1 Bit String

How many bit strings of length 10 contain at least five consecutive 0 's?

2 Flippin' Coins

Suppose we have a biased coin, with outcomes H and T, with probability of heads $\operatorname{Pr}[H]=3 / 4$ and probability of tails $\operatorname{Pr}[T]=1 / 4$. Suppose we perform an experiment in which we toss the coin 3 times. An outcome of this experiment is $\left(X_{1}, X_{2}, X_{3}\right)$, where $X_{i} \in\{H, T\}$.
(a) What is the sample space for our experiment?
(b) Which of the following are examples of events? Select all that apply.

- $\{(H, H, T),(H, H),(T)\}$
- $\{(T, H, H),(H, T, H),(H, H, T),(H, H, H)\}$
- $\{(T, T, T)\}$
- $\{(T, T, T),(H, H, H)\}$
- $\{(T, H, T),(H, H, T)\}$
(c) What is the complement of the event $\{(H, H, H),(H, H, T),(H, T, H),(H, T, T),(T, T, T)\}$?
(d) Let A be the event that our outcome has 0 heads. Let B be the event that our outcome has exactly 2 heads. What is $A \cup B$?
(e) What is the probability of the outcome H, H, T ?
(f) What is the probability of the event that our outcome has exactly two heads?

3 Aces
Consider an ordinary deck of cards:
(a) Find the probability of getting an ace or a red card, when drawing a single card.
(b) Find the probability of getting an ace or a spade, but not both, when drawing a single card.
(c) Find the probability of getting the ace of diamonds when drawing a 5 card hand.
(d) Find the probability of getting exactly 2 aces when drawing a 5 card hand.
(e) Find the probability of getting at least 1 ace when drawing a 5 card hand.
(f) Find the probability of getting at least 1 ace or at least 1 heart when drawing a 5 card hand.

4 Probability Practice

(a) If we put 5 math, 6 biology, 8 engineering, and 3 physics books on a bookshelf at random, what is the probability that all the math books are together?
(b) A message source M of a digital communication system outputs a word of length 8 characters, with the characters drawn from the ternary alphabet $\{0,1,2\}$, and all such words are equally probable. What is the probability that M produces a word that looks like a byte (i.e., no appearance of ' 2 ')?
(c) If five numbers are selected at random from the set $\{1,2,3, \ldots, 20\}$, what is the probability that their minimum is larger than 5? (A number can be chosen more than once.)

