CS 70 Spring 2017 Discrete Mathematics and Probability Theory Satish Rao

DIS 1b

1 Stable Marriage

Consider the set of men $M = \{1, 2, 3\}$ and the set of women $W = \{A, B, C\}$ with the following preferences.

Men	'	Women	n
1	A	В	С
2	В	A	С
3	A	В	С

Women		Men	
A	2	1	3
В	1	2	3
С	1	2	3

Run the male propose-and-reject algorithm on this example. How many days does it take and what is the resulting pairing? (Show your work)

2 Propose-and-Reject Proofs

Prove the following statements about the traditional propose-and-reject algorithm.

(a) In any execution of the algorithm, if a woman receives a proposal on day i, then she receives some proposal on every day thereafter until termination.

(b) In any execution of the algorithm, if a woman receives no proposal on day i, then she receives no proposal on any previous day j, $1 \le j < i$.

(c)	In any	execution	of the	algorithm,	there	is at	least	one	woman	who	only	receives	a	single
	propos	al. (Hint: u	ise the	parts above	!)									

3 Be a Judge

For each of the following statements about the traditional stable marriage algorithm with men proposing, indicate whether the statement is True or False and justify your answer with a short 2-3 line explanation:

- (a) There is a set of preferences for n men and n women, such that in a stable marriage algorithm execution every man ends up with his least preferred woman.
- (b) In a stable marriage instance, if man M and woman W each put each other at the top of their respective preference lists, then M must be paired with W in every stable pairing.
- (c) In a stable marriage instance with at least two men and two women, if man M and woman W each put each other at the bottom of their respective preference lists, then M cannot be paired with W in any stable pairing.
- (d) For every n > 1, there is a stable marriage instance with n men and n women which has an unstable pairing in which every unmatched man-woman pair is a rogue couple.