Stable Marriage Problem

Introduced by Gale and Shapley in a 1962 paper in the American Mathematical Monthly.
Proved useful in many settings, led eventually to 2012 Nobel
Prize in Economics (to Shapley and Roth).
Original Problem Setting:

- Small town with n men and n women.
- Each woman has a ranked preference list of men.
- Each man has a ranked preference list of women.

How should they be matched?

What criteria to use?

- Maximize number of first choices.
- Minimize difference between preference ranks.
- Look for stable matchings

Stability.

Consider the couples:

- Alice and Bob
- Mary and John

Bob prefers Mary to Alice.
Mary prefers Bob to John.
Uh...oh! Unstable pairing.

So..

Produce a pairing where there is no running off!
Definition: A pairing is disjoint set of n man-woman pairs.
Example: A pairing $S=\{($ Bob, Alice $) ;($ John, Mary $)\}$.
Definition: A rogue couple b, g for a pairing S :
b and g prefer each other to their partners in S
Example: Bob and Mary are a rogue couple in S.

A stable pairing??

Given a set of preferences.
Is there a stable pairing?
How does one find it?
Consider a variant of this problem: stable roommates.

The Stable Marriage Algorithm.

Each Day:

1. Each man proposes to his favorite woman on his list.
2. Each woman rejects all but her favorite proposer (whom she puts on a string.)
3. Rejected man crosses rejecting woman off his list.

Stop when each woman gets exactly one proposal. Does this terminate?
...produce a pairing?
....a stable pairing?
Do men or women do "better"?

Example.

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, 区	A	A, C	C	C
2	C	B, X	B	A,,$~$	A
3					B

Termination.

Every non-terminated day a man crossed an item off the list. Total size of lists? n men, n length list. n^{2}
Terminates in at most $n^{2}+1$ steps!

It gets better every day for women..

Improvement Lemma:

If man b proposes to a woman on day k, every future day, she has on a string a man b^{\prime} she likes at least as much as b.
(that is, her options get better)

Proof:

Ind. Hyp.: $P(j)(j \geq k)$ - "Woman has as good an option on day j as on day k."
Base Case: $P(k)$: either she has no one/worse on a string (so puts b or better on a string), or she has someone better already. Assume $P(j)$. Let \hat{b} be man on string on day $j \geq k$. So \hat{b} is as good as b.
On day $j+1$, man \hat{b} will come back (and possibly others).
Woman can choose \hat{b} just as well, or pick a better option.
$\Longrightarrow P(j+1)$.

Pairing when done.

Lemma: Every man is matched at end.

Proof:

If not, a man b must have been rejected n times.
Every woman has been proposed to by b, and Improvement lemma
\Longrightarrow each woman has a man on a string.
and each man on at most one string.
n women and n men. Same number of each.
$\Longrightarrow b$ must be on some woman's string!
Contradiction.

Pairing is Stable.

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:

Assume there is a rogue couple; $\left(b, g^{*}\right)$

Man b proposes to g^{*} before proposing to g.
So g^{*} rejected b (since he moved on)
By improvement lemma, g^{*} likes b^{*} better than b.
Contradiction!

Good for men? women?

Is the SMA better for men? for women?
Definition: A pairing is x-optimal if $x^{\prime} s$ partner is its best partner in any stable pairing.
Definition: A pairing is x-pessimal if $x^{\prime} s$ partner is its worst partner in any stable pairing.

Definition: A pairing is man optimal if it is x-optimal for all men x.
..and so on for man pessimal, woman optimal, woman pessimal.
Claim: The optimal partner for a man must be first in his preference list.

True? False? False!
Subtlety here: Best partner in any stable pairing.
As well as you can in a globally stable solution!
Question: Is there a even man or woman optimal pairing?

SMA is optimal!

For men? For women?
Theorem: SMA produces a man-optimal pairing.
Proof:
Assume not: there are men who do not get their optimal woman.
Let t be first day any man b gets rejected by his optimal woman g who he is paired with in some stable pairing S.
Let g put b^{*} on a string in place of b on day $t \Longrightarrow g$ prefers b^{*} to b
By choice of day t, b^{*} has not yet been rejected by his optimal woman.

Therefore, b^{*} prefers g to optimal woman, and hence to his partner g^{*} in S.
Rogue couple for S.
So S is not a stable pairing. Contradiction.
Recap: S - stable. $\left(b^{*}, g^{*}\right) \in S$. But $\left(b^{*}, g\right)$ is rogue couple!
Used Well-Ordering principle...

How about for women?

Theorem: SMA produces woman-pessimal pairing.
T - pairing produced by SMA.
S - worse stable pairing for woman g.
In $T,(g, b)$ is pair.
In $S,\left(g, b^{*}\right)$ is pair. b is paired with someone else, say g^{*}.
g likes b^{*} less than she likes b.
T is man optimal, so b likes g more than g^{*}, his partner in S.
(g, b) is Rogue couple for S
S is not stable.
Contradiction.

Residency Matching..

The method was used to match residents to hospitals. Hospital optimal....
..until 1990's...Resident optimal.
Variations: couples!

Fun stuff from the Fall 2014 offering...

Follow the link.

