
Inverses

Today: finding inverses quickly.

Euclid’s Algorithm.
Runtime.

Euclid’s Extended Algorithm.



Inverses

Today: finding inverses quickly.

Euclid’s Algorithm.

Runtime.
Euclid’s Extended Algorithm.



Inverses

Today: finding inverses quickly.

Euclid’s Algorithm.
Runtime.

Euclid’s Extended Algorithm.



Inverses

Today: finding inverses quickly.

Euclid’s Algorithm.
Runtime.

Euclid’s Extended Algorithm.



Refresh

Does 2 have an inverse mod 8?
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gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.
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Divisibility...

Notation: d |x means “d divides x” or

x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).
Proof: d |x and d |y or

x = `d and y = kd

=⇒ x−y = kd − `d = (k − `)d =⇒ d |(x−y)
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More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x−bx/yc ·y

= x−s ·y for integer s
= kd −s`d for integers k , `
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.
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Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.
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GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.
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Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)
gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)
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Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2
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Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y)

= d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x if gcd(a,x) = 1!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.
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Make d out of x and y ..?

gcd(35,12)

gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.
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Extended GCD Algorithm.

ext-gcd(x,y)
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Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .

Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)

ext-gcd(12, 11)
ext-gcd(11, 1)

ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)

ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)

return (1,1,0) ;; 1 = (1)1 + (0) 0
return (1,0,1) ;; 1 = (0)11 + (1)1

return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 +(3)12



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example: a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example: a−bx/yc ·b =
1−b11/1c ·0 = 1

0−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1

return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 +(3)12



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example: a−bx/yc ·b =

1−b11/1c ·0 = 1

0−b12/11c ·1 =−1

1−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example: a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−1

1−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d ,a,b), where d = gcd(a,b) and

d = ax +by .



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d ,a,b), where d = gcd(a,b) and

d = ax +by .



Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b( mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · ( mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.
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Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x−b x
y c ·y) =⇒ d = bx− (a−b x

y cb)y

Returns (d ,b,(a−b x
y c ·b)).
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Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80
divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(10000000000000000000000000000000000000000000)5 divisions.

Next lecture!
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