Today.

Polynomials.
Secret Sharing.

Secret Sharing.

Share secret among n people

Secrecy: Any $k-1$ knows nothing
Roubustness: Any k knows secret.
Efficient: minimize storage.
The idea of the day
Two points make a line.
Lots of lines go through one point.

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}(\bmod p)$

Finding an intersection.
$x+2 \equiv 3 x+1(\bmod 5)$
$\Longrightarrow 2 x \equiv 1(\bmod 5) \Longrightarrow x \equiv 3(\bmod 5)$
3 is multiplicative inverse of 2 modulo 5 .
Good when modulus is prime!!

Polynomials

A polynomial

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1} \cdots+a_{0} .
$$

is specified by coefficients $a_{d}, \ldots a_{0}$
$P(x)$ contains point (a, b) if $b=P(a)$.
Polynomials over reals: $a_{1}, \ldots, a_{d} \in \mathfrak{R}$, use $x \in \mathfrak{R}$.
Polynomials $P(x)$ with arithmetic modulo $p:{ }^{1} a_{i} \in\{0, \ldots, p-1\}$ and

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1} \cdots+a_{0} \quad(\bmod p),
$$

for $x \in\{0, \ldots, p-1\}$

${ }^{1}$ A field is a set of elements with addition and multiplication operations, with inverses. $G F(p)=(\{0, \ldots, p-1\},+(\bmod p), *(\bmod p))$.

Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{2}$ Two points specify a line. Three points specify a parabola.
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{3}$
${ }^{3}$ Points with different x values.
From $d+1$ points to degree d polynomial?
For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
& P(1)=m(1)+b \equiv m+b \equiv 3(\bmod 5) \\
& P(2)=m(2)+b \equiv 2 m+b \equiv 4(\bmod 5)
\end{aligned}
$$

Subtract first from second..

$$
\begin{aligned}
m+b & \equiv 3(\bmod 5) \\
m & \equiv 1(\bmod 5)
\end{aligned}
$$

Backsolve: $b \equiv 2(\bmod 5)$. Secret is 2 .
And the line is...

$$
x+2 \bmod 5
$$

2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0) Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5)
\end{aligned}
$$

$$
\begin{aligned}
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.
$a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)=9 \equiv 4(\bmod 5)$
$a_{2}=2-1-4 \equiv 2(\bmod 5)$.
So polynomial is $2 x^{2}+1 x+4(\bmod 5)$

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k shares gives secret
Knowing k pts \Longrightarrow only one $P(x) \Longrightarrow$ evaluate $P(0)$.
Secrecy: Any $k-1$ shares give nothing.
Knowing $\leq k-1$ pts \Longrightarrow any $P(0)$ is possible.

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$
Solve...

$$
\begin{aligned}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv y_{2}(\bmod p) \\
& \cdot \\
& \cdot \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv y_{k}(\bmod p)
\end{aligned}
$$

Will this always work?
As long as solution exists and it is unique! And...
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,3) ;(2,4) ;(3,0)$.
Find $\Delta_{1}(x)$ polynomial contains (1,1); (2,0); $(3,0)$.
$\operatorname{Try}(x-2)(x-3)(\bmod 5)$
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh! So "Divide by 2 " or multiply by 3 .
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{2}(x)=(x-1)(x-3)(4)(\bmod 5)$ contains $(1,0) ;(2,1) ;(3,0)$.
$\Delta_{3}(x)=(x-1)(x-2)(3)(\bmod 5)$ contains $(1,0) ;(2,0) ;(3,1)$.
But wanted to hit (1,3); (2,4); (3,0)!
$P(x)=3 \Delta_{1}(x)+4 \Delta_{2}(x)+0 \Delta_{3}(x)$ works.
Same as before?
...after a lot of calculations... $P(x)=2 x^{2}+1 x+4 \bmod 5$.
The same as before!

There exists a polynomial...
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Proof of at least one polynomial:
Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
Denominator makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{d+1} \Delta_{d+1}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$. Degree d polynomial! Construction proves the existence of a polynomial!

We will work with polynomials with arithmetic modulo p.

Example.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq}\left(x-x_{j}\right)}{\Pi_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains (1,3) and (3,4)?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and $(3,0)$
$\Delta_{1}(x)=\frac{(x-3)}{1-3}=\frac{x-3}{-2}$

$$
\begin{aligned}
& \begin{array}{l}
1-3 \\
=2(x-3)^{-2}
\end{array}=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,3); (2,4); (3,0).

Work modulo 5

Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}=3(x-2)(x-3)$

$$
=3 x^{2}+3(\bmod 5)
$$

Put the delta functions together.

Delta Polynomials: Concept.
For set of x-values, x_{1}, \ldots, x_{d+1}

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} . \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i . \\ ?, & \text { otherwise. }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points? $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Will $y_{1} \Delta_{1}(x)$ contain $\left(x_{1}, y_{1}\right)$?
Will $y_{2} \Delta_{2}(x)$ contain $\left(x_{2}, y_{2}\right)$?
Does $y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)$ contain
$\left(x_{1}, y_{1}\right)$? and $\left(x_{2}, y_{2}\right)$?
See the idea? Function that contains all points?
$P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x) \ldots+y_{d+1} \Delta_{d+1}(x)$.

In general.

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
Denominator makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{k} \Delta_{k}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Construction proves the existence of the polynomial!

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points Proof:
Roots fact: Any degree d polynomial has at most d roots.
Assume two different polynomials $Q(x)$ and $P(x)$ hit the points.
$R(x)=Q(x)-P(x)$ has $d+1$ roots and is degree d
Contradiction.
Must prove Roots fact.

Finite Fields

Proof works for reals, rationals, and complex numbers
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science
Arithmetic modulo a prime m is a finite field denoted by F_{m} or GF(m)
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5

$$
\begin{aligned}
& 4 x+4 r 4 \\
& x-3) 4 x^{\wedge} 2-3 x+2 \\
& 4 x^{\wedge} 2-2 x \\
& \begin{array}{l}
4 \mathrm{x}+2 \\
4 \mathrm{x}-2
\end{array} \\
& 4 \mathrm{x}-2
\end{aligned}
$$

$4 x^{2}-3 x+2 \equiv(x-3)(4 x+4)+4(\bmod 5)$
In general, divide $P(x)$ by $(x-a)$ gives $Q(x)$ and remainder r.
That is, $P(x)=(x-a) Q(x)+r$

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and randomly a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k knows secret.
Knowing k pts, only one $P(x)$, evaluate $P(0)$.
Secrecy: Any $k-1$ knows nothing.
Knowing $\leq k-1$ pts, any $P(0)$ is possible.

Only d roots

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 :
$P(x)=(x-a) Q(x)$
Proof: $P(x)=(x-a) Q(x)+r$
Plugin a: $P(a)=r$.
It is a root if and only if $r=0$.
Lemma 2: $P(x)$ has d roots; r_{1}, \ldots, r_{d} then
$P(x)=c\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{d}\right)$.
Proof Sketch: By induction.
Induction Step: $P(x)=\left(x-r_{1}\right) Q(x)$ by Lemma 1. $Q(x)$ has smaller degree so use the induction hypothesis.
$d+1$ roots implies degree is at least $d+1$
Roots fact: Any degree d polynomial has at most d roots.

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimality.
With k shares, reconstruct polynomial, $P(x)$.
With $k-1$ shares, any of p values possible for $P(0)$!
Almost) any b-bit string possible!
(Almost) the same as what is missing: one $P(i)$.

Runtime.

Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $k-1$ polynomial n times using $\log p$-bit numbers.
2. Reconstruct secret by solving system of k equations using $\log p$-bit arithmetic.

Solution Idea.

n packet message, channel that loses k packets.

Must send $n+k$ packets!

Any n packets should allow reconstruction of n packet message
Any n point values allow reconstruction of degree $n-1$ polynomial
Alright!!!!!!
Use polynomials.

A bit more counting.

What is the number of degree d polynomials over $\operatorname{GF}(m)$?

- $m^{d+1}: d+1$ coefficients from $\{0, \ldots, m-1\}$.
- $m^{d+1}: d+1$ points with y-values from $\{0, \ldots, m-1\}$

Infinite number for reals, rationals, complex numbers!

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?
A degree $n-1$ polynomial determined by any n points
Erasure Coding Scheme: message $=m_{0}, m_{2}, \ldots, m_{n-1}$.

1. Choose prime $p \approx 2^{b}$ for packet size b.
2. $P(x)=m_{n-1} x^{n-1}+\cdots m_{0}(\bmod p)$.
3. Send $P(1), \ldots, P(n+k)$.

Any n of the $n+k$ packets gives polynomial ...and message

Erasure Codes.

n packet message. So send $n+k$!

Lose k packets.

Any n packets is enough!

Information Theory.

Size: Can choose a prime between 2^{b-1} and 2^{b}.
(Lose at most 1 bit per packet.)
But: packets need label for x value
There are Galois Fields $G F\left(2^{n}\right)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, $O(n)$ operations with almost the same redundancy.
Comparison with Secret Sharing: information content.
Secret Sharing: each share is size of whole secret. Coding: Each packet has size $1 / n$ of the whole message.

Bad reception!

Send: $(1,1),(2,4),(3,4),(4,7),(5,2),(6,0)$
Recieve: $(1,1)(3,4),(6,0)$
Reconstruct?
Format: ($i, R(i)$.
Lagrange or linear equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(6)=2 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 7)
\end{aligned}
$$

Channeling Sahai ...

$P(x)=2 x^{2}+4 x+2$
Message? $P(1)=1, P(2)=4, P(3)=4$.

Erasure Code: Example.

Send message of 1,4 , and 4.
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.
$P(x)=x^{2}(\bmod 5)$
$P(1)=1, P(2)=4, P(3)=9=4(\bmod 5)$
Send ($0, P(0)) \ldots(5, P(5))$.
6 points. Better work modulo 7 at least!
Why? $\quad(0, P(0))=(5, P(5))(\bmod 5)$

Questions for Review

You want to encode a secret consisting of 1,4,4.
How big should modulus be?
Larger than 144 and prime!
You want to send a message consisting of packets 1,4,2,3,0
through a noisy channel that loses 3 packets.
How big should modulus be?
Larger than 8 and prime!
Send n packets b-bit packets, with k errors
Modulus should be larger than $n+k$ and also larger than 2^{b}

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$
$a_{1}=2 a_{0} . a_{0}=2(\bmod 7) a_{1}=4(\bmod 7) a_{2}=2(\bmod 7)$
$P(x)=2 x^{2}+4 x+2$
$P(1)=1, P(2)=4$, and $P(3)=4$ Send
Packets: $(1,1),(2,4),(3,4),(4,7),(5,2),(6,0)$
Notice that packets contain "x-values".

Polynomials.

- ..give Secret Sharing.
- ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)
Additional Challenge: Finding which packets are corrupt

Error Correction

Example.

Message: 3,0,6.
Reed Solomon Code: $P(x)=x^{2}+x+1(\bmod 7)$ has $P(1)=3, P(2)=0, P(3)=6$ modulo 7 .
Send: $P(1)=3, P(2)=0, P(3)=6, P(4)=0, P(5)=3$.
(Aside: Message in plain text!)
Receive $R(1)=3, R(2)=1, R(3)=6, R(4)=0, R(5)=3$.
$P(i)=R(i)$ for $n+k=3+1=4$ points.

The Scheme.

Problem: Communicate n packets m_{1}, \ldots, m_{n}
on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, $P(x)$ of degree $n-1$
that encodes message.

- $P(1)=m_{1}, \ldots, P(n)=m_{n}$.
- Comment: could encode with packets as coefficients.

2. Send $P(1), \ldots, P(n+2 k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2 k)$.
Properties:
(1) $P(i)=R(i)$ for at least $n+k$ points i,
(2) $P(x)$ is unique degree $n-1$ polynomia
that contains $\geq n+k$ received points.

Slow solution.

Brute Force:

For each subset of $n+k$ points
Fit degree $n-1$ polynomial, $Q(x)$, to n of them.
Check if consistent with $n+k$ of the total points.
If yes, output $Q(x)$

- For subset of $n+k$ pts where $R(i)=P(i)$, method will reconstruct $P(x)$!
- For any subset of $n+k$ pts,

1. there is unique degree $n-1$ polynomial $Q(x)$ that fits n of
and where $Q(x)$ is consistent with $n+k$ points $\Longrightarrow P(x)=Q(x)$.

Reconstructs $P(x)$ and only $P(x)$!

Properties: proof

$P(x)$: degree $n-1$ polynomial
Send $P(1), \ldots, P(n+2 k)$
Receive $R(1), \ldots, R(n+2 k)$
At most $k i$'s where $P(i) \neq R(i)$.

Properties:

(1) $P(i)=R(i)$ for at least $n+k$ points i,
(2) $P(x)$ is unique degree $n-1$ polynomia that contains $\geq n+k$ received points.

Proof:

(1) Sure. Only k corruptions.
(2) Degree $n-1$ polynomial $Q(x)$ consistent with $n+k$ points. $Q(x)$ agrees with $R(i), n+k$ times
$P(x)$ agrees with $R(i), n+k$ times.
Total points contained by both: $2 n+2 k$. P Pigeons Total points to choose from : $n+2 k$. H Holes. Points contained by both $: \geq n . \quad \geq P-H \quad$ Collisions $\Longrightarrow Q(I)=P(I)$ at n point .
$\Longrightarrow Q(x)=P(x)$.

Example.

Received $R(1)=3, R(2)=1, R(3)=6, R(4)=0, R(5)=3$ Find $P(x)=p_{2} x^{2}+p_{1} x+p_{0}$ that contains $n+k=3+1$ points
All equations.

$$
\begin{aligned}
p_{2}+p_{1}+p_{0} & \equiv 3(\bmod 7) \\
4 p_{2}+2 p_{1}+p_{0} & \equiv 1(\bmod 7) \\
2 p_{2}+3 p_{1}+p_{0} & \equiv 6(\bmod 7) \\
2 p_{2}+4 p_{1}+p_{0} & \equiv 0(\bmod 7) \\
1 p_{2}+5 p_{1}+p_{0} & \equiv 3(\bmod 7)
\end{aligned}
$$

Assume point 1 is wrong and solve..no consistent solution Assume point 2 is wrong and solve...consistent solution

In general..
$P(x)=p_{n-1} x^{n-1}+\cdots p_{0}$ and receive $R(1), \ldots R(m=n+2 k)$.
$p_{n-1}+\cdots p_{0} \equiv R(1)(\bmod p)$
$p_{n-1} 2^{n-1}+\cdots p_{0} \equiv R(2)(\bmod p)$
$p_{n-1} i^{n-1}+\cdots p_{0} \equiv R(i)(\bmod p)$
$p_{n-1}(m)^{n-1}+\cdots p_{0} \equiv R(m)(\bmod p)$
Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime: $\binom{n+2 k}{k}$ possibilitities.
Something like $(n / k)^{k}$...Exponential in $k!$.
How do we find where the bad packets are efficiently?!?!?!

Ditty...

Where oh where can my bad packets be ..
On Tuesday.

