CS 70
 Discrete Mathematics and Probability Theory

 Spring 2017 Rao
1 Uniform Probability Space

Let $\Omega=\{1,2,3,4,5,6\}$ be a uniform probability space. Let also $X(\omega)$ and $Y(\omega)$, for $\omega \in \Omega$, be the random variables defined in the table:

Table 1: All the rows in the table correspond to random variables.

ω	1	2	3	4	5	6
$X(\omega)$	0	0	1	1	2	2
$Y(\omega)$	0	2	3	5	2	0
$X^{2}(\omega)$						
$Y^{2}(\omega)$						
$X Y(\omega)$						
$L[Y \mid X](\omega)$						
$E[Y \mid X](\omega)$						

(a) Fill in the blank entries of the table.
(b) Are the variables correlated or uncorrelated? Are the variables independent or dependent?
(c) Calculate $\mathbf{E}\left[(Y-L[Y \mid X])^{2}\right]$ and $\mathbf{E}\left[(Y-\mathbf{E}[Y \mid X])^{2}\right]$. Which is smaller? Is this always true?

2 Number of Ones

In this problem, we will revisit dice-rolling, except with conditional expectation.
(a) If we roll a die until we see a 6 , how many ones should we expect to see?
(b) If we roll a die until we see a number greater than 3, how many ones should we expect to see?

3 Marbles in a Bag

We have r red marbles, b blue marbles, and g green marbles in the same bag. If we sample marbles with replacement until we get 3 red marbles (not necessarily consecutively), how many blue marbles should we expect to see?

