Today: finding inverses quickly.	
Euclid's Algorithm. Runtime.	
Euclid's Extended Algorithm.	
More divisibility	
Notation: $d x$ means " <i>d</i> divides <i>x</i> " or $x = kd$ for some integer <i>k</i> .	
Lemma 1: If $d x$ and $d y$ then $d y$ and $d \mod (x, y)$.	
Proof: $mod(x,y) = x - \lfloor x/y \rfloor \cdot y$	
$= x - s \cdot y \text{ for integer } s$ $= kd - s\ell d \text{ for integers } k, \ell$	
$= (k - s\ell)d$	
Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.	
Lemma 2: If $d y$ and $d \mod(x, y)$ then $d y$ and $d x$. Proof: Similar. Try this at home.	□.
GCD Mod Corollary: $gcd(x, y) = gcd(y, mod(x, y))$. Proof: x and y have same set of common divisors as x and mod (x, y) by Lemma.	
Same common divisors \implies largest is the same.	

Inverses

Refresh

Does 2 have an inverse mod 8? No. Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$. Does 6 have an inverse mod 9? No. x has an inverse modulo m if and only if

gcd(x,m) > 1? No. gcd(x,m) = 1? Yes.

Today: Compute gcd! Compute Inverse modulo *m*.

Euclid's algorithm.

GCD Mod Corollary: gcd(x,y) = gcd(y, mod (x,y)).
gcd (x, y)
if (y = 0) then
return x
else
return gcd(y, mod(x, y)) ***
Theorem: Euclid's algorithm computes the greatest common divisor

of x and y if $x \ge y$. **Proof:** Use Strong Induction. **Base Case:** y = 0, "x divides y and x" \implies "x is common divisor and clearly largest." **Induction Step:** mod (x, y) < y < x when $x \ge y$

 call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis computes gcd(y, mod (x, y))
 which is gcd(x, y) by GCD Mod Corollary.

Divisibility...

Notation: d|x means "d divides x" or x = kd for some integer k. Fact: If d|x and d|y then d|(x+y) and d|(x-y). Proof: d|x and d|y or $x = \ell d$ and y = kd $\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x-y)$

Excursion: Value and Size.

Before discussing running time of gcd procedure... What is the value of 1,000,000? one million or 1,000,000! What is the "size" of 1,000,000? Number of digits: 7. Number of bits: 21. For a number *x*, what is its size in bits?

 $n = b(x) \approx \log_2 x$

GCD procedure is fast.

Theorem: GCD uses 2*n* "divisions" where *n* is the number of bits. Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$? Check 2, check 3, check 4, check 5 ..., check y/2. 2^{*n*-1} divisions! Exponential dependence on size! 101 bit number. $2^{100} \approx 10^{30} =$ "million, trillion, trillion" divisions! 2n is much faster! .. roughly 200 divisions.

Finding an inverse?

We showed how to efficiently tell if there is an inverse. Extend Euclid's algo to find inverse.

Algorithms at work.

Trying everything Check 2, check 3, check 4, check 5 ..., check y/2. "gcd(x, y)" at work.

```
gcd(700,568)
 gcd(568, 132)
   gcd(132, 40)
     gcd(40, 12)
       gcd(12, 4)
         gcd(4, 0)
           4
```

Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Euclid's GCD algorithm.

gcd (x, y) if (y = 0) then return x else return gcd(y, mod(x, y))

Computes the gcd(x, y) in O(n) divisions. For x and m, if gcd(x,m) = 1 then x has an inverse modulo m.

Proof.

gcd (x, y) if (y = 0) then return x else return gcd(y, mod(x, y))

Theorem: GCD uses O(n) "divisions" where *n* is the number of bits. Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

Rreptof Fact: Benall abat sive cause range demonstration.

Case $p_{y} = \frac{1}{2} \frac{1}{$

```
Clift of the second argument in next recursive call, and becomes the first argument in the next one.
```

$\operatorname{mod}(x,y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \leq x - x/2 = x/2$

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse. How do we find a multiplicative inverse?

Extended GCD

```
Euclid's Extended GCD Theorem: For any x, y there are integers a, b such that

ax + by = gcd(x, y) = d where d = gcd(x, y).

"Make d out of sum of multiples of x and y."

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x,m) = 1.

ax + bm = 1

ax \equiv 1 - bm \equiv 1 \pmod{m}.

So a multiplicative inverse of x if gcd(a, x) = 1!!

Example: For x = 12 and y = 35, gcd(12, 35) = 1.

(3)12 + (-1)35 = 1.

a = 3 and b = -1.

The multiplicative inverse of 12 (mod 35) is 3.
```

Extended GCD Algorithm.

ext-gcd(x,y)
 if y = 0 then return(x, 1, 0)
 else
 (d, a, b) := ext-gcd(y, mod(x,y))
 return (d, b, a - floor(x/y) * b)

Theorem: Returns (d, a, b), where d = gcd(a, b) and

d = ax + by.

Make *d* out of *x* and *y*..?

```
gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)
1
```

How did gcd get 11 from 35 and 12? $35 - \lfloor \frac{35}{12} \rfloor 12 = 35 - (2)12 = 11$

```
How does gcd get 1 from 12 and 11?
12 - \lfloor \frac{12}{11} \rfloor 11 = 12 - (1)11 = 1
```

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11. 1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b = -1.

Correctness.

Proof: Strong Induction.¹ **Base:** ext-gcd(x, 0) returns (d = x, 1, 0) with x = (1)x + (0)y. **Induction Step:** Returns (d, A, B) with d = Ax + By

Ind hyp: **ext-gcd**(y, mod (x, y)) returns (d^* , a, b) with $d^* = ay + b(\mod(x, y))$

ext-gcd(x, y) calls ext-gcd(y, mod(x, y)) so

 $d = d^* = ay + b \cdot (\mod(x, y))$ $= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$ $= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$

And ext-gcd returns $(d, b, (a - \lfloor \frac{x}{v} \rfloor \cdot b))$ so theorem holds!

¹Assume *d* is gcd(x, y) by previous proof.

Extended GCD Algorithm.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod(x,y))
            return (d, b, a - floor(x/y) * b)
```

Claim: Returns (d, a, b): d = gcd(a, b) and d = ax + by. Example: $a - \lfloor x/y \rfloor \cdot b = 1 - \lfloor 11/1 \rfloor \cdot 0 = 10 - \lfloor 12/11 \rfloor \cdot 1 = -11 - \lfloor 35/12 \rfloor \cdot (-1) = 3$

```
ext-gcd(35,12)
ext-gcd(12, 11)
ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0
return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 + (3)12
```

Review Proof: step.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod(x,y))
            return (d, b, a - floor(x/y) * b)
```

```
Recursively: d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y
Returns (d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b)).
```

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time! Very different from elementary school: try 1, try 2, try 3... $2^{n/2}$ Inverse of 500,000,357 modulo 1,000,000,000,000? \leq 80 divisions. versus 1,000,000