Lecture 8. Outline.	Clock Math
 Modular Arithmetic. Clock Math!!! Inverses for Modular Arithmetic: Greatest Common Divisor. Euclid's GCD Algorithm 	If it is 1:00 now. What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00. 16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12. What time is it in 100 hours? 101:00! or 5:00. 5 is the same as 101 for a 12 hour clock system. Clock time equivalent up to addition of any integer multiple of 12
	Custom is only to use the representative in {1,,11,12}
Years and years	Modular Arithmetic: Basics.
80 years from now? September 14, 2096 20 leap years. 366*20 days 60 regular years. 365*60 days It is day 3 + 366 * 20 + 365 * 60. Equivalent to?	<i>x</i> is congruent to <i>y</i> modulo <i>m</i> or " $x \equiv y \pmod{m}$ " if and only if $(x - y)$ is divisible by <i>m</i> . or <i>x</i> and <i>y</i> have the same remainder w.r.t. <i>m</i> . or $x = y + km$ for some integer <i>k</i> .
Hmm. What is remainder of 366 when dividing by 7? 2. What is remainder of 365 when dividing by 7? 1 Today is day 3. Get Day: 3 + 20*2 + 60*1 = 103	Mod 7 equivalence classes: {,-7,0,7,14,} {,-6,1,8,15,}
	Useful Fact: Addition, subtraction, multiplication can be done with any equivalent <i>x</i> and <i>y</i> .
Remainder when dividing by 7? 5. Or September 14, 2096 is Friday!	or " $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$ $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "
Further Simplify Calculation: 20 has remainder 6 when divided by 7. 60 has remainder 4 when divided by 7. Get Day: 3 + 6*2 + 4*1 = 19. Or Day 5. September 14, 2096 is Friday.	Proof: If $a \equiv c \pmod{m}$, then $a = c + km$ for some integer k. If $b \equiv d \pmod{m}$, then $b = d + jm$ for some integer j. Therefore, $a+b=c+d+(k+j)m$ and since $k+j$ is integer. $\implies a+b\equiv c+d \pmod{m}$.

"Reduce" at any time in calculation!

Can calculate with representative in $\{0, \ldots, m-1\}$.

Day of the week.

Today is Wednesday. What day is it a year from now? on September 14, 2017? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 3.
3 days from now. day 6 or Saturday.
23 days from now. day 26 or day 5, which is Friday!
two days are equivalent up to addition/subtraction of multiple of 7.
9 days from now is day 5 again, Friday!

What day is it a year from now? Next year is not a leap year. So 365 days from now. Day 3+365 or day 368. Smallest representation: subtract 7 until smaller than 7. divide and get remainder. 368/7 leaves quotient of 52 and remainder 4. or September 14, 2017 is Day 4, a Thursday.

Notation

 $x \pmod{m}$ or $\mod{(x,m)}$ - remainder of x divided by m in $\{0, \ldots, m-1\}$.

 $mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m$

 $\lfloor \frac{x}{m} \rfloor$ is quotient.

 $mod(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) * 12 = 29 - (2) * 12 = 5$

Recap: $a \equiv b \pmod{m}$. Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

Inverses and Factors.

Division: multiply by multiplicative inverse.

 $2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2.$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $\underline{x} = 4\underline{x} \pm 12 = 5 \pmod{7}$. $\underline{x} = 4\underline{x} \pm 12 = 5 \pmod{7}$. $\underline{x} = 3 \pmod{7}$ no multiplicative inverse! $x = 3 \pmod{7}$ $\underline{x} = 3 \pmod{7}$. $\underline{x} = 3 \pmod{7}$. $\underline{x} = 3 \pmod{7}$. $\underline{x} = 12 \exp{7}$. $\underline{x} = 3 \pmod{7}$. $\underline{x} = 12 \exp{7}$. $\underline{x} = 3 \pmod{7}$. $\underline{x} = 12 \exp{7}$. $\underline{x$

Finding inverses.

How to find the inverse?

How to find **if** *x* has an inverse modulo *m*?

Find gcd (x, m). Greater than 1? No multiplicative inverse. Equal to 1? Multiplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m. Very slow.

Next: A Faster algorithm.

Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*. \implies One must correspond to 1 modulo *m*.

```
If not distinct, then a, b \in \{0, ..., m-1\}, where

(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}

Or (a-b)x = km for some integer k.
```

gcd(x, m) = 1 \implies Prime factorization of *m* and *x* do not contain common primes. $\implies (a-b)$ factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*. $\implies (a-b) \ge m$. But $a, b \in \{0, ..., m-1\}$. Contradiction.

Midterm1!!!

Watch Piazza for Logistics! Watch Piazza for Advice!

Study/review sessions this weekend! See Piazza.

- Important reminders:
- 1. Midterm room assignment: based on your official section enrollment.
- 2. Grading option form is due tonight. Details are on Piazza.

Any other issues.... Email logistics@eecs70.org / Private message on piazza.

Happy Studying!!!!!!!!!!!!!!!

Proof review. Consequence.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4... $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6) $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct. Common factor 2.

For x = 5 and m = 6. $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

 $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5. x = 15 = 3 (mod 6)

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd. $4x = 2 \pmod{6}$ Two solutions! $x = 2,5 \pmod{6}$

Very different for elements with inverses.