Stable Marriage Problem

Introduced by Gale and Shapley in a 1962 paper in the American Mathematical Monthly.

Proved useful in many settings, led eventually to 2012 Nobel Prize in Economics (to Shapley and Roth).

Original Problem Setting:

- Small town with *n* men and *n* women.
- Each woman has a ranked preference list of men.
- Each man has a ranked preference list of women.

How should they be matched?

What criteria to use?

- Maximize number of first choices.
- Minimize difference between preference ranks.
- Look for stable matchings

Stability.

Consider the couples:

- Alice and Bob
- Mary and John

Bob prefers Mary to Alice. Mary prefers Bob to John. Uh...oh! Unstable pairing. Produce a pairing where there is no running off! **Definition:** A **pairing** is disjoint set of *n* man-woman pairs. Example: A pairing $S = \{(Bob, Alice); (John, Mary)\}$. **Definition:** A **rogue couple** *b*, *g* for a pairing *S*: *b* and *g* prefer each other to their partners in *S* Example: Bob and Mary are a rogue couple in *S*.

A stable pairing??

Given a set of preferences.

Is there a stable pairing? How does one find it?

Consider a variant of this problem: stable roommates.

The Stable Marriage Algorithm.

Each Day:

- 1. Each man **proposes** to his favorite woman on his list.
- 2. Each woman rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected man crosses rejecting woman off his list.

Stop when each woman gets exactly one proposal. Does this terminate?

...produce a pairing?

....a stable pairing?

Do men or women do "better"?

Example.

Men					Women				
A	X 2	2 3			1	C	Α	в	
В	X >	3			2	Α	В	C	
C	X 2 X 2 X 1	3			3	C A A	С	B	
	Day 1	Day	y 2	Day 3	Da	Day 4		Day 5	
1	A,	A		X , C	С		С		
2	С	С В,		B		A,X		A	
3								в	

Termination.

Every non-terminated day a man **crossed** an item off the list. Total size of lists? *n* men, *n* length list. n^2 Terminates in at most $n^2 + 1$ steps!

It gets better every day for women..

Improvement Lemma:

If man *b* proposes to a woman on day k, every future day, she has on a string a man b' she likes at least as much as *b*. (that is, her options get better)

Proof:

Ind. Hyp.: P(j) $(j \ge k)$ — "Woman has as good an option on day *j* as on day *k*."

Base Case: P(k): either she has no one/worse on a string (so puts *b* or better on a string), or she has someone better already. Assume P(j). Let \hat{b} be man on string on day $j \ge k$. So \hat{b} is as good as *b*.

On day j + 1, man \hat{b} will come back (and possibly others). Woman can choose \hat{b} just as well, or pick a better option.

$$\implies P(j+1).$$

Pairing when done.

Lemma: Every man is matched at end.

Proof:

If not, a man *b* must have been rejected *n* times.

Every woman has been proposed to by *b*, and Improvement lemma

 \implies each woman has a man on a string.

and each man on at most one string.

n women and *n* men. Same number of each.

 \implies *b* must be on some woman's string!

Contradiction.

Pairing is Stable.

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:

Assume there is a rogue couple; (b, g^*)

b likes g^* more than g.

 g^* likes b more than b^* .

Man *b* proposes to g^* before proposing to *g*.

So g^* rejected b (since he moved on)

By improvement lemma, g^* likes b^* better than b.

Contradiction!

Good for men? women?

Is the SMA better for men? for women?

Definition: A **pairing is** x**-optimal** if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'*s* partner is its worst partner in any stable pairing.

Definition: A pairing is man optimal if it is *x*-optimal for all men *x*.

..and so on for man pessimal, woman optimal, woman pessimal.

Claim: The optimal partner for a man must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing. As well as you can in a globally stable solution!

Question: Is there a even man or woman optimal pairing?

SMA is optimal!

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let *t* be first day *any* man *b* gets rejected by his optimal woman *g* who he is paired with in some stable pairing *S*.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for *S*.

So S is not a stable pairing. Contradiction.

Recap: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple!

Used Well-Ordering principle...

How about for women?

Theorem: SMA produces woman-pessimal pairing.

- T pairing produced by SMA.
- S worse stable pairing for woman g.
- In T, (g, b) is pair.
- In S, (g, b^*) is pair. *b* is paired with someone else, say g^* .
- g likes b^* less than she likes b.
- T is man optimal, so b likes g more than g^* , his partner in S.
- (g, b) is Rogue couple for S
- S is not stable.

Contradiction.

The method was used to match residents to hospitals. Hospital optimal....

.. until 1990's...Resident optimal.

Variations: couples!

Fun stuff from the Fall 2014 offering...

Follow the link.

