1 Graph Basics

In the first few parts, you will be answering questions on the following graph G.

(a) What are the vertex and edge sets V and E for graph G ?
(b) Which vertex has the highest in-degree? Which vertex has the lowest in-degree? Which vertices have the same in-degree and out-degree?
(c) What are the paths from vertex B to F, assuming no vertex is visited twice? Which one is the shortest path?
(d) Which of the following are cycles in G ?
i. $\{(B, C),(C, D),(D, B)\}$
ii. $\{(F, G),(G, F)\}$
iii. $\{(A, B),(B, C),(C, D),(D, B)\}$
iv. $\{(B, C),(C, D),(D, H),(H, G),(G, F),(F, E),(E, D),(D, B)\}$
(e) Which of the following are walks in G ?
i. $\{(E, G)\}$
ii. $\{(E, G),(G, F)\}$
iii. $\{(F, G),(G, F)\}$
iv. $\{(A, B),(B, C),(C, D)\}$
v. $\{(E, G),(G, F),(F, G),(G, F)\}$
vi. $\{(E, D),(D, B),(B, E),(E, D),(D, H),(H, G),(G, F)\}$
(f) Which of the following are tours in G ?
i. $\{(E, G)\}$
ii. $\{(E, G),(G, F)\}$
iii. $\{(F, G),(G, F)\}$
iv. $\{(A, B),(B, C),(C, D)\}$
v. $\{(E, G),(G, F),(F, G),(G, F)\}$
vi. $\{(E, D),(D, B),(B, E),(E, D),(D, H),(H, G),(G, F)\}$

In the following three parts, let's consider a general undirected graph G with n vertices ($n \geq 3$).
(g) True/False: If each vertex of G has degree at most 1 , then G does not have a cycle.
(h) True/False: If each vertex of G has degree at least 2 , then G has a cycle.
(i) True/False: If each vertex of G has degree at most 2 , then G is not connected.

2 Bipartite Graph

Consider an undirected bipartite graph with two disjoint sets L, R. Prove that a graph is bipartite if and only if it no cycles of odd length.

3 Planarity

Consider graphs with the property T : For every three distinct vertices v_{1}, v_{2}, v_{3} of graph G, there are at least two edges among them. Prove that if G is a graph on ≥ 7 vertices, and G has property T, then G is nonplanar.

