
Homework Logistics

I HW1 is due this Friday 09/02.
I Login to Gradescope *TODAY* to see if you have access to

CS 70. If you still do not have access, read
https://piazza.com/class/irwxcmgdofp2uz?cid=6.

I Homework must be submitted electronically to Gradescope
as pdf but it may be prepared by hand, in LaTeX, or using
Microsoft Word. Make sure the uploaded PDF is
readable!!!
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Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is k2.

k th odd number is 2k −1 for k ≥ 1.

Base Case 1 (1st odd number) is 12.

Induction Hypothesis Sum of first k odds is perfect square a2 = k2.

Induction Step To prove that sum of first k +1 odds is (k +1)2.

1. The (k +1)st odd number is 2(k +1)−1 =
2k +1.

2. Sum of the first k +1 odds is
a2 +2k +1 = k2 +2k +1

3. k2 +2k +1 = (k +1)2

... P(k+1)!
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Tiling Cory Hall Courtyard.

Use these L-tiles. A

A

B

B

C

C

D

D

E

E

To Tile this 4×4 courtyard.

Alright!
Tiled 4×4 square with 2×2 L-tiles.

with a center hole.

Can we tile any 2n×2n with L-tiles (with a hole)

for every n!
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Hole have to be there? Maybe just one?

Theorem: Any tiling of 2n×2n square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 22n

divided by 3 is 1.

Base case: true for n = 0. 20 = 1

Ind Hyp: n = k . 22k = 3a+1 for integer a.

22(k+1) = 22k ∗22

= 4∗22k

= 4∗ (3a+1)
= 12a+3+1
= 3(4a+1)+1

a integer =⇒ (4a+1) is an integer.
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Hole in center?
Theorem: Can tile the 2n×2n square to leave a hole adjacent
to the center.
Proof:

Base case: A single tile works fine.
The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:
Any 2n×2n square can be tiled with a hole at the center.

2n

2n

2n+1

2n+1 What to do now???
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Hole can be anywhere!

Theorem: Can tile the 2n×2n to leave a hole adjacent
anywhere.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.
Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any 2n×2n square can be tiled with a hole anywhere.”
Consider 2n+1×2n+1 square.

Use induction hypothesis in each.

Use L-tile and ... we are done.
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Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:
P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.
Induction Step:
P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.

Induction Step:
P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:

P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:
P(n) = “n is either a prime or a product of primes. “

Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:
P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.

P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:
P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:
P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:
P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:
P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:
P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b

= (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:
P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction: Example
Theorem: Every natural number n > 1 is either a prime or can be
written as a product of primes.
Fact: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:
P(n) = “n is either a prime or a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!



Strong Induction is a form of (regular) Induction.

Let Q(k) = P(0)∧P(1) · · ·P(k).

By the induction principle:
“If Q(0), and (∀k ∈ N)(Q(k) =⇒ Q(k +1)) then
(∀k ∈ N)(Q(k))”

Also, Q(0)≡ P(0) , and (∀k ∈ N)(Q(k))≡ (∀k ∈ N)(P(k))

(∀k ∈ N)(Q(k) =⇒ Q(k +1))
≡ (∀k ∈ N)((P(0) · · ·∧P(k)) =⇒ (P(0) · · ·P(k)∧P(k +1)))
≡ (∀k ∈ N)((P(0) · · ·∧P(k)) =⇒ P(k +1))

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).
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Well Ordering Principle and Induction.

If (∀n)P(n) is not true, then (∃n)¬P(n).

Consider smallest m, with ¬P(m),

P(m−1) =⇒ P(m) must be false (assuming P(0) holds.)

This is a proof of the induction principle!
I.e.,

¬(∀nP(n)) =⇒
(
(∃n)¬(P(n−1) =⇒ P(n)

)
.

(Contrapositive of Induction principle (assuming P(0))

It assumes that there is a smallest m where P(m) does not hold.

The Well ordering principle states that for any subset of the natural
numbers there is a smallest element.
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(∃n)¬(P(n−1) =⇒ P(n)

)
.

(Contrapositive of Induction principle (assuming P(0))

It assumes that there is a smallest m where P(m) does not hold.

The Well ordering principle states that for any subset of the natural
numbers there is a smallest element.
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Strong Induction and Recursion.

Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:
(x,y) = find-x-y(n-4)
return(x+1,y)

Base cases: P(12) , P(13) P(14) P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).
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Horses of the same color...
Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k +1)?

First k have same color by P(k). 1,2,3, . . . ,k ,k +11,2
Second k have same color by P(k). 1,2,3, . . . ,k ,k +11,2
A horse in the middle in common! 1,2,3, . . . ,k ,k +11,2
All k must have the same color. 1,2,3, . . . ,k ,k +1No horse in common!

How about P(1) =⇒ P(2)?

Fix base case.
...Still doesn’t work!!
(There are two horses is 6≡ For all two horses!!!)

Of course it doesn’t work.

As we will see, it is more subtle to catch errors in proofs of
correct theorems!!
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correct theorems!!
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Summary: principle of induction.

Today: More induction.

(P(0)∧ ((∀k ∈ N)(P(k) =⇒ P(k +1)))) =⇒ (∀n ∈ N)(P(n))

Statement to prove: P(n) for n starting from n0
Base Case: Prove P(n0).
Ind. Step: Prove. For all values, n ≥ n0, P(n) =⇒ P(n+1).
Statement is proven!

Strong Induction:
(P(0)∧ ((∀n ≤ kP(n)) =⇒ P(k +1))) =⇒ (∀n ∈ N)(P(n))

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.
Sum of first n odds is n2.
Hole anywhere.

Not same as strong induction.

Induction ≡ Recursion.
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