Introduced by Gale and Shapley in a 1962 paper in the American Mathematical Monthly.

Introduced by Gale and Shapley in a 1962 paper in the American Mathematical Monthly.

Proved useful in many settings, led eventually to 2012 Nobel Prize in Economics (to Shapley and Roth).

Introduced by Gale and Shapley in a 1962 paper in the American Mathematical Monthly.

Proved useful in many settings, led eventually to 2012 Nobel Prize in Economics (to Shapley and Roth).

Original Problem Setting:

Introduced by Gale and Shapley in a 1962 paper in the American Mathematical Monthly.

Proved useful in many settings, led eventually to 2012 Nobel Prize in Economics (to Shapley and Roth).

Original Problem Setting:

Small town with n men and n women.

Introduced by Gale and Shapley in a 1962 paper in the American Mathematical Monthly.

Proved useful in many settings, led eventually to 2012 Nobel Prize in Economics (to Shapley and Roth).

Original Problem Setting:

- Small town with n men and n women.
- Each woman has a ranked preference list of men.

Introduced by Gale and Shapley in a 1962 paper in the American Mathematical Monthly.

Proved useful in many settings, led eventually to 2012 Nobel Prize in Economics (to Shapley and Roth).

Original Problem Setting:

- Small town with n men and n women.
- Each woman has a ranked preference list of men.
- Each man has a ranked preference list of women.

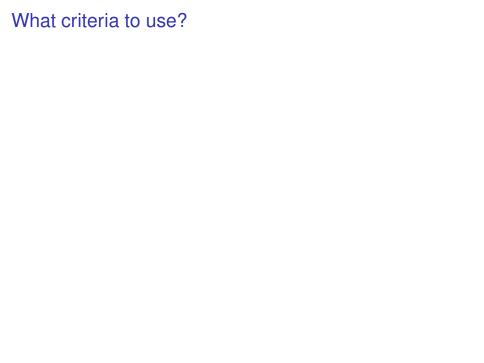
Introduced by Gale and Shapley in a 1962 paper in the American Mathematical Monthly.

Proved useful in many settings, led eventually to 2012 Nobel Prize in Economics (to Shapley and Roth).

Original Problem Setting:

- Small town with n men and n women.
- Each woman has a ranked preference list of men.
- Each man has a ranked preference list of women.

How should they be matched?



What criteria to use?

Maximize number of first choices.

What criteria to use?

- Maximize number of first choices.
- Minimize difference between preference ranks.

What criteria to use?

- Maximize number of first choices.
- Minimize difference between preference ranks.
- Look for stable matchings

Consider the couples:

- Alice and Bob
- Mary and John

Consider the couples:

- Alice and Bob
- Mary and John

Bob prefers Mary to Alice.

Consider the couples:

- Alice and Bob
- Mary and John

Bob prefers Mary to Alice.

Mary prefers Bob to John.

Consider the couples:

- Alice and Bob
- Mary and John

Bob prefers Mary to Alice.

Mary prefers Bob to John.

Uh...oh! Unstable pairing.

So..

Produce a pairing where there is no running off!

So...

Produce a pairing where there is no running off!

Definition: A **pairing** is disjoint set of *n* man-woman pairs.

So..

Produce a pairing where there is no running off!

Definition: A **pairing** is disjoint set of *n* man-woman pairs.

Example: A pairing $S = \{(Bob, Alice); (John, Mary)\}.$

So...

Produce a pairing where there is no running off!

Definition: A **pairing** is disjoint set of *n* man-woman pairs.

Example: A pairing $S = \{(Bob, Alice); (John, Mary)\}.$

Definition: A **rogue couple** *b*, *g* for a pairing *S*:

b and g prefer each other to their partners in S

So...

Produce a pairing where there is no running off!

Definition: A **pairing** is disjoint set of *n* man-woman pairs.

Example: A pairing $S = \{(Bob, Alice); (John, Mary)\}.$

Definition: A **rogue couple** b, g for a pairing S: b and g prefer each other to their partners in S

Example: Bob and Mary are a rogue couple in S.

Given a set of preferences.

Given a set of preferences.

Is there a stable pairing? How does one find it?

Given a set of preferences.

Is there a stable pairing? How does one find it?

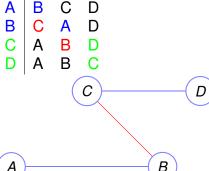
Consider a variant of this problem: stable roommates.

```
A B C D
B C A D
C A B D
D A B C
```

(A)———(B)

Given a set of preferences.

Is there a stable pairing? How does one find it?

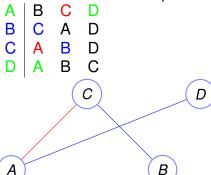


Given a set of preferences.

Is there a stable pairing? How does one find it?

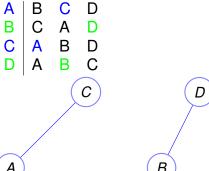
Given a set of preferences.

Is there a stable pairing? How does one find it?



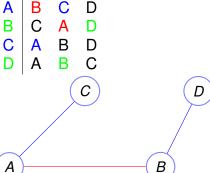
Given a set of preferences.

Is there a stable pairing? How does one find it?



Given a set of preferences.

Is there a stable pairing? How does one find it?



Given a set of preferences.

Is there a stable pairing? How does one find it?

Consider a variant of this problem: stable roommates.

```
A B C D
B C A D
C A B D
D A B C
```

(A)———(B)

Given a set of preferences.

Is there a stable pairing? How does one find it?

Consider a variant of this problem: stable roommates.

A B C D
B C A D
C A B D
D A B C

Given a set of preferences.

Is there a stable pairing? How does one find it?

Consider a variant of this problem: stable roommates.

A B C D
B C A D
C A B D
D A B C

Each Day:

Each Day:

1. Each man **proposes** to his favorite woman on his list.

Each Day:

- 1. Each man **proposes** to his favorite woman on his list.
- Each woman rejects all but her favorite proposer (whom she puts on a string.)

Each Day:

- 1. Each man **proposes** to his favorite woman on his list.
- 2. Each woman rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected man crosses rejecting woman off his list.

Each Day:

- 1. Each man **proposes** to his favorite woman on his list.
- Each woman rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected man crosses rejecting woman off his list.

Stop when each woman gets exactly one proposal.

Each Day:

- 1. Each man **proposes** to his favorite woman on his list.
- 2. Each woman rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected man crosses rejecting woman off his list.

Stop when each woman gets exactly one proposal. Does this terminate?

Each Day:

- 1. Each man **proposes** to his favorite woman on his list.
- 2. Each woman rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected man crosses rejecting woman off his list.

Stop when each woman gets exactly one proposal. Does this terminate?

...produce a pairing?

Each Day:

- 1. Each man **proposes** to his favorite woman on his list.
- 2. Each woman rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected man crosses rejecting woman off his list.

Stop when each woman gets exactly one proposal. Does this terminate?

...produce a pairing?

....a stable pairing?

Each Day:

- 1. Each man **proposes** to his favorite woman on his list.
- 2. Each woman rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected man crosses rejecting woman off his list.

Stop when each woman gets exactly one proposal. Does this terminate?

...produce a pairing?

....a stable pairing?

Do men or women do "better"?

Each Day:

- 1. Each man **proposes** to his favorite woman on his list.
- 2. Each woman rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected man crosses rejecting woman off his list.

Stop when each woman gets exactly one proposal. Does this terminate?

...produce a pairing?

....a stable pairing?

Do men or women do "better"?

Men					Wor		
A B C	1	2	3	1	C A A	Α	В
В	1	2	3	2	Α	В	С
C	2	1	3	3	Α	С	В

Men					Wor	nen	
Α	1	2	3	1	С	Α	В
В	1	2	3	2	Α	В	С
С	2	1	3	3	Α	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1					
2					
3					

	Me	en			Wor	nen	
Α	1	2	3	1	С	Α	В
В	1	2	3	2	Α	В	С
С	2	1	3	3	Α	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, B				
2	С				
3					

	Me	en			Wor	nen	
	1			1	С	Α	В
В	X	2	3	2			С
С	2	1	3	3	Α	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	Α, 🗶				
2	С				
3					

	Me	en			Wor	nen	
	1			1	С	Α	В
В	X	2	3	2	Α	В	С
С	2	1	3	3	Α	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	Α, 🗶	Α			
2	С	B, C			
3					

	Me	en			Wor	nen	
	1						В
В				2	Α	В	С
C	X	1	3	3	Α	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	Α, 🗶	Α			
2	С	В, 🐹			
3					

	Me	en			Wor	nen	
Α	1	2	3	1	С	Α	В
В	X	2	3	2	Α	В	С
С	X	1	3	3	Α	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	Α, 🗶	Α	A,C		
2	С	В, 🐹	В		
3					

	Me	en			Wor	nen	
Α	X	2	3	1	С	Α	В
	X	2	3	2	Α	В	С
С	X	1	3	3	Α	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	Α, 🗶	Α	X,C		
2	С	В, 🐹	В		
3					

	Me	en			Wor	nen	
Α	X	2	3	1	С	Α	В
	X	2	3	2	Α	В	С
С	X	1	3	3	Α	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	Α, 🐹	Α	X,C	С	
2	С	В, 🐹	В	A,B	
3					

	Me			Women			
Α	X X X	2	3	1	С	Α	В
В	X	X	3	2	Α	В	С
С	X	1	3	3	Α	С	В

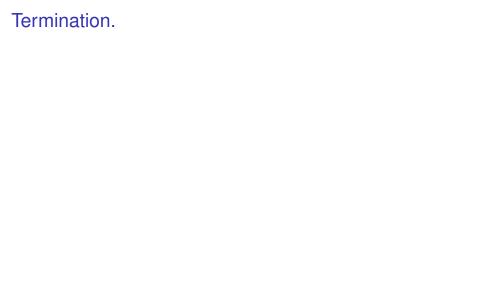
	Day 1	Day 2	Day 3	Day 4	Day 5
1	Α, 🗶	Α	X,C	С	
2	С	В, 🐹	В	A,🔀	
3					

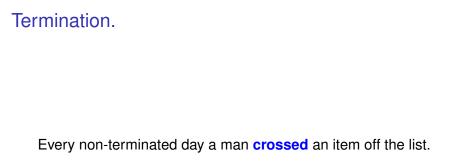
		en					
Α	X	2 X	3	1	C	Α	В
В	X	X	3	2	Α	В	C B
С	X	1	3	3	Α	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	Α, 🐹	Α	X,C	С	С
2	С	В, 🐹	В	A,🔀	A
3					В

		en					
Α	X	2 X	3	1	C	Α	В
В	X	X	3	2	Α	В	C B
С	X	1	3	3	Α	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	Α, 🐹	Α	X,C	С	С
2	С	В, 🐹	В	A,🔀	A
3					В





Every non-terminated day a man **crossed** an item off the list.

Total size of lists?

Every non-terminated day a man **crossed** an item off the list. Total size of lists? *n* men, *n* length list.

Every non-terminated day a man **crossed** an item off the list.

Total size of lists? n men, n length list. n^2

Every non-terminated day a man **crossed** an item off the list. Total size of lists? n men, n length list. n^2 Terminates in at most $n^2 + 1$ steps!

Improvement Lemma:

Improvement Lemma:

If man b proposes to a woman on day k,

Improvement Lemma:

If man b proposes to a woman on day k, every future day, she has on a string a man b' she likes at least as much as b.

Improvement Lemma:

If man b proposes to a woman on day k, every future day, she has on a string a man b' she likes at least as much as b. (that is, her options get better)

Improvement Lemma:

If man b proposes to a woman on day k, every future day, she has on a string a man b' she likes at least as much as b. (that is, her options get better)

Proof:

Improvement Lemma:

If man b proposes to a woman on day k, every future day, she has on a string a man b' she likes at least as much as b. (that is, her options get better)

Proof:

Ind. Hyp.: P(j) $(j \ge k)$ — "Woman has as good an option on day j as on day k."

Improvement Lemma:

If man b proposes to a woman on day k, every future day, she has on a string a man b' she likes at least as much as b. (that is, her options get better)

Proof:

Ind. Hyp.: P(j) $(j \ge k)$ — "Woman has as good an option on day j as on day k."

Base Case: P(k): either she has no one/worse on a string (so puts b or better on a string), or she has someone better already.

Improvement Lemma:

If man b proposes to a woman on day k, every future day, she has on a string a man b' she likes at least as much as b. (that is, her options get better)

Proof:

Ind. Hyp.: P(j) $(j \ge k)$ — "Woman has as good an option on day j as on day k."

Base Case: P(k): either she has no one/worse on a string (so puts b or better on a string), or she has someone better already.

Assume P(j). Let \hat{b} be man on string on day $j \ge k$. So \hat{b} is as good as b.

Improvement Lemma:

If man b proposes to a woman on day k, every future day, she has on a string a man b' she likes at least as much as b. (that is, her options get better)

Proof:

Ind. Hyp.: P(j) $(j \ge k)$ — "Woman has as good an option on day j as on day k."

Base Case: P(k): either she has no one/worse on a string (so puts b or better on a string), or she has someone better already.

Assume P(j). Let \hat{b} be man on string on day $j \ge k$. So \hat{b} is as good as b.

On day j + 1, man \hat{b} will come back (and possibly others).

Improvement Lemma:

If man b proposes to a woman on day k, every future day, she has on a string a man b' she likes at least as much as b. (that is, her options get better)

Proof:

Ind. Hyp.: P(j) $(j \ge k)$ — "Woman has as good an option on day j as on day k."

Base Case: P(k): either she has no one/worse on a string (so puts b or better on a string), or she has someone better already.

Assume P(j). Let \hat{b} be man on string on day $j \ge k$. So \hat{b} is as good as b.

On day j+1, man \hat{b} will come back (and possibly others).

Woman can choose \hat{b} just as well,

Improvement Lemma:

If man b proposes to a woman on day k, every future day, she has on a string a man b' she likes at least as much as b. (that is, her options get better)

Proof:

Ind. Hyp.: P(j) $(j \ge k)$ — "Woman has as good an option on day j as on day k."

Base Case: P(k): either she has no one/worse on a string (so puts b or better on a string), or she has someone better already.

Assume P(j). Let \hat{b} be man on string on day $j \ge k$. So \hat{b} is as good as b.

On day j+1, man \hat{b} will come back (and possibly others).

Woman can choose \hat{b} just as well, or pick a better option.

It gets better every day for women..

Improvement Lemma:

If man b proposes to a woman on day k, every future day, she has on a string a man b' she likes at least as much as b. (that is, her options get better)

Proof:

Ind. Hyp.: P(j) $(j \ge k)$ — "Woman has as good an option on day j as on day k."

Base Case: P(k): either she has no one/worse on a string (so puts b or better on a string), or she has someone better already.

Assume P(j). Let \hat{b} be man on string on day $j \ge k$. So \hat{b} is as good as b.

On day j+1, man \hat{b} will come back (and possibly others).

Woman can choose \hat{b} just as well, or pick a better option.

$$\implies P(j+1).$$

Lemma: Every man is matched at end.

Lemma: Every man is matched at end.

Proof:

Lemma: Every man is matched at end.

Proof:

If not, a man b must have been rejected n times.

Lemma: Every man is matched at end.

Proof:

If not, a man *b* must have been rejected *n* times.

Every woman has been proposed to by b,

Lemma: Every man is matched at end.

Proof:

If not, a man *b* must have been rejected *n* times.

Every woman has been proposed to by *b*, and Improvement lemma

Lemma: Every man is matched at end.

Proof:

If not, a man *b* must have been rejected *n* times.

Every woman has been proposed to by *b*, and Improvement lemma

 \implies each woman has a man on a string.

Lemma: Every man is matched at end.

Proof:

If not, a man b must have been rejected n times.

Every woman has been proposed to by *b*, and Improvement lemma

 \implies each woman has a man on a string.

and each man on at most one string.

Lemma: Every man is matched at end.

Proof:

If not, a man b must have been rejected n times.

Every woman has been proposed to by *b*, and Improvement lemma

 \implies each woman has a man on a string.

and each man on at most one string.

n women and n men.

Lemma: Every man is matched at end.

Proof:

If not, a man b must have been rejected n times.

Every woman has been proposed to by *b*, and Improvement lemma

 \implies each woman has a man on a string.

and each man on at most one string.

n women and *n* men. Same number of each.

Lemma: Every man is matched at end.

Proof:

If not, a man b must have been rejected n times.

Every woman has been proposed to by *b*, and Improvement lemma

 \implies each woman has a man on a string.

and each man on at most one string.

n women and *n* men. Same number of each.

Lemma: Every man is matched at end.

Proof:

If not, a man b must have been rejected n times.

Every woman has been proposed to by *b*, and Improvement lemma

 \implies each woman has a man on a string.

and each man on at most one string.

n women and *n* men. Same number of each.

 \implies b must be on some woman's string!

Lemma: Every man is matched at end.

Proof:

If not, a man b must have been rejected n times.

Every woman has been proposed to by *b*, and Improvement lemma

 \implies each woman has a man on a string.

and each man on at most one string.

n women and *n* men. Same number of each.

⇒ *b* must be on some woman's string! Contradiction.

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:

$$b^*$$
 ——— g^*

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:

$$b^* \xrightarrow{g^*} g^*$$

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:

$$b^* - g^*$$
 b likes g^* more than g .
 $b - g^*$ g^* likes b more than b^* .

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:

Assume there is a rogue couple; (b, g^*)

$$b^* - g^*$$
 $b \text{ likes } g^* \text{ more than } g.$
 $b - g^* \text{ likes } b \text{ more than } b^*.$

Man b proposes to g^* before proposing to g.

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:

Assume there is a rogue couple; (b, g^*)

$$b^* - g^*$$
 b likes g^* more than g .
$$b - g^*$$
 likes b more than b^* .

Man b proposes to g^* before proposing to g.

So g^* rejected b (since he moved on)

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:

Assume there is a rogue couple; (b, g^*)

$$b^* - g^*$$
 b likes g^* more than g .
 $b - g^*$ g^* likes b more than b^* .

Man b proposes to g^* before proposing to g.

So g^* rejected b (since he moved on)

By improvement lemma, g^* likes b^* better than b.

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:

Assume there is a rogue couple; (b, g^*)

$$b^* - g^*$$
 $b \text{ likes } g^* \text{ more than } g.$
 $b - g^* \text{ likes } b \text{ more than } b^*.$

Man b proposes to g^* before proposing to g.

So g^* rejected b (since he moved on)

By improvement lemma, g^* likes b^* better than b.

Contradiction!

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:

Assume there is a rogue couple; (b, g^*)

$$b^* - g^*$$
 b likes g^* more than g .
$$b - g^*$$
 likes b more than b^* .

Man b proposes to g^* before proposing to g.

So g^* rejected b (since he moved on)

By improvement lemma, g^* likes b^* better than b.

Contradiction!

Is the SMA better for men?

Is the SMA better for men? for women?

Is the SMA better for men? for women?

Definition: A **pairing is** x**-optimal** if x's partner is its best partner in any stable pairing.

Is the SMA better for men? for women?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Is the SMA better for men? for women?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Definition: A pairing is man optimal if it is x-optimal for all men x.

Is the SMA better for men? for women?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Definition: A pairing is man optimal if it is x-optimal for all men x.

..and so on for man pessimal, woman optimal, woman pessimal.

Is the SMA better for men? for women?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Definition: A pairing is man optimal if it is *x*-optimal for all men *x*.

..and so on for man pessimal, woman optimal, woman pessimal.

Claim: The optimal partner for a man must be first in his preference list.

Is the SMA better for men? for women?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Definition: A pairing is man optimal if it is *x*-optimal for all men *x*.

..and so on for man pessimal, woman optimal, woman pessimal.

Claim: The optimal partner for a man must be first in his preference list.

True?

Is the SMA better for men? for women?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Definition: A **pairing is man optimal** if it is x-optimal for **all** men x. ..and so on for man pessimal, woman optimal, woman pessimal.

Claim: The optimal partner for a man must be first in his preference list.

True? False?

Is the SMA better for men? for women?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Definition: A **pairing is man optimal** if it is x-optimal for **all** men x. ..and so on for man pessimal, woman optimal, woman pessimal.

Claim: The optimal partner for a man must be first in his preference list.

True? False? False!

Is the SMA better for men? for women?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Definition: A **pairing is man optimal** if it is x-optimal for **all** men x. ..and so on for man pessimal, woman optimal, woman pessimal.

Claim: The optimal partner for a man must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing.

Is the SMA better for men? for women?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Definition: A **pairing is man optimal** if it is x-optimal for **all** men x. ..and so on for man pessimal, woman optimal, woman pessimal.

Claim: The optimal partner for a man must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing.
As well as you can in a globally stable solution!

Is the SMA better for men? for women?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Definition: A **pairing is man optimal** if it is x-optimal for **all** men x. ..and so on for man pessimal, woman optimal, woman pessimal.

Claim: The entimal partner for a man must be first in his proference

Claim: The optimal partner for a man must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing.
As well as you can in a globally stable solution!

Question: Is there a even man or woman optimal pairing?

Good for men? women?

Is the SMA better for men? for women?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Definition: A pairing is man optimal if it is x-optimal for all men x. ..and so on for man pessimal, woman optimal, woman pessimal.

Claim: The optimal partner for a man must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing.
As well as you can in a globally stable solution!

Question: Is there a even man or woman optimal pairing?

For men?

For men? For women?

For men? For women?

Theorem: SMA produces a man-optimal pairing.

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not:

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let t be first day any man b gets rejected

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let *t* be first day *any* man *b* gets rejected by his optimal woman *g* who he is paired with

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let *t* be first day *any* man *b* gets rejected by his optimal woman *g* who he is paired with in some stable pairing *S*.

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let t be first day any man b gets rejected by his optimal woman g who he is paired with in some stable pairing S.

Let g put b^* on a string in place of b on day t

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let t be first day any man b gets rejected by his optimal woman g who he is paired with in some stable pairing S.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

woman.

Assume not: there are men who do not get their optimal woman.

Let t be first day any man b gets rejected by his optimal woman g who he is paired with in some stable pairing S.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b By choice of day t, b^* has not yet been rejected by his optimal

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let t be first day any man b gets rejected by his optimal woman g who he is paired with in some stable pairing S.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let *t* be first day *any* man *b* gets rejected by his optimal woman *g* who he is paired with in some stable pairing *S*.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for S.

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let t be first day any man b gets rejected by his optimal woman g who he is paired with in some stable pairing S.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing.

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let t be first day any man b gets rejected by his optimal woman g who he is paired with in some stable pairing S.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing. Contradiction.

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let t be first day any man b gets rejected by his optimal woman g who he is paired with in some stable pairing S.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing. Contradiction.

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let *t* be first day *any* man *b* gets rejected by his optimal woman *g* who he is paired with in some stable pairing *S*.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing. Contradiction.

Recap:

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let t be first day any man b gets rejected by his optimal woman g who he is paired with in some stable pairing S.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for S. So S is not a stable pairing. Contradiction.

Recap: S - stable.

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let t be first day any man b gets rejected by his optimal woman g who he is paired with in some stable pairing S.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for S. So S is not a stable pairing. Contradiction.

Recap: S - stable. $(b^*, g^*) \in S$.

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let *t* be first day *any* man *b* gets rejected by his optimal woman *g* who he is paired with in some stable pairing *S*.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing. Contradiction.

Recap: S - stable. $(b^*, g^*) \in S$. But (b^*, g)

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let *t* be first day *any* man *b* gets rejected by his optimal woman *g* who he is paired with in some stable pairing *S*.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for *S*.

So *S* is not a stable pairing. Contradiction.

Recap: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple!

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let *t* be first day *any* man *b* gets rejected by his optimal woman *g* who he is paired with in some stable pairing *S*.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

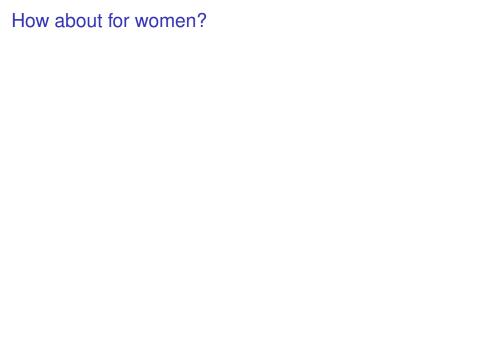
Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for S.

So *S* is not a stable pairing. Contradiction.

Recap: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple!

Used Well-Ordering principle...



Theorem: SMA produces woman-pessimal pairing.

Theorem: SMA produces woman-pessimal pairing.

T – pairing produced by SMA.

Theorem: SMA produces woman-pessimal pairing.

T – pairing produced by SMA.

S – worse stable pairing for woman g.

Theorem: SMA produces woman-pessimal pairing.

T – pairing produced by SMA.

S – worse stable pairing for woman g.

In T, (g,b) is pair.

Theorem: SMA produces woman-pessimal pairing.

T – pairing produced by SMA.

S – worse stable pairing for woman g.

In T, (g,b) is pair.

In S, (g,b^*) is pair. b is paired with someone else, say g^* .

Theorem: SMA produces woman-pessimal pairing.

T – pairing produced by SMA.

S – worse stable pairing for woman g.

In T, (g,b) is pair.

In S, (g,b^*) is pair. b is paired with someone else, say g^* . g likes b^* less than she likes b.

Theorem: SMA produces woman-pessimal pairing.

T – pairing produced by SMA.

S – worse stable pairing for woman g.

In T, (g,b) is pair.

In S, (g,b^*) is pair. b is paired with someone else, say g^* .

g likes b^* less than she likes b.

T is man optimal, so b likes g more than g^* , his partner in S.

Theorem: SMA produces woman-pessimal pairing.

T – pairing produced by SMA.

S – worse stable pairing for woman g.

In T, (g,b) is pair.

In S, (g,b^*) is pair. b is paired with someone else, say g^* .

g likes b^* less than she likes b.

T is man optimal, so b likes g more than g^* , his partner in S.

(g,b) is Rogue couple for S

Theorem: SMA produces woman-pessimal pairing.

T – pairing produced by SMA.

S – worse stable pairing for woman g.

In T, (g,b) is pair.

In S, (g,b^*) is pair. b is paired with someone else, say g^* .

g likes b^* less than she likes b.

T is man optimal, so b likes g more than g^* , his partner in S.

(g,b) is Rogue couple for S

S is not stable.

Theorem: SMA produces woman-pessimal pairing.

T – pairing produced by SMA.

S – worse stable pairing for woman g.

In T, (g,b) is pair.

In S, (g,b^*) is pair. b is paired with someone else, say g^* .

g likes b^* less than she likes b.

T is man optimal, so b likes g more than g^* , his partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Theorem: SMA produces woman-pessimal pairing.

T – pairing produced by SMA.

S – worse stable pairing for woman g.

In T, (g,b) is pair.

In S, (g, b^*) is pair. b is paired with someone else, say g^* .

g likes b^* less than she likes b.

T is man optimal, so b likes g more than g^* , his partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Residency Matching..

Residency Matching..

The method was used to match residents to hospitals. Hospital optimal....
..until 1990's...Resident optimal.

Variations: couples!

Fun stuff from the Fall 2014 offering...

Follow the link.

Fun stuff from the Fall 2014 offering...

Follow the link.

