
Inverses

Today: finding inverses quickly.

Euclid’s Algorithm.
Runtime.

Euclid’s Extended Algorithm.

Inverses

Today: finding inverses quickly.

Euclid’s Algorithm.

Runtime.
Euclid’s Extended Algorithm.

Inverses

Today: finding inverses quickly.

Euclid’s Algorithm.
Runtime.

Euclid’s Extended Algorithm.

Inverses

Today: finding inverses quickly.

Euclid’s Algorithm.
Runtime.

Euclid’s Extended Algorithm.

Refresh

Does 2 have an inverse mod 8?

No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9?

Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes.

5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5

2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5

2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9?

No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if

gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1?

No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1?

Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!

Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Refresh

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Divisibility...

Notation: d |x means “d divides x” or

x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).
Proof: d |x and d |y or

x = `d and y = kd

=⇒ x−y = kd − `d = (k − `)d =⇒ d |(x−y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).
Proof: d |x and d |y or

x = `d and y = kd

=⇒ x−y = kd − `d = (k − `)d =⇒ d |(x−y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).

Proof: d |x and d |y or
x = `d and y = kd

=⇒ x−y = kd − `d = (k − `)d =⇒ d |(x−y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).
Proof: d |x and d |y or

x = `d and y = kd

=⇒ x−y = kd − `d = (k − `)d =⇒ d |(x−y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).
Proof: d |x and d |y or

x = `d and y = kd

=⇒ x−y = kd − `d = (k − `)d =⇒ d |(x−y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).
Proof: d |x and d |y or

x = `d and y = kd

=⇒ x−y = kd − `d

= (k − `)d =⇒ d |(x−y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).
Proof: d |x and d |y or

x = `d and y = kd

=⇒ x−y = kd − `d = (k − `)d

=⇒ d |(x−y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).
Proof: d |x and d |y or

x = `d and y = kd

=⇒ x−y = kd − `d = (k − `)d =⇒ d |(x−y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).
Proof: d |x and d |y or

x = `d and y = kd

=⇒ x−y = kd − `d = (k − `)d =⇒ d |(x−y)

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).

Proof: mod (x ,y) = x−bx/yc ·y
= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s

= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `

= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y).

And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar.

Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home.

.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.

Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.

Base Case: y = 0, “x divides y and x”
=⇒ “x is common divisor and clearly largest.”

Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”

Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”

and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis

computes gcd(y , mod (x ,y))
which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good?

Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2,

check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3,

check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4,

check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number.

2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster!

.. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)
gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)
gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)
gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)

gcd(568, 132)
gcd(132, 40)

gcd(40, 12)
gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)
gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)

gcd(40, 12)
gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.

At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.

One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.

1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.

O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,

and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c=

x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2

= x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Extend Euclid’s algo to find inverse.

Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Extend Euclid’s algo to find inverse.

Euclid’s GCD algorithm.

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y))

Computes the gcd(x ,y) in O(n) divisions.

For x and m, if gcd(x ,m) = 1 then x has an inverse modulo m.

Euclid’s GCD algorithm.

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y))

Computes the gcd(x ,y) in O(n) divisions.

For x and m, if gcd(x ,m) = 1 then x has an inverse modulo m.

Euclid’s GCD algorithm.

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y))

Computes the gcd(x ,y) in O(n) divisions.

For x and m, if gcd(x ,m) = 1 then x has an inverse modulo m.

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we find a multiplicative inverse?

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we find a multiplicative inverse?

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y)

= d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1

ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.

The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Make d out of x and y ..?

gcd(35,12)

gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)

gcd(1,0)
1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?

35−b35
12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?

12−b12
11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11 = 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin....

Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11 = 12− (1)(35− (2)12) = (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify.

a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11 = 12− (1)(35− (2)12) = (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify.

a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11 = 12− (1)(35− (2)12) = (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .

Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)

ext-gcd(12, 11)
ext-gcd(11, 1)

ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)

ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)

return (1,1,0) ;; 1 = (1)1 + (0) 0
return (1,0,1) ;; 1 = (0)11 + (1)1

return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example: a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example: a−bx/yc ·b =
1−b11/1c ·0 = 1

0−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1

return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example: a−bx/yc ·b =

1−b11/1c ·0 = 1

0−b12/11c ·1 =−1

1−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example: a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−1

1−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d ,a,b), where d = gcd(a,b) and

d = ax +by .

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d ,a,b), where d = gcd(a,b) and

d = ax +by .

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x−b x
y c ·y) =⇒ d = bx− (a−b x

y cb)y

Returns (d ,b,(a−b x
y c ·b)).

Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x−b x
y c ·y)

=⇒ d = bx− (a−b x
y cb)y

Returns (d ,b,(a−b x
y c ·b)).

Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x−b x
y c ·y) =⇒ d = bx− (a−b x

y cb)y

Returns (d ,b,(a−b x
y c ·b)).

Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x−b x
y c ·y) =⇒ d = bx− (a−b x

y cb)y

Returns (d ,b,(a−b x
y c ·b)).

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(1000)5 divisions.

Next lecture!

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(1000)5 divisions.

Next lecture!

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(1000)5 divisions.

Next lecture!

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?

≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(1000)5 divisions.

Next lecture!

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(1000)5 divisions.

Next lecture!

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(1000)5 divisions.

Next lecture!

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(1000)5 divisions.

Next lecture!

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.

Public Key Cryptography: 512 digits.
512 divisions vs.
(1000)5 divisions.

Next lecture!

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(1000)5 divisions.

Next lecture!

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.

(1000)5 divisions.

Next lecture!

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.
(1000)5 divisions.

Next lecture!

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.
(1000)5 divisions.

Next lecture!

