Lecture 8. Outline.

1. Modular Arithmetic.

Clock Math!!!
2. Inverses for Modular Arithmetic: Greatest Common Divisor.
3. Euclid's GCD Algorithm

Years and years...

80 years from now? September 14, 2096
20 leap years. $366^{*} 20$ days
60 regular years. $365^{*} 60$ days
It is day $3+366 * 20+365 * 60$. Equivalent to?
Hmm.
What is remainder of 366 when dividing by $7 ? 2$
What is remainder of 365 when dividing by 7 ? 1
Today is day 3.
Get Day: $3+20 * 2+60 * 1=103$
Remainder when dividing by 7 ? 5 .
Or September 14, 2096 is Friday!
Further Simplify Calculation:
20 has remainder 6 when divided by 7 .
60 has remainder 4 when divided by 7 .
Get Day: $3+6^{\star} 2+4^{*} 1=19$.
Or Day 5. September 14, 2096 is Friday.
"Reduce" at any time in calculation!

Clock Math

If it is 1:00 now.
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00
Actually $4: 00$.
16 is the "same as 4 " with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.
What time is it in 100 hours? 101:00! or 5:00
5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.
Custom is only to use the representative in $\{1, \ldots, 11,12\}$

Modular Arithmetic: Basics.

x is congruent to y modulo m or " $x \equiv y(\bmod m)$ "
if and only if $(x-y)$ is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or $x=y+k m$ for some integer k.
Mod 7 equivalence classes:
$\{\ldots,-7,0,7,14, \ldots\} \quad\{\ldots,-6,1,8,15, \ldots\} \ldots$
Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y
or " $a \equiv c(\bmod m)$ and $b \equiv d(\bmod m)$
$\Longrightarrow a+b \equiv c+d(\bmod m)$ and $a \cdot b=c \cdot d(\bmod m) "$
Proof: If $a \equiv c(\bmod m)$, then $a=c+k m$ for some integer k.
If $b \equiv d(\bmod m)$, then $b=d+j m$ for some integer j.
Therefore, $a+b=c+d+(k+j) m$ and since $k+j$ is integer.
$\Longrightarrow a+b \equiv c+d(\bmod m)$.
Can calculate with representative in $\{0, \ldots, m-1\}$.

Day of the week

Today is Wednesday
What day is it a year from now? on September 14, 2017 ?
Number days
0 for Sunday, 1 for Monday, 6 for Saturday
Today: day 3.
3 days from now. day 6 or Saturday
23 days from now. day 26 or day 5, which is Friday!
two days are equivalent up to addition/subtraction of multiple of 7 . 9 days from now is day 5 again, Friday!
What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 3+365 or day 368.
Smallest representation:
subtract 7 until smaller than 7 . divide and get remainder.
368/7 leaves quotient of 52 and remainder 4.
or September 14, 2017 is Day 4, a Thursday.

Notation

$x(\bmod m)$ or $\bmod (x, m)$ - remainder of x divided by m in
$\{0, \ldots, m-1\}$.
$\bmod (x, m)=x-\left\lfloor\frac{x}{m}\right\rfloor m$
$\left\lfloor\left.\frac{x}{m} \right\rvert\,\right.$ is quotient.
$\bmod (29,12)=29-\left(\left\lfloor\frac{29}{12}\right\rfloor\right) * 12=29-(2) * 12=5$
Recap:
$a \equiv b(\bmod m)$.
Says two integers a and b are equivalent modulo m.

Modulus is m

Inverses and Factors.

Division: multiply by multiplicative inverse

$$
2 x=3 \Longrightarrow(1 / 2) \cdot 2 x=(1 / 2) 3 \Longrightarrow x=3 / 2
$$

Multiplicative inverse of x is y where $x y=1$

 1 is multiplicative identity element.

 1 is multiplicative identity element.}In modular arithmetic, 1 is the multiplicative identity element
Multiplicative inverse of $x \bmod m$ is y with $x y=1(\bmod m)$.
For 4 modulo 7 inverse is $2: \quad 2 \cdot 4 \equiv 8 \equiv 1(\bmod 7)$.
Can solve $4 x=5(\bmod 7)$

Pror 1 Hob(mpd 13). no multiplicative inverse!
$x=3(\bmod 7)$
$8 k-12 \ell$ is a multiple of four for any ℓ and $k \Longrightarrow$
$8 k \not \equiv 1(\bmod 12)$ for any k

Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m ?
Find $\operatorname{gcd}(x, m)$.
Greater than 1? No multiplicative inverse
Equal to 1? Mutliplicative inverse
Algorithm: Try all numbers up to x to see if it divides both x and m.
Very slow.
Next: A Faster algorithm

Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and $m, \operatorname{gcd}(x, m)$, is 1 , then x has a multiplicative inverse modulo m

Proof \Longrightarrow : The set $S=\{0 x, 1 x, \ldots,(m-1) x\}$ contains
$y \equiv 1 \bmod m$ if all distinct modulo m
Pigenhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m
\Longrightarrow One must correspond to 1 modulo m.
If not distinct, then $a, b \in\{0, \ldots, m-1\}$, where
$(a x \equiv b x(\bmod m)) \Longrightarrow(a-b) x \equiv 0(\bmod m)$
Or $(a-b) x=k m$ for some integer k
$\operatorname{gcd}(x, m)=1$
\Longrightarrow Prime factorization of m and x do not contain common primes.
$\Longrightarrow(a-b)$ factorization contains all primes in m's factorization.
So $(a-b)$ has to be multiple of m.
$\Longrightarrow(a-b) \geq m$. But $a, b \in\{0, \ldots m-1\}$. Contradiction.

Midterm1!!!

Watch Piazza for Logistics!

Watch Piazza for Advice!
Study/review sessions this weekend! See Piazza
Important reminders:

1. Midterm room assignment: based on your official section enrollment.
2. Grading option form is due tonight. Details are on Piazza

Any other issues.... Email logistics@eecs70.org / Private message on piazza.
Happy Studying!!!!!!!!!!!!!!!!

Proof review. Consequence.

Thm: If $\operatorname{gcd}(x, m)=1$, then x has a multiplicative inverse modulo m.
Proof Sketch: The set $S=\{0 x, 1 x, \ldots,(m-1) x\}$ contains
$y \equiv 1 \bmod m$ if all distinct modulo m
For $x=4$ and $m=6$. All products of 4 ...
$S=\{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\}=\{0,4,8,12,16,20\}$ reducing (mod 6$)$
$S=\{0,4,2,0,4,2\}$
Not distinct. Common factor 2.
For $x=5$ and $m=6$
$S=\{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\}=\{0,5,4,3,2,1\}$
All distinct, contains 1 ! 5 is multiplicative inverse of $5(\bmod 6)$.
$5 x=3(\bmod 6)$ What is x ? Multiply both sides by 5 .
$x=15=3(\bmod 6)$
$4 x=3(\bmod 6)$ No solutions. Can't get an odd
$4 x=2(\bmod 6)$ Two solutions! $x=2,5(\bmod 6)$
Very different for elements with inverses.

