdots	\vdots	\vdots	\ddots
Halt - diagonal.				

Turing - is not Halt.
and is different from every P_{i} on the diagonal.
Turing is not on list. Turing is not a program.
Turing can be constructed from Halt.
Halt does not exist!

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ?

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I?

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I ? Text.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I ? Text.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I ? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$. You have Text that is the program $\operatorname{HALT}(P, I)$.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$. You have Text that is the program $\operatorname{HALT}(P, I)$.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I ? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$. You have Text that is the program $\operatorname{HALT}(P, I)$.
Have \qquad that is the program TURING.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I ? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$. You have Text that is the program $\operatorname{HALT}(P, I)$.
Have Text that is the program TURING.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$.
You have Text that is the program $\operatorname{HALT}(P, I)$.
Have Text that is the program TURING.
Here it is!!

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$.
You have Text that is the program $\operatorname{HALT}(P, I)$.
Have Text that is the program TURING.
Here it is!!
Turing (P)

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$.
You have Text that is the program $\operatorname{HALT}(P, I)$.
Have Text that is the program TURING.
Here it is!!
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$.
You have Text that is the program $\operatorname{HALT}(P, I)$.
Have Text that is the program TURING.
Here it is!!
Turing (P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$.
You have Text that is the program $\operatorname{HALT}(P, I)$.
Have Text that is the program TURING.
Here it is!!
Turing (P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Turing "diagonalizes" on list of program.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$.
You have Text that is the program $\operatorname{HALT}(P, I)$.
Have Text that is the program TURING.
Here it is!!
Turing (P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Turing "diagonalizes" on list of program.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$.
You have Text that is the program $\operatorname{HALT}(P, I)$.
Have Text that is the program TURING.
Here it is!!
Turing (P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Turing "diagonalizes" on list of program.
It is not a program!!!!

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$.
You have Text that is the program $\operatorname{HALT}(P, I)$.
Have Text that is the program TURING.
Here it is!!
Turing (P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Turing "diagonalizes" on list of program.
It is not a program!!!!
\Longrightarrow HALT is not a program.

Proof play by play.

Assumed $\operatorname{HALT}(P, I)$ existed.
What is P ? Text.
What is I? Text.
What does it mean to have a program $\operatorname{HALT}(P, I)$.
You have Text that is the program $\operatorname{HALT}(P, I)$.
Have Text that is the program TURING.
Here it is!!
Turing (P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Turing "diagonalizes" on list of program.
It is not a program!!!!
\Longrightarrow HALT is not a program.
Questions?

Wow, that was easy!

Wow, that was easy!
We should be famous!

No computers for Turing!

In Turing's time.

No computers for Turing!

In Turing's time.
No computers.

No computers for Turing!

In Turing's time.
No computers.
Adding machines.

No computers for Turing!

In Turing's time.
No computers.
Adding machines.
e.g., Babbage (from table of logarithms) 1812.

No computers for Turing!

In Turing's time.
No computers.
Adding machines.
e.g., Babbage (from table of logarithms) 1812.

Concept of program as data wasn't really there.

Turing machine.

Turing machine.

A Turing machine.

- an (infinite) tape with characters

Turing machine.

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character

Turing machine.

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Turing machine.

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

Turing machine.

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine

Turing machine.

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- where the tape could be a description of a ...

Turing machine.

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- where the tape could be a description of a ... Turing machine!

Turing machine.

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- where the tape could be a description of a ... Turing machine!

Now that's a computer!

Turing machine.

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- where the tape could be a description of a ... Turing machine!

Now that's a computer!
Turing: AI,

Turing machine.

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- where the tape could be a description of a ... Turing machine!

Now that's a computer!
Turing: AI, self modifying code,

Turing machine.

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- where the tape could be a description of a ... Turing machine!

Now that's a computer!
Turing: AI, self modifying code, learning...

Turing and computing.

Just a mathematician?

Turing and computing.

Just a mathematician?
"Wrote" a chess program.

Turing and computing.

Just a mathematician?
"Wrote" a chess program.
Simulated the program by hand to play chess.

Turing and computing.

Just a mathematician?
"Wrote" a chess program.
Simulated the program by hand to play chess.
It won!

Turing and computing.

Just a mathematician?
"Wrote" a chess program.
Simulated the program by hand to play chess.
It won! Once anyway.

Turing and computing.

Just a mathematician?
"Wrote" a chess program.
Simulated the program by hand to play chess.
It won! Once anyway.
Involved with computing labs through the 40s.

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is...

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part.

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages!

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete.

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number!

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number!!

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number!!!

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number!!!!

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number! !!! Same cardinality as...

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number!!!! Same cardinality as...Text.

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number!!!! Same cardinality as...Text.
Today:

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number! !!! Same cardinality as...Text.
Today:Programs can be written in

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number!!!! Same cardinality as...Text.
Today:Programs can be written in ascii.

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme's lambda is calculus's λ !
Programming languages! javascript, ruby, python....
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to
.... a natural number!!!! Same cardinality as...Text.
Today:Programs can be written in ascii.

Computing on top of computing...

Computer, assembly code, programming language, browser, html, javascript..

Computing on top of computing...

Computer, assembly code, programming language, browser, html, javascript..
We can't get enough of building more Turing machines.

Undecidable problems.

Does a program, P, print "Hello World"?

Undecidable problems.

Does a program, P, print "Hello World"? How?

Undecidable problems.

Does a program, P, print "Hello World"? How? What is P ?

Undecidable problems.

Does a program, P, print "Hello World"? How? What is P ? Text!!!!!!

Undecidable problems.

Does a program, P, print "Hello World"? How? What is P ? Text!!!!!!

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?

Undecidable problems.

Does a program, P, print "Hello World"? How? What is P ? Text!!!!!!

Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: " $x^{n}+y^{n}=1$?"

Undecidable problems.

Does a program, P, print "Hello World"? How? What is P ? Text!!!!!!

Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: " $x^{n}+y^{n}=1$?"
Problem is undecidable.

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: " $x^{n}+y^{n}=1$?"
Problem is undecidable.
Be careful!

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: " $x^{n}+y^{n}=1$?"
Problem is undecidable.
Be careful!

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: " $x^{n}+y^{n}=1$?"
Problem is undecidable.
Be careful!
Is there an integer solution to $x^{n}+y^{n}=1$?

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: " $x^{n}+y^{n}=1$?"
Problem is undecidable.
Be careful!
Is there an integer solution to $x^{n}+y^{n}=1$?
(Diophantine equation.)

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: " $x^{n}+y^{n}=1$?"
Problem is undecidable.
Be careful!
Is there an integer solution to $x^{n}+y^{n}=1$?
(Diophantine equation.)
The answer is yes or no.

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: " $x^{n}+y^{n}=1$?"
Problem is undecidable.
Be careful!
Is there an integer solution to $x^{n}+y^{n}=1$?
(Diophantine equation.)
The answer is yes or no. This "problem" is not undecidable.

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: " $x^{n}+y^{n}=1$?"
Problem is undecidable.
Be careful!
Is there an integer solution to $x^{n}+y^{n}=1$?
(Diophantine equation.)
The answer is yes or no. This "problem" is not undecidable.
Undecidability for Diophantine set of equations

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: " $x^{n}+y^{n}=1$?"
Problem is undecidable.
Be careful!
Is there an integer solution to $x^{n}+y^{n}=1$?
(Diophantine equation.)
The answer is yes or no. This "problem" is not undecidable.
Undecidability for Diophantine set of equations
\Longrightarrow no program can take any set of integer equations and

Undecidable problems.

Does a program, P, print "Hello World"?
How? What is P ? Text!!!!!!
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: " $x^{n}+y^{n}=1$?"
Problem is undecidable.
Be careful!
Is there an integer solution to $x^{n}+y^{n}=1$?
(Diophantine equation.)
The answer is yes or no. This "problem" is not undecidable.
Undecidability for Diophantine set of equations
\Longrightarrow no program can take any set of integer equations and always corectly output whether it has an integer solution.

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis:

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number.

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

- Seminal paper in mathematical biology.

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

- Seminal paper in mathematical biology. Person:

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

- Seminal paper in mathematical biology.

Person: embryo is blob.

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

- Seminal paper in mathematical biology.

Person: embryo is blob. Legs,

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

- Seminal paper in mathematical biology.

Person: embryo is blob. Legs, arms,

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

- Seminal paper in mathematical biology.

Person: embryo is blob. Legs, arms, head....

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

- Seminal paper in mathematical biology.

Person: embryo is blob. Legs, arms, head.... How?

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

- Seminal paper in mathematical biology.

Person: embryo is blob. Legs, arms, head.... How?
Fly:

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

- Seminal paper in mathematical biology.

Person: embryo is blob. Legs, arms, head.... How?
Fly: blob.

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

- Seminal paper in mathematical biology.

Person: embryo is blob. Legs, arms, head.... How?
Fly: blob. Torso becomes striped.

More about Alan Turing.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

Almost dependent matrices.

- Seminal paper in mathematical biology.

Person: embryo is blob. Legs, arms, head.... How?
Fly: blob. Torso becomes striped.
Developed chemical reaction-diffusion networks that break symmetry.

Turing: personal.

Tragic ending...

Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)

Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;

Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.

Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- lost security clearance...

Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- lost security clearance...
- suffered from depression;

Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- lost security clearance...
- suffered from depression;
- suicided with cyanide at age 42.

Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- lost security clearance...
- suffered from depression;
- suicided with cyanide at age 42.
(A bite from the apple....)

Turing: personal.

Tragic ending...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- lost security clearance...
- suffered from depression;
- suicided with cyanide at age 42.
(A bite from the apple....) accident?

British Apology.

Gordon Brown. 2009.

British Apology.

Gordon Brown. 2009. "Alan and the many thousands of other gay men who were convicted as he was convicted under homophobic laws were treated terribly.

British Apology.

Gordon Brown. 2009. "Alan and the many thousands of other gay men who were convicted as he was convicted under homophobic laws were treated terribly. Over the years millions more lived in fear of conviction.

British Apology.

Gordon Brown. 2009. "Alan and the many thousands of other gay men who were convicted as he was convicted under homophobic laws were treated terribly. Over the years millions more lived in fear of conviction.

British Apology.

Gordon Brown. 2009. "Alan and the many thousands of other gay men who were convicted as he was convicted under homophobic laws were treated terribly. Over the years millions more lived in fear of conviction.
So on behalf of the British government, and all those who live freely thanks to Alan's work I am very proud to say: we're sorry, you deserved so much better."

British Apology.

Gordon Brown. 2009. "Alan and the many thousands of other gay men who were convicted as he was convicted under homophobic laws were treated terribly. Over the years millions more lived in fear of conviction.
So on behalf of the British government, and all those who live freely thanks to Alan's work I am very proud to say: we're sorry, you deserved so much better."
2013. Granted Royal pardon.

Back to technical..

This statement is a lie.

Back to technical..

This statement is a lie. Neither true nor false!

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?
def Turing(P):

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?
def Turing (P) :
if Halts(P,P): while(true): pass
else:
return

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?
def Turing(P):
if Halts(P,P): while(true): pass
else:
return
...Text of Halt...

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?
def Turing (P) :
if Halts(P, P): while(true): pass
else:
return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program.

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?
def Turing (P) :
if Halts(P,P): while(true): pass
else:
return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?
def Turing (P) :
if Halts(P,P): while(true): pass
else:
return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?
def Turing (P) :
if Halts(P,P): while(true): pass
else:
return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$
Turing("Turing")?

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?
def Turing (P) :
if Halts(P,P): while(true): pass
else: return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$
Turing("Turing")? Neither halts nor loops!

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?

def Turing (P) :
if Halts(P, P): while(true): pass
else: return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$
Turing("Turing")? Neither halts nor loops! \Longrightarrow No Turing program.

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?

def Turing (P) :
if Halts(P, P): while(true): pass
else: return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$
Turing("Turing")? Neither halts nor loops! \Longrightarrow No Turing program.

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?
def Turing (P) :
if Halts(P,P): while(true): pass
else: return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$
Turing("Turing")? Neither halts nor loops! \Longrightarrow No Turing program.
No Turing Program

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?
def Turing (P) :
if Halts(P,P): while(true): pass
else: return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$
Turing("Turing")? Neither halts nor loops! \Longrightarrow No Turing program.
No Turing Program \Longrightarrow

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.
Who shaves the barber?
def Turing (P) :
if Halts(P,P): while(true): pass
else: return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$
Turing("Turing")? Neither halts nor loops! \Longrightarrow No Turing program.
No Turing Program \Longrightarrow No halt program.

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.
Who shaves the barber?
def Turing (P) :
if Halts(P,P): while(true): pass
else: return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$
Turing("Turing")? Neither halts nor loops! \Longrightarrow No Turing program.
No Turing Program \Longrightarrow No halt program. $(\neg Q \Longrightarrow \neg P)$

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?

def Turing (P) :
if Halts(P,P): while(true): pass
else: return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$
Turing("Turing")? Neither halts nor loops! \Longrightarrow No Turing program.
No Turing Program \Longrightarrow No halt program. $(\neg Q \Longrightarrow \neg P)$
Program is text, so we can pass it to itself,

Back to technical..

This statement is a lie. Neither true nor false!
Every person who doesn't shave themselves is shaved by the barber.

Who shaves the barber?

def Turing (P) :
if Halts(P,P): while(true): pass
else: return
...Text of Halt...
Halt Progam \Longrightarrow Turing Program. $(P \Longrightarrow Q)$
Turing("Turing")? Neither halts nor loops! \Longrightarrow No Turing program.
No Turing Program \Longrightarrow No halt program. $(\neg Q \Longrightarrow \neg P)$
Program is text, so we can pass it to itself, or refer to self.

Summary: decidability.

Computer Programs are an interesting thing.

Summary: decidability.

Computer Programs are an interesting thing. Like Math.

Summary: decidability.

Computer Programs are an interesting thing.
Like Math.
Formal Systems.

Summary: decidability.

Computer Programs are an interesting thing.
Like Math.
Formal Systems.

Summary: decidability.

Computer Programs are an interesting thing.
Like Math.
Formal Systems.
Computer Programs cannot completely "understand" computer programs.

Summary: decidability.

Computer Programs are an interesting thing.
Like Math.
Formal Systems.
Computer Programs cannot completely "understand" computer programs.

Summary: decidability.

Computer Programs are an interesting thing.
Like Math.
Formal Systems.
Computer Programs cannot completely "understand" computer programs.

Computation is a lens for other action in the world.

Probability

What's to come?

Probability

What's to come? Probability.

Probability

What's to come? Probability.
A bag contains:

Probability

What's to come? Probability.
A bag contains:

Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?

Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue.

Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total.

Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.

Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
For now:

Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
For now: Counting!

Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
For now: Counting!
Later: Probability.

