CS 70 Discrete Mathematics and Probability Theory Spring 2017 Rao DIS 3b

1 Modular Arithmetic

Solve the following equations for x and y modulo the indicated modulus, or show that no solution exists. Show your work.

- (a) $9x \equiv 1 \pmod{11}$.
- (b) $10x + 23 \equiv 3 \pmod{31}$.
- (c) $3x + 15 \equiv 4 \pmod{21}$.
- (d) The system of simultaneous equations $3x + 2y \equiv 0 \pmod{7}$ and $2x + y \equiv 4 \pmod{7}$.

2 Baby Fermat

Assume that *a* does have a multiplicative inverse (mod *m*). Let us prove that its multiplicative inverse can be written as $a^k \pmod{m}$ for some $k \ge 0$.

- (a) Consider the sequence $a, a^2, a^3, \dots \pmod{m}$. Prove that this sequence has repetitions.
- (b) Assuming that $a^i \equiv a^j \pmod{m}$, where i > j, what can you say about $a^{i-j} \pmod{m}$?
- (c) Prove that the multiplicative inverse can be written as $a^k \pmod{m}$. What is *k* in terms of *i* and *j*?

3 Does It Exist?

Can you find a number that is a perfect square and is a multiple of 2 but not a multiple of 4? Either give such a number or prove that no such number exists.

4 Bijections

Let *n* be an odd number. Let f(x) be a function from $\{0, 1, ..., n-1\}$ to $\{0, 1, ..., n-1\}$. In each of these cases say whether or not f(x) is necessarily a bijection. Justify your answer (either prove f(x) is a bijection or give a counterexample).

- (a) $f(x) = 2x \pmod{n}$.
- (b) $f(x) = 5x \pmod{n}$.

(c) n is prime and

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ x^{-1} \pmod{n} & \text{if } x \neq 0. \end{cases}$$

(d) *n* is prime and $f(x) = x^2 \pmod{n}$.