Inverses

Today: finding inverses quickly.

Euclid’s Algorithm.
Runtime.
Euclid’s Extended Algorithm.

Refresh

Does 2 have an inverse mod 8? No.
Does 2 have an inverse mod 97 Yes. 5
2(5)=10=1 mod?9.
Does 6 have an inverse mod 9?7 No.
x has an inverse modulo m if and only if
ged(x,m) > 1? No.
ged(x,m) =17 Yes.
Today:
Compute ged!
Compute Inverse modulo m.

Divisibility...

Notation: d|x means “d divides x” or
X = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x — y).
Proof: d|x and d|y or
x=/(d and y = kd

= X—y=kd—ld=(k—{)d = d|(x—y)

More divisibility

Notation: d|x means “d divides x” or
x = kd for some integer k.
Lemma 1: If d|x and d|y then d|y and d| mod (x,y).
Proof: mod (x.y) = x—|x/y|-y
= x-—s-y forintegers
= kd—std forintegers k,¢
= (k—st)d
Therefore d| mod (x,y). And d|y since it is in condition.
Lemma 2: If d|y and d| mod (x,y) then d|y and d|x.
Proof...: Similar. Try this at home.

GCD Mod Corollary: gcd(x,y) = gcd(y, mod (x,)).
Proof: x and y have same set of common divisors as x and
mod (x,y) by Lemma.

Same common divisors = largest is the same.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x,y) =gcd(y, mod (x,y)).

ged (x, y)
if (y = 0) then
return x
else
return gcd(y, mod(x, y)) *kx

Theorem: Euclid’s algorithm computes the greatest common divisor
of xand y if x > y.

Proof: Use Strong Induction.
Base Case: y =0, “x divides y and x”

= “x is common divisor and clearly largest.”
Induction Step: mod (x,y) <y <xwhenx >y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gecd(y, mod (x,y))
which is ged(x, y) by GCD Mod Corollary. O

Excursion: Value and Size.

Before discussing running time of gcd procedure...
What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x, what is its size in bits?

n=b(x) =~ log, x




GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2,...y/2}?
Check 2, check 3, check 4, check 5 ..., check y/2.

21 divisions! Exponential dependence on size!

101 bit number. 2190 ~ 1030 = “million, trillion, trillion” divisions!
2nis much faster! .. roughly 200 divisions.

Algorithms at work.

Trying everything
Check 2, check 3, check 4, check 5 ..., check y/2.
“ged(x, y)” at work.

gcd (700, 568)
gcd (568, 132)
gcd (132, 40)
gcd (40, 12)
gcd (12, 4)
gcd (4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Proof.

gcd (%, y)
if (v = 0) then
return x
else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) "divisions” where n is the number of bits.
Proof:
Fact:
First arg decreases by at least factor of two in two recursive calls.
Rreebaidact: Beanldbaidive! caosraesl freneases evenuAtler.
Gagenorpvreshsinieaihiedtinibis ynod(x, y) < x/2.”

7 f&Ain next recursive call,

and becomes the first e{rz}g/fqmem in the next one.

mod (x,y):xfyL;j =X—-y<x—x/2=x/2

Finding an inverse?

We showed how to efficiently tell if there is an inverse.
Extend Euclid’s algo to find inverse.

Euclid’s GCD algorithm.

gcd (x, y)
if (y = 0) then
return x
else
return gcd(y, mod(x, y))

Computes the ged(x, y) in O(n) divisions.
For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.
How do we find a multiplicative inverse?




Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers
a, b such that
ax+by =gcd(x,y)=d  where d =gcd(x,y).
“Make d out of sum of multiples of x and y.”
What is multiplicative inverse of x modulo m?
By extended GCD theorem, when ged(x, m) = 1.

ax+bm=1
ax=1-bm=1 (mod m).

So a multiplicative inverse of x if gcd(a, x) = 1!
Example: For x =12 and y =35, gcd(12,35) = 1.

(3)12+(—1)35=1.

a=3and b=—1.
The multiplicative inverse of 12 (mod 35) is 3.

Make d out of x and y..?

gcd (35,12)
gcd (12, 11) ;7 gcd(l2, 35%12)
gcd (11, 1) ;7 gcd(ll, 12%11)
gcd(1,0)
1

How did gcd get 11 from 35 and 127
35— 35]12=35-(2)12=11

How does gcd get 1 from 12 and 11?
12— [F]11=12—(1)11=1
Algorithm finally returns 1.
But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1=12—-(1)11=12—-(1)(85—-(2)12) = (3)12+(—1)35
Get 11 from 35 and 12 and plugin.... Simplify. a=3and b= —1.

Extended GCD Algorithm.

ext-gcd (x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * D)

Claim: Returns (d,a,b): d = gcd(a,b) and d = ax + by.
Example: a— [x/y]-b=
1—[11/1].0=10—[12/11]-1 = —11—|35/12] - (-1) =3

ext-gcd (35,12)
ext-gcd (12, 11)
ext-gcd (11, 1)
ext-gcd(1,0)
return (1,1,0) ;;
return (1,0,1) i
return (1,1,-1) HH
return (1,-1, 3) HH

(1)1 + (0) O
(0)11 + (1)1
(1)12 + (-1)11
(-1)35 +(3)12

e
Il

Extended GCD Algorithm.

ext-gcd(x,Vy)
if vy = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d,a,b), where d = gcd(a, b) and

d=ax+by.

Correctness.

Proof: Strong Induction.’
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x +(0)y.

Induction Step: Returns (d, A, B) with d = Ax+ By
Ind hyp: ext-gcd(y, mod (x,y)) returns (d*, a, b) with
d*=ay+b( mod (x,y))

ext-ged(x, y) calls ext-ged(y, mod (x,y)) so
d=d" = ay+b-( mod(x.y))
X
y+b-(x=11y)

= bX+(afL§J-b)y

And ext-gcd returns (d, b,(a— | 7] - b)) so theorem holds!

TAssume d is gcd(x, y) by previous proof.

Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * Db)

Recursively: d = ay +b(x — |
Returns (d.b,(a— | }]-b)).

%J.y) = d=bx—(a[Ib)y




Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

on/2
Inverse of 500,000,357 modulo 1,000,000,000,000? <80
divisions.

versus 1,000,000
Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.

(10000000000000000000000000000000000000000000)° divisions.
Next lecture!




