Today.

Types of graphs.

Today.

Types of graphs.

Complete Graphs.

Trees.

Hypercubes.

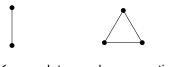
Today.

Types of graphs.

Complete Graphs.

Trees.

Hypercubes.



 K_n complete graph on n vertices.

 K_n complete graph on n vertices. All edges are present.

 K_n complete graph on n vertices. All edges are present. Everyone is my neighbor.

 K_n complete graph on n vertices.

- All edges are present.
- Everyone is my neighbor.
- Each vertex is adjacent to every other vertex.

 K_n complete graph on n vertices.

- All edges are present.
- Everyone is my neighbor.
- Each vertex is adjacent to every other vertex.

 K_n complete graph on n vertices.

All edges are present.

Everyone is my neighbor.

Each vertex is adjacent to every other vertex.

How many edges?

 K_n complete graph on n vertices.

All edges are present.

Everyone is my neighbor.

Each vertex is adjacent to every other vertex.

How many edges?

Each vertex is incident to n-1 edges.

 K_n complete graph on n vertices.

All edges are present.

Everyone is my neighbor.

Each vertex is adjacent to every other vertex.

How many edges?

Each vertex is incident to n-1 edges.

Sum of degrees is n(n-1).

 K_n complete graph on n vertices.

All edges are present.

Everyone is my neighbor.

Each vertex is adjacent to every other vertex.

How many edges?

Each vertex is incident to n-1 edges.

Sum of degrees is n(n-1).

 \implies Number of edges is n(n-1)/2.

 K_n complete graph on n vertices.

All edges are present.

Everyone is my neighbor.

Each vertex is adjacent to every other vertex.

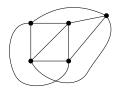
How many edges?

Each vertex is incident to n-1 edges.

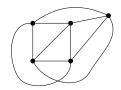
Sum of degrees is n(n-1).

 \implies Number of edges is n(n-1)/2.

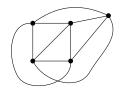
Remember sum of degree is 2|E|.



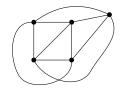
 K_5 is not planar.



 K_5 is not planar. Cannot be drawn in the plane without an edge crossing!



 K_5 is not planar. Cannot be drawn in the plane without an edge crossing! Prove it!

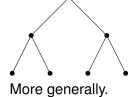


 K_5 is not planar.

Cannot be drawn in the plane without an edge crossing! Prove it! Read Note 5!!

Trees!

Graph G = (V, E). Binary Tree!



Definitions:

Definitions:

A connected graph without a cycle.

Definitions:

A connected graph without a cycle. A connected graph with |V| - 1 edges.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected?

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.

|V| – 1 edges and connected?

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.

|V|-1 edges and connected? Yes.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes. |V| - 1 edges and connected? Yes. removing any edge disconnects it.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.

|V|-1 edges and connected? Yes.

removing any edge disconnects it. Harder to check.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.

|V|-1 edges and connected? Yes.

removing any edge disconnects it. Harder to check. but yes.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.

|V| – 1 edges and connected? Yes.

removing any edge disconnects it. Harder to check. but yes.

Adding any edge creates cycle.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.

|V| – 1 edges and connected? Yes.

removing any edge disconnects it. Harder to check. but yes.

Adding any edge creates cycle. Harder to check.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.

|V| – 1 edges and connected? Yes.

removing any edge disconnects it. Harder to check. but yes.

Adding any edge creates cycle. Harder to check. but yes.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.

|V| – 1 edges and connected? Yes.

removing any edge disconnects it. Harder to check. but yes.

Adding any edge creates cycle. Harder to check. but yes.

Definitions:

A connected graph without a cycle.

A connected graph with |V| - 1 edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.

|V| – 1 edges and connected? Yes.

removing any edge disconnects it. Harder to check. but yes.

Adding any edge creates cycle. Harder to check. but yes.

Tree or not tree!

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow (only if):

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow **(only if):** By induction on |V|.

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow **(only if):** By induction on |V|. Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow **(only if):** By induction on |V|. Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow (only if): By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow **(only if):** By induction on |V|. Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1 Consider some vertex v in G. How is it connected to the rest of G?

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow **(only if):** By induction on |V|. Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1 Consider some vertex v in G. How is it connected to the rest of G? Might it be connected by just 1 edge?

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow **(only if):** By induction on |V|. Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1 Consider some vertex v in G. How is it connected to the rest of G? Might it be connected by just 1 edge?

Is there a Degree 1 vertex?

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow (only if): By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1 Consider some vertex v in G. How is it connected to the rest of G? Might it be connected by just 1 edge?

Is there a Degree 1 vertex? Is the rest of *G* connected?

Theorem:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."

Lemma: If v is a degree 1 in connected graph G, G-v is connected. **Proof:**

For $x \neq v, y \neq v \in V$,

Theorem:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."

Lemma: If v is a degree 1 in connected graph G, G-v is connected. **Proof:**

For $x \neq v, y \neq v \in V$, there is path between x and y in G since connected.

Theorem:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."

Lemma: If v is a degree 1 in connected graph G, G-v is connected. **Proof:**

For $x \neq v, y \neq v \in V$, there is path between x and y in G since connected. and does not use v (degree 1)

Theorem:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."

Lemma: If v is a degree 1 in connected graph G, G-v is connected. **Proof:**

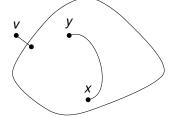
For $x \neq v, y \neq v \in V$, there is path between x and y in G since connected. and does not use v (degree 1) $\implies G - v$ is connected.

Theorem:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."

Lemma: If v is a degree 1 in connected graph G, G-v is connected. **Proof:**

For $x \neq v, y \neq v \in V$, there is path between x and y in G since connected. and does not use v (degree 1) $\implies G - v$ is connected.

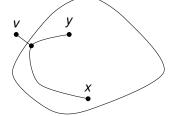


Theorem:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."

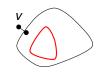
Lemma: If v is a degree 1 in connected graph G, G-v is connected. **Proof:**

For $x \neq v, y \neq v \in V$, there is path between x and y in G since connected. and does not use v (degree 1) $\implies G - v$ is connected.



Thm:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."



Proof of \Longrightarrow : By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow : By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Claim: There is a degree 1 node.

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow : By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Claim: There is a degree 1 node.

Proof: First, connected \implies every vertex degree ≥ 1 .

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow : By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Claim: There is a degree 1 node.

Proof: First, connected \implies every vertex degree ≥ 1 .

Sum of degrees is 2|V|-2

Thm:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow : By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Claim: There is a degree 1 node.

Proof: First, connected \implies every vertex degree ≥ 1 .

Sum of degrees is 2|V|-2Average degree 2-(2/|V|)

Thm:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow : By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Claim: There is a degree 1 node.

Proof: First, connected \implies every vertex degree ≥ 1 .

Sum of degrees is 2|V|-2Average degree 2-(2/|V|)

Not everyone is bigger than average!

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow : By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Claim: There is a degree 1 node.

Proof: First, connected \implies every vertex degree ≥ 1 .

Sum of degrees is 2|V|-2

Average degree 2 - (2/|V|)

Not everyone is bigger than average!

By degree 1 removal lemma, G - v is connected.

Thm:

"G connected and has |V| - 1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow : By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Claim: There is a degree 1 node.

Proof: First, connected \implies every vertex degree ≥ 1 .

Sum of degrees is 2|V|-2

Average degree 2 - (2/|V|)

Not everyone is bigger than average!

By degree 1 removal lemma, G - v is connected.

G-v has |V|-1 vertices and |V|-2 edges so by induction

Thm:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow : By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Claim: There is a degree 1 node.

Proof: First, connected \implies every vertex degree ≥ 1 .

Sum of degrees is 2|V|-2

Average degree 2 - (2/|V|)

Not everyone is bigger than average!

By degree 1 removal lemma, G - v is connected.

G-v has |V|-1 vertices and |V|-2 edges so by induction \implies no cycle in G-v.

Thm:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow : By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Claim: There is a degree 1 node.

Proof: First, connected \implies every vertex degree ≥ 1 .

Sum of degrees is 2|V|-2

Average degree 2 - (2/|V|)

Not everyone is bigger than average!

By degree 1 removal lemma, G - v is connected.

G-v has |V|-1 vertices and |V|-2 edges so by induction \implies no cycle in G-v.

And no cycle in G since degree 1 cannot participate in cycle.

Thm:

"G connected and has |V|-1 edges" \equiv "G is connected and has no cycles."

Proof of \Longrightarrow : By induction on |V|.

Base Case: |V| = 1. 0 = |V| - 1 edges and has no cycles.

Induction Step: Assume for G with up to k vertices. Prove for k+1

Claim: There is a degree 1 node.

Proof: First, connected \implies every vertex degree ≥ 1 .

Sum of degrees is 2|V|-2

Average degree 2 - (2/|V|)

Not everyone is bigger than average!

By degree 1 removal lemma, G - v is connected.

G-v has |V|-1 vertices and |V|-2 edges so by induction \implies no cycle in G-v.

And no cycle in G since degree 1 cannot participate in cycle.

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has |V|-1 edges"

Proof:

Thm:

"G is connected and has no cycles" \implies "G connected and has

| *V* | - 1 edges"

Proof: Can we use the "degree 1" idea again?

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has |V|-1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices.

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has |V|-1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices.

Until get stuck. Why?

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has |V|-1 edges"

Proof: Can we use the "degree 1" idea again? Walk from a vertex using untraversed edges and vertices. Until get stuck. Why? Finitely-many vertices, no cycle!

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has |V|-1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices. Until get stuck. Why? Finitely-many vertices, no cycle!

Claim: Degree 1 vertex.

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has

| *V*| − 1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices. Until get stuck. Why? Finitely-many vertices, no cycle!

Claims Degree 1 workers

Claim: Degree 1 vertex.

Proof of Claim:

Can't visit more than once since no cycle.

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has |V|-1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices.

Until get stuck. Why? Finitely-many vertices, no cycle!

Claim: Degree 1 vertex.

Proof of Claim:

Can't visit more than once since no cycle.

Entered.

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has

| *V*| − 1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices.

Until get stuck. Why? Finitely-many vertices, no cycle!

Claim: Degree 1 vertex.

Proof of Claim:

Can't visit more than once since no cycle.

Entered. Didn't leave.

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has

| *V*| − 1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices.

Until get stuck. Why? Finitely-many vertices, no cycle!

Claim: Degree 1 vertex.

Proof of Claim:

Can't visit more than once since no cycle.

Entered. Didn't leave. Only one incident edge.

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has |V|-1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices. Until get stuck. Why? Finitely-many vertices, no cycle!

Claim: Degree 1 vertex.

Proof of Claim:

Can't visit more than once since no cycle.

Entered. Didn't leave. Only one incident edge.

Removing node doesn't create cycle.

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has |V|-1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices.

Until get stuck. Why? Finitely-many vertices, no cycle!

Claim: Degree 1 vertex.

Proof of Claim:

Can't visit more than once since no cycle.

Entered. Didn't leave. Only one incident edge.

Removing node doesn't create cycle.

New graph is connected. (from our Degree 1 lemma).

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has |V|-1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices.

Until get stuck. Why? Finitely-many vertices, no cycle!

Claim: Degree 1 vertex.

Proof of Claim:

Can't visit more than once since no cycle.

Entered. Didn't leave. Only one incident edge.

Removing node doesn't create cycle.

New graph is connected. (from our Degree 1 lemma).

By induction G - v has |V| - 2 edges.

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has |V|-1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices.

Until get stuck. Why? Finitely-many vertices, no cycle!

Claim: Degree 1 vertex.

Proof of Claim:

Can't visit more than once since no cycle.

Entered. Didn't leave. Only one incident edge.

Removing node doesn't create cycle.

New graph is connected. (from our Degree 1 lemma).

By induction G - v has |V| - 2 edges.

G has one more or |V| - 1 edges.

Thm:

"G is connected and has no cycles" \Longrightarrow "G connected and has |V|-1 edges"

Proof: Can we use the "degree 1" idea again?

Walk from a vertex using untraversed edges and vertices.

Until get stuck. Why? Finitely-many vertices, no cycle!

Claim: Degree 1 vertex.

Proof of Claim:

Can't visit more than once since no cycle.

Entered. Didn't leave. Only one incident edge.

Removing node doesn't create cycle.

New graph is connected. (from our Degree 1 lemma).

By induction G - v has |V| - 2 edges.

G has one more or |V| - 1 edges.

Complete graphs, really well connected!

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

$$(|V|-1)$$

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

$$(|V|-1)$$

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

$$(|V|-1)$$

Hypercubes.

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

$$(|V|-1)$$

Hypercubes. Well connected.

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

$$(|V|-1)$$

Hypercubes. Well connected. $|V| \log |V|$ edges!

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

$$(|V|-1)$$

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

$$(|V|-1)$$

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

$$(|V|-1)$$

$$G = (V, E)$$

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

$$(|V|-1)$$

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

$$(|V|-1)$$

Hypercubes. Well connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,

 $|E| = \{(x, y) | x \text{ and } y \text{ differ in one bit position.} \}$

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

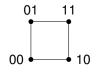
$$(|V|-1)$$

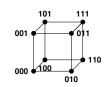
$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,

$$V = \{0, 1\}^n$$

$$|E| = \{(x,y)|x \text{ and } y \text{ differ in one bit position.}\}$$





Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

Trees, connected, few edges.

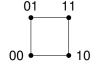
$$(|V|-1)$$

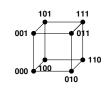
Hypercubes. Well connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } \}$

$$|E| = \{(x,y)|x \text{ and } y \text{ differ in one bit position.}\}$$





2ⁿ vertices.

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

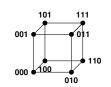
Trees, connected, few edges.

$$(|V|-1)$$

Hypercubes. Well connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$



2ⁿ vertices. number of *n*-bit strings!

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

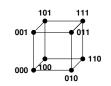
Trees, connected, few edges.

$$(|V|-1)$$

Hypercubes. Well connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y) | x \text{ and } y \text{ differ in one bit position.}\}$



 2^n vertices. number of *n*-bit strings! $n2^{n-1}$ edges.

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

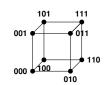
Trees, connected, few edges.

$$(|V|-1)$$

Hypercubes. Well connected. $|V|\log|V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$



2ⁿ vertices. number of *n*-bit strings!

 $n2^{n-1}$ edges.

 2^n vertices each of degree n

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

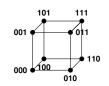
Trees, connected, few edges.

$$(|V|-1)$$

Hypercubes. Well connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y) | x \text{ and } y \text{ differ in one bit position.} \}$



 2^n vertices. number of *n*-bit strings!

 $n2^{n-1}$ edges.

 2^n vertices each of degree n total degree is $n2^n$

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

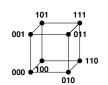
Trees, connected, few edges.

$$(|V|-1)$$

Hypercubes. Well connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0,1\}^n$,
 $|E| = \{(x,y)|x \text{ and } y \text{ differ in one bit position.}\}$



 2^n vertices. number of *n*-bit strings!

 $n2^{n-1}$ edges.

2ⁿ vertices each of degree n total degree is n2ⁿ and half as many edges!

Complete graphs, really well connected! Lots of edges.

$$|V|(|V|-1)/2$$

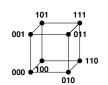
Trees, connected, few edges.

$$(|V|-1)$$

Hypercubes. Well connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0,1\}^n$,
 $|E| = \{(x,y)|x \text{ and } y \text{ differ in one bit position.}\}$



 2^n vertices. number of *n*-bit strings!

 $n2^{n-1}$ edges.

2ⁿ vertices each of degree n total degree is n2ⁿ and half as many edges!

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

Recursive Definition.

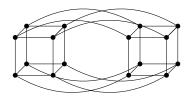
A 0-dimensional hypercube is a node labelled with the empty string of bits.

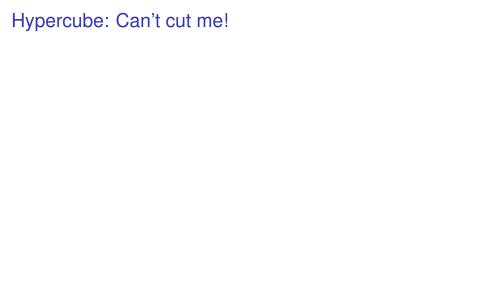
An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x,1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x,1x).





Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to |V - S| $|E \cap S \times (V - S)| \ge |S|$

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to |V - S|: $|E \cap S \times (|V - S|)| \ge |S|$ Terminology:

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\geq |S|$ edges connecting it to V - S: $|E \cap S \times (V - S)| \geq |S|$ Terminology:

(S, V - S) is cut.

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to |V - S|: $|E \cap S \times (|V - S|)| \ge |S|$ Terminology:

(S, V - S) is cut.

 $(E \cap S \times (V - S))$ - cut edges.

Hypercube: Can't cut me!

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\geq |S|$ edges connecting it to V - S: $|E \cap S \times (V - S)| \geq |S|$

Terminology:

(S, V - S) is cut. $(E \cap S \times (V - S))$ - cut edges.

Hypercube: Can't cut me!

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to |V - S| if $|E \cap S \times (|V - S|)| \ge |S|$

Terminology:

$$(S, V - S)$$
 is cut.
 $(E \cap S \times (V - S))$ - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: n = 1

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $\textit{S} = \{0\}$ has one edge leaving.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $S = \{0\}$ has one edge leaving.

 $S = \emptyset$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $S = \{0\}$ has one edge leaving.

 $S = \emptyset$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $S = \{0\}$ has one edge leaving.

 $S = \emptyset$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

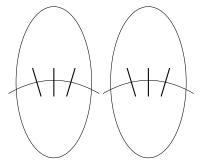
Case 1: Count edges inside subcube inductively.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.



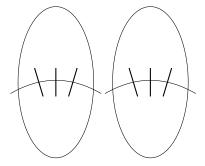
Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

Case 2: Count inside and across.



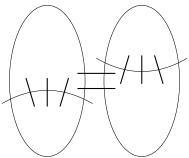
Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

Case 2: Count inside and across.



Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Recursive definition:

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them. $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_X that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_X that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.}$$

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \ge |S_1|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \ge |S_1|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.}$$

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \ge |S_1|$.

Total cut edges $\geq |S_0| + |S_1| = |S|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.}$$

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1:
$$|S_0| \le |V_0|/2$$
, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \geq |S_1|$.

Total cut edges $\geq |S_0| + |S_1| = |S|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|. **Proof:** Induction Step. Case 2. $|S_0| > |V_0|/2$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1: $|S_0|$, $|S_1| \le |V|/2$

 $|\mathcal{S}_1| \leq |\mathit{V}_1|/2 \text{ since } |\mathcal{S}| \leq |\mathit{V}|/2.$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1: $|S_0|$, $|S_1| \le |V|/2$

 $|S_1| \le |V_1|/2 \text{ since } |S| \le |V|/2.$

 $\implies \geq |S_1|$ edges cut in E_1 .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1: $|S_0|, |S_1| \le |V|/2$

 $|S_1| \le |V_1|/2 \text{ since } |S| \le |V|/2.$

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \implies |V_0 - S_0| \le |V_0|/2$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1: $|S_0|$, $|S_1| \le |V|/2$

$$|S_1| \le |V_1|/2$$
 since $|S| \le |V|/2$.

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \implies |V_0 - S_0| \le |V_0|/2$$

$$\implies \ge |V_0| - |S_0|$$
 edges cut in E_0 .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1:
$$|S_0|, |S_1| \le |V|/2$$

 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.

$$\Rightarrow > |S_1|$$
 edges cut in E_1 .

$$|S_0| > |V_0|/2 \implies |V_0 - S_0| < |V_0|/2$$

$$\implies \ge |\textit{V}_0| - |\textit{S}_0| \text{ edges cut in } \textit{E}_0.$$

Edges in E_x connect corresponding nodes.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1:
$$|S_0|, |S_1| \le |V|/2$$

$$|S_1| \le |V_1|/2$$
 since $|S| \le |V|/2$.

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \Longrightarrow |V_0 - S_0| \le |V_0|/2$$

$$\implies \ge |V_0| - |S_0|$$
 edges cut in E_0 .

Edges in E_x connect corresponding nodes.

$$\implies$$
 = $|S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1:
$$|S_0|, |S_1| \le |V|/2$$

$$|S_1| \le |V_1|/2$$
 since $|S| \le |V|/2$.

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \Longrightarrow |V_0 - S_0| \le |V_0|/2$$

$$\implies \ge |V_0| - |S_0|$$
 edges cut in E_0 .

Edges in E_x connect corresponding nodes.

$$\implies$$
 = $|S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1:
$$|S_0|, |S_1| \le |V|/2$$

$$|S_1| \le |V_1|/2$$
 since $|S| \le |V|/2$.

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \implies |V_0 - S_0| \le |V_0|/2$$

 $\implies |V_0| = |S_0|$ edges cut in F_0

$$\implies \ge |V_0| - |S_0|$$
 edges cut in E_0 .

Edges in E_x connect corresponding nodes.

$$\implies$$
 = $|S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1:
$$|S_0|, |S_1| \le |V|/2$$

$$|S_1| \le |V_1|/2 \text{ since } |S| \le |V|/2.$$

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \implies |V_0 - S_0| \le |V_0|/2$$

$$\implies \ge |V_0| - |S_0|$$
 edges cut in E_0 .

Edges in E_x connect corresponding nodes.

$$\implies$$
 = $|S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

 \geq

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1:
$$|S_0|, |S_1| \le |V|/2$$

$$|S_1| \le |V_1|/2$$
 since $|S| \le |V|/2$.

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \implies |V_0 - S_0| \le |V_0|/2$$

 $\implies > |V_0| - |S_0|$ edges cut in F_0

$$\implies \ge |V_0| - |S_0|$$
 edges cut in E_0 .

Edges in E_x connect corresponding nodes.

$$\implies$$
 = $|S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1:
$$|S_0|, |S_1| \le |V|/2$$

$$|S_1| \le |V_1|/2 \text{ since } |S| \le |V|/2.$$

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \implies |V_0 - S_0| \le |V_0|/2$$

$$\Longrightarrow \ge |V_0| - |S_0|$$
 edges cut in E_0 .

Edges in E_x connect corresponding nodes.

$$\implies$$
 = $|S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1:
$$|S_0|, |S_1| \le |V|/2$$

$$|S_1| \le |V_1|/2$$
 since $|S| \le |V|/2$.

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \implies |V_0 - S_0| \le |V_0|/2$$

 $\implies > |V_0| - |S_0| \text{ edges cut in } E_0.$

Edges in E_x connect corresponding nodes.

$$\implies$$
 = $|S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1:
$$|S_0|, |S_1| \le |V|/2$$

$$|S_1| \le |V_1|/2$$
 since $|S| \le |V|/2$.

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \Longrightarrow |V_0 - S_0| \le |V_0|/2$$

$$\implies \ge |V_0| - |S_0|$$
 edges cut in E_0 .

Edges in E_x connect corresponding nodes.

$$\implies$$
 = $|S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1: $|S_0|, |S_1| \le |V|/2$

$$|S_1| \le |V_1|/2 \text{ since } |S| \le |V|/2.$$

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \implies |V_0 - S_0| \le |V_0|/2$$

 $\implies > |V_0| - |S_0| \text{ edges cut in } E_0.$

Edges in E_x connect corresponding nodes.

$$\implies = |S_0| - |S_1|$$
 edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$$

 $|V_0|$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1:
$$|S_0|, |S_1| \le |V|/2$$

$$|S_1| \le |V_1|/2 \text{ since } |S| \le |V|/2.$$

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \implies |V_0 - S_0| \le |V_0|/2$$

 $\implies > |V_0| - |S_0| \text{ edges cut in } E_0.$

Edges in
$$E_x$$
 connect corresponding nodes.

$$\implies = |S_0| - |S_1|$$
 edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$$

 $|V_0| = |V|/2 > |S|.$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|/2$.

Recall Case 1:
$$|S_0|, |S_1| \le |V|/2$$

$$|S_1| \le |V_1|/2$$
 since $|S| \le |V|/2$.

$$\implies \ge |S_1|$$
 edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \implies |V_0 - S_0| \le |V_0|/2$$

$$\implies \geq |\textit{V}_0| - |\textit{S}_0| \text{ edges cut in } \textit{E}_0.$$

Edges in E_x connect corresponding nodes.

$$\implies$$
 = $|S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$$

 $|V_0| = |V|/2 \geq |S|.$

Also, case 3 where $|S_1| \ge |V|/2$ is symmetric.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$ Central object of study.