1 Modular Arithmetic

Solve the following equations for x and y modulo the indicated modulus, or show that no solution exists. Show your work.
(a) $9 x \equiv 1(\bmod 11)$.
(b) $10 x+23 \equiv 3(\bmod 31)$.
(c) $3 x+15 \equiv 4(\bmod 21)$.
(d) The system of simultaneous equations $3 x+2 y \equiv 0(\bmod 7)$ and $2 x+y \equiv 4(\bmod 7)$.

2 Baby Fermat

Assume that a does have a multiplicative inverse $(\bmod m)$. Let us prove that its multiplicative inverse can be written as $a^{k}(\bmod m)$ for some $k \geq 0$.
(a) Consider the sequence $a, a^{2}, a^{3}, \ldots(\bmod m)$. Prove that this sequence has repetitions.
(b) Assuming that $a^{i} \equiv a^{j}(\bmod m)$, where $i>j$, what can you say about $a^{i-j}(\bmod m)$?
(c) Prove that the multiplicative inverse can be written as $a^{k}(\bmod m)$. What is k in terms of i and j ?

3 Does It Exist?

Can you find a number that is a perfect square and is a multiple of 2 but not a multiple of 4 ? Either give such a number or prove that no such number exists.

4 Bijections

Let n be an odd number. Let $f(x)$ be a function from $\{0,1, \ldots, n-1\}$ to $\{0,1, \ldots, n-1\}$. In each of these cases say whether or not $f(x)$ is necessarily a bijection. Justify your answer (either prove $f(x)$ is a bijection or give a counterexample).
(a) $f(x)=2 x(\bmod n)$.
(b) $f(x)=5 x(\bmod n)$.
(c) n is prime and

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ x^{-1} \quad(\bmod n) & \text { if } x \neq 0\end{cases}
$$

(d) n is prime and $f(x)=x^{2}(\bmod n)$.

