CS70: Jean Walrand: Lecture 37.

Gaussian RVs and CLT

CS70: Jean Walrand: Lecture 37.

Gaussian RVs and CLT

CS70: Jean Walrand: Lecture 37.

Gaussian RVs and CLT

1. Review: Continuous Probability
2. Normal Distribution
3. Central Limit Theorem
4. Confidence Intervals
5. Bayes' Rule with Continuous RVs

Continuous Probability

Continuous Probability

1. pdf: $\operatorname{Pr}[X \in(x, x+\delta]]=f_{X}(x) \delta$.

Continuous Probability

1. pdf: $\operatorname{Pr}[X \in(x, x+\delta]]=f_{X}(x) \delta$.
2. $\mathrm{CDF}: \operatorname{Pr}[X \leq x]=F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) d y$.

Continuous Probability

1. pdf: $\operatorname{Pr}[X \in(x, x+\delta]]=f_{X}(x) \delta$.
2. $\mathrm{CDF}: \operatorname{Pr}[X \leq x]=F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) d y$.
3. $U[a, b], \operatorname{Expo}(\lambda)$, target.

Continuous Probability

1. pdf: $\operatorname{Pr}[X \in(x, x+\delta]]=f_{X}(x) \delta$.
2. $\mathrm{CDF}: \operatorname{Pr}[X \leq x]=F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) d y$.
3. $U[a, b], \operatorname{Expo}(\lambda)$, target.
4. Expectation: $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$.

Continuous Probability

1. pdf: $\operatorname{Pr}[X \in(x, x+\delta]]=f_{X}(x) \delta$.
2. $\mathrm{CDF}: \operatorname{Pr}[X \leq x]=F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) d y$.
3. $U[a, b], \operatorname{Expo}(\lambda)$, target.
4. Expectation: $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$.
5. Expectation of function: $E[h(X)]=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x$.

Continuous Probability

1. pdf: $\operatorname{Pr}[X \in(x, x+\delta]]=f_{X}(x) \delta$.
2. $\mathrm{CDF}: \operatorname{Pr}[X \leq x]=F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) d y$.
3. $U[a, b], \operatorname{Expo}(\lambda)$, target.
4. Expectation: $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$.
5. Expectation of function: $E[h(X)]=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x$.
6. Variance: $\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}$.

Continuous Probability

1. pdf: $\operatorname{Pr}[X \in(x, x+\delta]]=f_{X}(x) \delta$.
2. $\mathrm{CDF}: \operatorname{Pr}[X \leq x]=F_{X}(x)=\int_{-\infty}^{X} f_{X}(y) d y$.
3. $U[a, b], \operatorname{Expo}(\lambda)$, target.
4. Expectation: $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$.
5. Expectation of function: $E[h(X)]=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x$.
6. Variance: $\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}$.
7. Variance of Sum of Independent RVs: If X_{n} are pairwise independent, $\operatorname{var}\left[X_{1}+\cdots+X_{n}\right]=\operatorname{var}\left[X_{1}\right]+\cdots+\operatorname{var}\left[X_{n}\right]$

Normal (Gaussian) Distribution.
For any μ and σ, a normal (aka Gaussian)

Normal (Gaussian) Distribution.

For any μ and σ, a normal (aka Gaussian) random variable Y, which we write as $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, has pdf

Normal (Gaussian) Distribution.

For any μ and σ, a normal (aka Gaussian) random variable Y, which we write as $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, has pdf

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(y-\mu)^{2} / 2 \sigma^{2}} .
$$

Normal (Gaussian) Distribution.

For any μ and σ, a normal (aka Gaussian) random variable Y, which we write as $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, has pdf

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(y-\mu)^{2} / 2 \sigma^{2}}
$$

Standard normal has $\mu=0$ and $\sigma=1$.

Normal (Gaussian) Distribution.

For any μ and σ, a normal (aka Gaussian) random variable Y, which we write as $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, has pdf

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(y-\mu)^{2} / 2 \sigma^{2}}
$$

Standard normal has $\mu=0$ and $\sigma=1$.

Normal (Gaussian) Distribution.

For any μ and σ, a normal (aka Gaussian) random variable Y, which we write as $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, has pdf

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(y-\mu)^{2} / 2 \sigma^{2}}
$$

Standard normal has $\mu=0$ and $\sigma=1$.

Note: $\operatorname{Pr}[|Y-\mu|>1.65 \sigma]=10 \%$;

Normal (Gaussian) Distribution.

For any μ and σ, a normal (aka Gaussian) random variable Y, which we write as $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, has pdf

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(y-\mu)^{2} / 2 \sigma^{2}}
$$

Standard normal has $\mu=0$ and $\sigma=1$.

Note: $\operatorname{Pr}[|Y-\mu|>1.65 \sigma]=10 \% ; \operatorname{Pr}[|Y-\mu|>2 \sigma]=5 \%$.

Scaling and Shifting

Theorem Let $X=\mathscr{N}(0,1)$ and $Y=\mu+\sigma X$. Then

$$
Y=\mathscr{N}\left(\mu, \sigma^{2}\right) .
$$

Scaling and Shifting

Theorem Let $X=\mathscr{N}(0,1)$ and $Y=\mu+\sigma X$. Then

$$
Y=\mathscr{N}\left(\mu, \sigma^{2}\right)
$$

Proof: $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$.

Scaling and Shifting

Theorem Let $X=\mathscr{N}(0,1)$ and $Y=\mu+\sigma X$. Then

$$
Y=\mathscr{N}\left(\mu, \sigma^{2}\right)
$$

Proof: $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$. Now,

Scaling and Shifting

Theorem Let $X=\mathscr{N}(0,1)$ and $Y=\mu+\sigma X$. Then

$$
Y=\mathscr{N}\left(\mu, \sigma^{2}\right)
$$

Proof: $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$. Now,

$$
f_{Y}(y)=\frac{1}{\sigma} f_{X}\left(\frac{y-\mu}{\sigma}\right)
$$

Scaling and Shifting

Theorem Let $X=\mathscr{N}(0,1)$ and $Y=\mu+\sigma X$. Then

$$
Y=\mathscr{N}\left(\mu, \sigma^{2}\right)
$$

Proof: $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$. Now,

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{\sigma} f_{X}\left(\frac{y-\mu}{\sigma}\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\}
\end{aligned}
$$

Expectation, Variance.

Theorem If $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, then

$$
E[Y]=\mu
$$

${ }^{1}$ Integration by Parts: $\int_{a}^{b} f d g=[f g]_{a}^{b}-\int_{a}^{b} g d f$.

Expectation, Variance.

Theorem If $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, then

$$
E[Y]=\mu \text { and } \operatorname{var}[Y]=\sigma^{2}
$$

${ }^{1}$ Integration by Parts: $\int_{a}^{b} f d g=[f g]_{a}^{b}-\int_{a}^{b} g d f$.

Expectation, Variance.

Theorem If $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, then

$$
E[Y]=\mu \text { and } \operatorname{var}[Y]=\sigma^{2}
$$

Proof: It suffices to show the result for $X=\mathscr{N}(0,1)$ since $Y=\mu+\sigma X, \ldots$.
${ }^{1}$ Integration by Parts: $\int_{a}^{b} f d g=[f g]_{a}^{b}-\int_{a}^{b} g d f$.

Expectation, Variance.

Theorem If $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, then

$$
E[Y]=\mu \text { and } \operatorname{var}[Y]=\sigma^{2}
$$

Proof: It suffices to show the result for $X=\mathscr{N}(0,1)$ since $Y=\mu+\sigma X, \ldots$.
Thus, $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$.

Expectation, Variance.

Theorem If $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, then

$$
E[Y]=\mu \text { and } \operatorname{var}[Y]=\sigma^{2}
$$

Proof: It suffices to show the result for $X=\mathscr{N}(0,1)$ since $Y=\mu+\sigma X, \ldots$.
Thus, $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$.
First note that $E[X]=0$, by symmetry.

Expectation, Variance.

Theorem If $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, then

$$
E[Y]=\mu \text { and } \operatorname{var}[Y]=\sigma^{2}
$$

Proof: It suffices to show the result for $X=\mathscr{N}(0,1)$ since $Y=\mu+\sigma X, \ldots$.
Thus, $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$.
First note that $E[X]=0$, by symmetry.

$$
\operatorname{var}[X]=E\left[X^{2}\right]
$$

Expectation, Variance.

Theorem If $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, then

$$
E[Y]=\mu \text { and } \operatorname{var}[Y]=\sigma^{2}
$$

Proof: It suffices to show the result for $X=\mathscr{N}(0,1)$ since $Y=\mu+\sigma X, \ldots$.
Thus, $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$.
First note that $E[X]=0$, by symmetry.

$$
\operatorname{var}[X]=E\left[X^{2}\right]=\int x^{2} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\} d x
$$

Expectation, Variance.

Theorem If $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, then

$$
E[Y]=\mu \text { and } \operatorname{var}[Y]=\sigma^{2}
$$

Proof: It suffices to show the result for $X=\mathscr{N}(0,1)$ since $Y=\mu+\sigma X, \ldots$.
Thus, $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$.
First note that $E[X]=0$, by symmetry.

$$
\begin{aligned}
\operatorname{var}[X] & =E\left[X^{2}\right]=\int x^{2} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\} d x \\
& =-\frac{1}{\sqrt{2 \pi}} \int x d \exp \left\{-\frac{x^{2}}{2}\right\}
\end{aligned}
$$

${ }^{1}$ Integration by Parts: $\int_{a}^{b} f d g=[f g]_{a}^{b}-\int_{a}^{b} g d f$.

Expectation, Variance.

Theorem If $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, then

$$
E[Y]=\mu \text { and } \operatorname{var}[Y]=\sigma^{2}
$$

Proof: It suffices to show the result for $X=\mathscr{N}(0,1)$ since

$$
Y=\mu+\sigma X, \ldots
$$

Thus, $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$.
First note that $E[X]=0$, by symmetry.

$$
\begin{aligned}
\operatorname{var}[X] & =E\left[X^{2}\right]=\int x^{2} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\} d x \\
& =-\frac{1}{\sqrt{2 \pi}} \int x d \exp \left\{-\frac{x^{2}}{2}\right\}=\frac{1}{\sqrt{2 \pi}} \int \exp \left\{-\frac{x^{2}}{2}\right\} d x \text { by IBP }{ }^{1}
\end{aligned}
$$

${ }^{1}$ Integration by Parts: $\int_{a}^{b} f d g=[f g]_{a}^{b}-\int_{a}^{b} g d f$.

Expectation, Variance.

Theorem If $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, then

$$
E[Y]=\mu \text { and } \operatorname{var}[Y]=\sigma^{2}
$$

Proof: It suffices to show the result for $X=\mathscr{N}(0,1)$ since

$$
Y=\mu+\sigma X, \ldots
$$

Thus, $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$.
First note that $E[X]=0$, by symmetry.

$$
\begin{aligned}
\operatorname{var}[X] & =E\left[X^{2}\right]=\int x^{2} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\} d x \\
& =-\frac{1}{\sqrt{2 \pi}} \int x d \exp \left\{-\frac{x^{2}}{2}\right\}=\frac{1}{\sqrt{2 \pi}} \int \exp \left\{-\frac{x^{2}}{2}\right\} d x \text { by IBP }{ }^{1} \\
& =\int f_{X}(x) d x
\end{aligned}
$$

${ }^{1}$ Integration by Parts: $\int_{a}^{b} f d g=[f g]_{a}^{b}-\int_{a}^{b} g d f$.

Expectation, Variance.

Theorem If $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, then

$$
E[Y]=\mu \text { and } \operatorname{var}[Y]=\sigma^{2}
$$

Proof: It suffices to show the result for $X=\mathscr{N}(0,1)$ since

$$
Y=\mu+\sigma X, \ldots
$$

Thus, $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}$.
First note that $E[X]=0$, by symmetry.

$$
\begin{aligned}
\operatorname{var}[X] & =E\left[X^{2}\right]=\int x^{2} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\} d x \\
& =-\frac{1}{\sqrt{2 \pi}} \int x d \exp \left\{-\frac{x^{2}}{2}\right\}=\frac{1}{\sqrt{2 \pi}} \int \exp \left\{-\frac{x^{2}}{2}\right\} d x \text { by IBP }{ }^{1} \\
& =\int f_{X}(x) d x=1
\end{aligned}
$$

${ }^{1}$ Integration by Parts: $\int_{a}^{b} f d g=[f g]_{a}^{b}-\int_{a}^{b} g d f$.

Review: Law of Large Numbers.

Review: Law of Large Numbers.

Theorem: For any set of independent identically distributed random variables, $X_{i}, A_{n}=\frac{1}{n} \sum X_{i}$ "tends to the mean."

Review: Law of Large Numbers.

Theorem: For any set of independent identically distributed random variables, $X_{i}, A_{n}=\frac{1}{n} \sum X_{i}$ "tends to the mean."
Say X_{i} have expectation $\mu=E\left(X_{i}\right)$ and variance σ^{2}.

Review: Law of Large Numbers.

Theorem: For any set of independent identically distributed random variables, $X_{i}, A_{n}=\frac{1}{n} \sum X_{i}$ "tends to the mean."
Say X_{i} have expectation $\mu=E\left(X_{i}\right)$ and variance σ^{2}.
Mean of A_{n} is μ, and variance is σ^{2} / n.

Review: Law of Large Numbers.

Theorem: For any set of independent identically distributed random variables, $X_{i}, A_{n}=\frac{1}{n} \sum X_{i}$ "tends to the mean."
Say X_{i} have expectation $\mu=E\left(X_{i}\right)$ and variance σ^{2}.
Mean of A_{n} is μ, and variance is σ^{2} / n.
Thus,

$$
\operatorname{Pr}\left[\left|A_{n}-\mu\right|>\varepsilon\right] \leq
$$

Review: Law of Large Numbers.

Theorem: For any set of independent identically distributed random variables, $X_{i}, A_{n}=\frac{1}{n} \sum X_{i}$ "tends to the mean."
Say X_{i} have expectation $\mu=E\left(X_{i}\right)$ and variance σ^{2}.
Mean of A_{n} is μ, and variance is σ^{2} / n.
Thus,

$$
\operatorname{Pr}\left[\left|A_{n}-\mu\right|>\varepsilon\right] \leq \frac{\operatorname{var}\left[A_{n}\right]}{\varepsilon^{2}}=
$$

Review: Law of Large Numbers.

Theorem: For any set of independent identically distributed random variables, $X_{i}, A_{n}=\frac{1}{n} \sum X_{i}$ "tends to the mean."
Say X_{i} have expectation $\mu=E\left(X_{i}\right)$ and variance σ^{2}.
Mean of A_{n} is μ, and variance is σ^{2} / n.
Thus,

$$
\operatorname{Pr}\left[\left|A_{n}-\mu\right|>\varepsilon\right] \leq \frac{\operatorname{var}\left[A_{n}\right]}{\varepsilon^{2}}=\frac{\sigma^{2}}{n \varepsilon}
$$

Review: Law of Large Numbers.

Theorem: For any set of independent identically distributed random variables, $X_{i}, A_{n}=\frac{1}{n} \sum X_{i}$ "tends to the mean."
Say X_{i} have expectation $\mu=E\left(X_{i}\right)$ and variance σ^{2}.
Mean of A_{n} is μ, and variance is σ^{2} / n.
Thus,

$$
\operatorname{Pr}\left[\left|A_{n}-\mu\right|>\varepsilon\right] \leq \frac{\operatorname{var}\left[A_{n}\right]}{\varepsilon^{2}}=\frac{\sigma^{2}}{n \varepsilon} \rightarrow 0
$$

Central Limit Theorem

Central Limit Theorem

Central Limit Theorem

Central Limit Theorem

Central Limit Theorem
Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$.

Central Limit Theorem

Central Limit Theorem
Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

That is,

$$
\operatorname{Pr}\left[S_{n} \leq \alpha\right] \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-x^{2} / 2} d x
$$

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

That is,

$$
\operatorname{Pr}\left[S_{n} \leq \alpha\right] \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-x^{2} / 2} d x
$$

Proof:

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

That is,

$$
\operatorname{Pr}\left[S_{n} \leq \alpha\right] \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-x^{2} / 2} d x
$$

Proof: See EE126.

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

That is,

$$
\operatorname{Pr}\left[S_{n} \leq \alpha\right] \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-x^{2} / 2} d x
$$

Proof: See EE126.

Note:

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

That is,

$$
\operatorname{Pr}\left[S_{n} \leq \alpha\right] \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-x^{2} / 2} d x
$$

Proof: See EE126.
Note:
$E\left(S_{n}\right)$

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

That is,

$$
\operatorname{Pr}\left[S_{n} \leq \alpha\right] \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-x^{2} / 2} d x
$$

Proof: See EE126.
Note:

$$
E\left(S_{n}\right)=\frac{1}{\sigma / \sqrt{n}}\left(E\left(A_{n}\right)-\mu\right)
$$

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

That is,

$$
\operatorname{Pr}\left[S_{n} \leq \alpha\right] \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-x^{2} / 2} d x
$$

Proof: See EE126.
Note:

$$
E\left(S_{n}\right)=\frac{1}{\sigma / \sqrt{n}}\left(E\left(A_{n}\right)-\mu\right)=0
$$

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

That is,

$$
\operatorname{Pr}\left[S_{n} \leq \alpha\right] \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-x^{2} / 2} d x
$$

Proof: See EE126.
Note:

$$
E\left(S_{n}\right)=\frac{1}{\sigma / \sqrt{n}}\left(E\left(A_{n}\right)-\mu\right)=0
$$

$\operatorname{Var}\left(S_{n}\right)$

Central Limit Theorem

Central Limit Theorem
Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

That is,

$$
\operatorname{Pr}\left[S_{n} \leq \alpha\right] \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-x^{2} / 2} d x
$$

Proof: See EE126.
Note:

$$
\begin{aligned}
& E\left(S_{n}\right)=\frac{1}{\sigma / \sqrt{n}}\left(E\left(A_{n}\right)-\mu\right)=0 \\
& \operatorname{Var}\left(S_{n}\right)=\frac{1}{\sigma^{2} / n} \operatorname{Var}\left(A_{n}\right)
\end{aligned}
$$

Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

That is,

$$
\operatorname{Pr}\left[S_{n} \leq \alpha\right] \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-x^{2} / 2} d x
$$

Proof: See EE126.
Note:

$$
\begin{aligned}
& E\left(S_{n}\right)=\frac{1}{\sigma / \sqrt{n}}\left(E\left(A_{n}\right)-\mu\right)=0 \\
& \operatorname{Var}\left(S_{n}\right)=\frac{1}{\sigma^{2} / n} \operatorname{Var}\left(A_{n}\right)=1 .
\end{aligned}
$$

Cl for Mean

Cl for Mean

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}.

Cl for Mean

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

Cl for Mean

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

The CLT states that

$$
\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathscr{N}(0,1) \text { as } n \rightarrow \infty .
$$

Cl for Mean

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

The CLT states that

$$
\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathscr{N}(0,1) \text { as } n \rightarrow \infty .
$$

Thus, for $n \gg 1$, one has

$$
\operatorname{Pr}\left[-2 \leq\left|\frac{A_{n}-\mu}{\sigma / \sqrt{n}}\right| \leq 2\right] \approx 95 \%
$$

Cl for Mean

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

The CLT states that

$$
\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathscr{N}(0,1) \text { as } n \rightarrow \infty .
$$

Thus, for $n \gg 1$, one has

$$
\operatorname{Pr}\left[-2 \leq\left|\frac{A_{n}-\mu}{\sigma / \sqrt{n}}\right| \leq 2\right] \approx 95 \%
$$

Equivalently,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right]\right] \approx 95 \%
$$

Cl for Mean

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

The CLT states that

$$
\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathscr{N}(0,1) \text { as } n \rightarrow \infty .
$$

Thus, for $n \gg 1$, one has

$$
\operatorname{Pr}\left[-2 \leq\left|\frac{A_{n}-\mu}{\sigma / \sqrt{n}}\right| \leq 2\right] \approx 95 \%
$$

Equivalently,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right]\right] \approx 95 \%
$$

That is,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu
$$

Cl for Mean

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

The CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathscr{N}(0,1) \text { as } n \rightarrow \infty .
$$

Also,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu .
$$

Cl for Mean

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

The CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathscr{N}(0,1) \text { as } n \rightarrow \infty .
$$

Also,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu .
$$

Recall: Using Chebyshev, we found that

Cl for Mean

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

The CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathscr{N}(0,1) \text { as } n \rightarrow \infty .
$$

Also,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu .
$$

Recall: Using Chebyshev, we found that

$$
\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu .
$$

Cl for Mean

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

The CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathscr{N}(0,1) \text { as } n \rightarrow \infty .
$$

Also,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu .
$$

Recall: Using Chebyshev, we found that

$$
\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu .
$$

Thus, the CLT provides a smaller confidence interval.

Coins and normal.

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$.

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$.

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$.
Here, $\mu=p$

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$.
Here, $\mu=p$ and $\sigma=\sqrt{p(1-p)}$.

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$.
Here, $\mu=p$ and $\sigma=\sqrt{p(1-p)}$. CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n p}{\sqrt{p(1-p) n}} \rightarrow \mathscr{N}(0,1) .
$$

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$.
Here, $\mu=p$ and $\sigma=\sqrt{p(1-p)}$. CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n p}{\sqrt{p(1-p) n}} \rightarrow \mathscr{N}(0,1)
$$

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$. Here, $\mu=p$ and $\sigma=\sqrt{p(1-p)}$. CLT states that

$$
\frac{x_{1}+\cdots+X_{n}-n p}{\sqrt{p(1-p) n}} \rightarrow \mathscr{N}(0,1)
$$

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$. Here, $\mu=p$ and $\sigma=\sqrt{p(1-p)}$. CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n p}{\sqrt{p(1-p) n}} \rightarrow \mathscr{N}(0,1)
$$

and

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu
$$

with $A_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$.

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$. Here, $\mu=p$ and $\sigma=\sqrt{p(1-p)}$. CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n p}{\sqrt{p(1-p) n}} \rightarrow \mathscr{N}(0,1)
$$

and

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu
$$

with $A_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$. Hence,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p .
$$

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$. Here, $\mu=p$ and $\sigma=\sqrt{p(1-p)}$. CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n p}{\sqrt{p(1-p) n}} \rightarrow \mathscr{N}(0,1)
$$

and

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu
$$

with $A_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$. Hence,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p
$$

Since $\sigma \leq 0.5$,

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$. Here, $\mu=p$ and $\sigma=\sqrt{p(1-p)}$. CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n p}{\sqrt{p(1-p) n}} \rightarrow \mathscr{N}(0,1)
$$

and

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu
$$

with $A_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$. Hence,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p .
$$

Since $\sigma \leq 0.5$,

$$
\left[A_{n}-2 \frac{0.5}{\sqrt{n}}, A_{n}+2 \frac{0.5}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p .
$$

Coins and normal.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$. Here, $\mu=p$ and $\sigma=\sqrt{p(1-p)}$. CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n p}{\sqrt{p(1-p) n}} \rightarrow \mathscr{N}(0,1)
$$

and

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu
$$

with $A_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$.
Hence,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p .
$$

Since $\sigma \leq 0.5$,

$$
\left[A_{n}-2 \frac{0.5}{\sqrt{n}}, A_{n}+2 \frac{0.5}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p .
$$

Thus,

$$
\left[A_{n}-\frac{1}{\sqrt{n}}, A_{n}+\frac{1}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p .
$$

Application: Polling.

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?
Say we want to estimate that fraction within 3\%

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?
Say we want to estimate that fraction within 3\% (margin of error),

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?
Say we want to estimate that fraction within 3\% (margin of error), with 95\% confidence.

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?
Say we want to estimate that fraction within 3\% (margin of error), with 95\% confidence.
This means that if the fraction is p,

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?
Say we want to estimate that fraction within 3\% (margin of error), with 95\% confidence.
This means that if the fraction is p, we want an estimate \hat{p} such that

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?
Say we want to estimate that fraction within 3\% (margin of error), with 95\% confidence.
This means that if the fraction is p, we want an estimate \hat{p} such that

$$
\operatorname{Pr}[\hat{p}-0.03<p<\hat{p}+0.03] \geq 95 \%
$$

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?

Say we want to estimate that fraction within 3\% (margin of error), with 95\% confidence.
This means that if the fraction is p, we want an estimate \hat{p} such that

$$
\operatorname{Pr}[\hat{p}-0.03<p<\hat{p}+0.03] \geq 95 \%
$$

We choose $\hat{p}=\frac{X_{1}+\cdots+X_{n}}{n}$ where $X_{m}=1$ if person m says she will vote for Trump, 0 otherwise.

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?
Say we want to estimate that fraction within 3\% (margin of error), with 95\% confidence.
This means that if the fraction is p, we want an estimate \hat{p} such that

$$
\operatorname{Pr}[\hat{p}-0.03<p<\hat{p}+0.03] \geq 95 \%
$$

We choose $\hat{p}=\frac{X_{1}+\cdots+X_{n}}{n}$ where $X_{m}=1$ if person m says she will vote for Trump, 0 otherwise.
We assume X_{m} are i.i.d. $B(p)$.

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?

Say we want to estimate that fraction within 3\% (margin of error), with 95\% confidence.
This means that if the fraction is p, we want an estimate \hat{p} such that

$$
\operatorname{Pr}[\hat{p}-0.03<p<\hat{p}+0.03] \geq 95 \%
$$

We choose $\hat{p}=\frac{X_{1}+\cdots+X_{n}}{n}$ where $X_{m}=1$ if person m says she will vote for Trump, 0 otherwise.
We assume X_{m} are i.i.d. $B(p)$.
Thus, $\hat{p} \pm \frac{1}{\sqrt{n}}$ is a 95%-confidence interval for p.

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?

Say we want to estimate that fraction within 3\% (margin of error), with 95\% confidence.
This means that if the fraction is p, we want an estimate \hat{p} such that

$$
\operatorname{Pr}[\hat{p}-0.03<p<\hat{p}+0.03] \geq 95 \%
$$

We choose $\hat{p}=\frac{X_{1}+\cdots+X_{n}}{n}$ where $X_{m}=1$ if person m says she will vote for Trump, 0 otherwise.
We assume X_{m} are i.i.d. $B(p)$.
Thus, $\hat{p} \pm \frac{1}{\sqrt{n}}$ is a 95%-confidence interval for p. We need

$$
\frac{1}{\sqrt{n}}=0.03
$$

Application: Polling.

How many people should one poll to estimate the fraction of votes that will go for Trump?

Say we want to estimate that fraction within 3\% (margin of error), with 95\% confidence.
This means that if the fraction is p, we want an estimate \hat{p} such that

$$
\operatorname{Pr}[\hat{p}-0.03<p<\hat{p}+0.03] \geq 95 \%
$$

We choose $\hat{p}=\frac{X_{1}+\cdots+X_{n}}{n}$ where $X_{m}=1$ if person m says she will vote for Trump, 0 otherwise.
We assume X_{m} are i.i.d. $B(p)$.
Thus, $\hat{p} \pm \frac{1}{\sqrt{n}}$ is a 95%-confidence interval for p. We need

$$
\frac{1}{\sqrt{n}}=0.03, \text { i.e., } n=1112
$$

Application: Testing Lightbulbs.

Application: Testing Lightbulbs.

Assume that lightbulbs have i.i.d. $\operatorname{Expo}(\lambda)$ lifetimes.

Application: Testing Lightbulbs.

Assume that lightbulbs have i.i.d. Expo(λ) lifetimes. We want to make sure that $\lambda^{-1}>1$.

Application: Testing Lightbulbs.

Assume that lightbulbs have i.i.d. $\operatorname{Expo}(\lambda)$ lifetimes. We want to make sure that $\lambda^{-1}>1$. Say that we measure the average lifetime A_{n} of $n=100$ bulbs and we find that it is equal to 1.2.

Application: Testing Lightbulbs.

Assume that lightbulbs have i.i.d. $\operatorname{Expo}(\lambda)$ lifetimes. We want to make sure that $\lambda^{-1}>1$. Say that we measure the average lifetime A_{n} of $n=100$ bulbs and we find that it is equal to 1.2.
What is the confidence that we have that $\lambda^{-1}>1$?

Application: Testing Lightbulbs.

Assume that lightbulbs have i.i.d. $\operatorname{Expo}(\lambda)$ lifetimes. We want to make sure that $\lambda^{-1}>1$. Say that we measure the average lifetime A_{n} of $n=100$ bulbs and we find that it is equal to 1.2.
What is the confidence that we have that $\lambda^{-1}>1$? We have,

$$
\frac{A_{n}-\lambda^{-1}}{\lambda^{-1} / \sqrt{n}}=\sqrt{n}\left(\lambda A_{n}-1\right) \approx \mathscr{N}(0,1) .
$$

Application: Testing Lightbulbs.

Assume that lightbulbs have i.i.d. $\operatorname{Expo}(\lambda)$ lifetimes. We want to make sure that $\lambda^{-1}>1$. Say that we measure the average lifetime A_{n} of $n=100$ bulbs and we find that it is equal to 1.2.
What is the confidence that we have that $\lambda^{-1}>1$? We have,

$$
\frac{A_{n}-\lambda^{-1}}{\lambda^{-1} / \sqrt{n}}=\sqrt{n}\left(\lambda A_{n}-1\right) \approx \mathscr{N}(0,1) .
$$

Thus,

$$
\operatorname{Pr}\left[\sqrt{n}\left(\lambda A_{n}-1\right)>\sqrt{n}(\lambda 1.2-1)\right] \approx \operatorname{Pr}[\mathscr{N}(0,1)>\sqrt{n}(\lambda 1.2-1)] .
$$

If $\lambda^{-1}<1$, this probability is at most
$\operatorname{Pr}[\mathscr{N}(0,1)>\sqrt{n}(1.2-1)]=\operatorname{Pr}[\mathscr{N}(0,1)>2]=2.5 \%$.

Application: Testing Lightbulbs.

Assume that lightbulbs have i.i.d. $\operatorname{Expo}(\lambda)$ lifetimes. We want to make sure that $\lambda^{-1}>1$. Say that we measure the average lifetime A_{n} of $n=100$ bulbs and we find that it is equal to 1.2.
What is the confidence that we have that $\lambda^{-1}>1$? We have,

$$
\frac{A_{n}-\lambda^{-1}}{\lambda^{-1} / \sqrt{n}}=\sqrt{n}\left(\lambda A_{n}-1\right) \approx \mathscr{N}(0,1) .
$$

Thus,

$$
\operatorname{Pr}\left[\sqrt{n}\left(\lambda A_{n}-1\right)>\sqrt{n}(\lambda 1.2-1)\right] \approx \operatorname{Pr}[\mathscr{N}(0,1)>\sqrt{n}(\lambda 1.2-1)] .
$$

If $\lambda^{-1}<1$, this probability is at most
$\operatorname{Pr}[\mathscr{N}(0,1)>\sqrt{n}(1.2-1)]=\operatorname{Pr}[\mathscr{N}(0,1)>2]=2.5 \%$.
Thus, we conclude that $\operatorname{Pr}\left[\lambda^{-1}>1\right] \geq 97.5 \%$.

Continuous RV and Bayes' Rule

Continuous RV and Bayes' Rule

Example 1:

Continuous RV and Bayes' Rule

Example 1:
W.p. $1 / 2, X, Y$ are i.i.d. $\operatorname{Expo(1)}$ and w.p. $1 / 2$, they are i.i.d. $\operatorname{Expo}(3)$.

Continuous RV and Bayes' Rule

Example 1:
W.p. $1 / 2, X, Y$ are i.i.d. $\operatorname{Expo}(1)$ and w.p. $1 / 2$, they are i.i.d. $\operatorname{Expo}(3)$.

Calculate $E[Y \mid X=x]$.

Continuous RV and Bayes' Rule

Example 1:

W.p. $1 / 2, X, Y$ are i.i.d. $\operatorname{Expo(1)}$ and w.p. $1 / 2$, they are i.i.d. Expo(3).

Calculate $E[Y \mid X=x]$.
Let B be the event that $X \in[x, x+\delta]$ where $0<\delta \ll 1$.

Continuous RV and Bayes' Rule

Example 1:

W.p. $1 / 2, X, Y$ are i.i.d. $\operatorname{Expo}(1)$ and w.p. $1 / 2$, they are i.i.d. $\operatorname{Expo}(3)$.

Calculate $E[Y \mid X=x]$.
Let B be the event that $X \in[x, x+\delta]$ where $0<\delta \ll 1$.
Let A be the event that X, Y are Expo(1).

Continuous RV and Bayes' Rule

Example 1:

W.p. $1 / 2, X, Y$ are i.i.d. $\operatorname{Expo}(1)$ and w.p. $1 / 2$, they are i.i.d. $\operatorname{Expo}(3)$.

Calculate $E[Y \mid X=x]$.
Let B be the event that $X \in[x, x+\delta]$ where $0<\delta \ll 1$.
Let A be the event that X, Y are Expo(1).
Then,

$$
\operatorname{Pr}[A \mid B]=\frac{(1 / 2) \operatorname{Pr}[B \mid A]}{(1 / 2) \operatorname{Pr}[B \mid A]+(1 / 2) \operatorname{Pr}[B \mid \bar{A}]}
$$

Continuous RV and Bayes' Rule

Example 1:

W.p. $1 / 2, X, Y$ are i.i.d. $\operatorname{Expo}(1)$ and w.p. $1 / 2$, they are i.i.d. $\operatorname{Expo}(3)$.

Calculate $E[Y \mid X=x]$.
Let B be the event that $X \in[x, x+\delta]$ where $0<\delta \ll 1$.
Let A be the event that X, Y are Expo(1).
Then,

$$
\operatorname{Pr}[A \mid B]=\frac{(1 / 2) \operatorname{Pr}[B \mid A]}{(1 / 2) \operatorname{Pr}[B \mid A]+(1 / 2) \operatorname{Pr}[B \mid \bar{A}]}=\frac{\exp \{-x\} \delta}{\exp \{-x\} \delta+3 \exp \{-3 x\} \delta}
$$

Continuous RV and Bayes' Rule

Example 1:

W.p. $1 / 2, X, Y$ are i.i.d. $\operatorname{Expo}(1)$ and w.p. $1 / 2$, they are i.i.d. $\operatorname{Expo}(3)$.

Calculate $E[Y \mid X=x]$.
Let B be the event that $X \in[x, x+\delta]$ where $0<\delta \ll 1$.
Let A be the event that X, Y are Expo(1).
Then,

$$
\begin{aligned}
\operatorname{Pr}[A \mid B] & =\frac{(1 / 2) \operatorname{Pr}[B \mid A]}{(1 / 2) \operatorname{Pr}[B \mid A]+(1 / 2) \operatorname{Pr}[B \mid \bar{A}]}=\frac{\exp \{-x\} \delta}{\exp \{-x\} \delta+3 \exp \{-3 x\} \delta} \\
& =\frac{\exp \{-x\}}{\exp \{-x\}+3 \exp \{-3 x\}}
\end{aligned}
$$

Continuous RV and Bayes' Rule

Example 1:

W.p. $1 / 2, X, Y$ are i.i.d. $\operatorname{Expo}(1)$ and w.p. $1 / 2$, they are i.i.d. $\operatorname{Expo(3).}$

Calculate $E[Y \mid X=x]$.
Let B be the event that $X \in[x, x+\delta]$ where $0<\delta \ll 1$.
Let A be the event that X, Y are Expo(1).
Then,

$$
\begin{aligned}
\operatorname{Pr}[A \mid B] & =\frac{(1 / 2) \operatorname{Pr}[B \mid A]}{(1 / 2) \operatorname{Pr}[B \mid A]+(1 / 2) \operatorname{Pr}[B \mid \bar{A}]}=\frac{\exp \{-x\} \delta}{\exp \{-x\} \delta+3 \exp \{-3 x\} \delta} \\
& =\frac{\exp \{-x\}}{\exp \{-x\}+3 \exp \{-3 x\}}=\frac{e^{2 x}}{3+e^{2 x}} .
\end{aligned}
$$

Continuous RV and Bayes' Rule

Example 1:

W.p. $1 / 2, X, Y$ are i.i.d. $\operatorname{Expo}(1)$ and w.p. $1 / 2$, they are i.i.d. $\operatorname{Expo(3).}$

Calculate $E[Y \mid X=x]$.
Let B be the event that $X \in[x, x+\delta]$ where $0<\delta \ll 1$.
Let A be the event that X, Y are Expo(1).
Then,

$$
\begin{aligned}
\operatorname{Pr}[A \mid B] & =\frac{(1 / 2) \operatorname{Pr}[B \mid A]}{(1 / 2) \operatorname{Pr}[B \mid A]+(1 / 2) \operatorname{Pr}[B \mid \bar{A}]}=\frac{\exp \{-x\} \delta}{\exp \{-x\} \delta+3 \exp \{-3 x\} \delta} \\
& =\frac{\exp \{-x\}}{\exp \{-x\}+3 \exp \{-3 x\}}=\frac{e^{2 x}}{3+e^{2 x}} .
\end{aligned}
$$

Now,

$$
E[Y \mid X=x]=E[Y \mid A] \operatorname{Pr}[A \mid X=x]+E[Y \mid \bar{A}] \operatorname{Pr}[\bar{A} \mid X=x]
$$

Continuous RV and Bayes' Rule

Example 1:

W.p. $1 / 2, X, Y$ are i.i.d. $\operatorname{Expo}(1)$ and w.p. $1 / 2$, they are i.i.d. $\operatorname{Expo(3).}$

Calculate $E[Y \mid X=x]$.
Let B be the event that $X \in[x, x+\delta]$ where $0<\delta \ll 1$.
Let A be the event that X, Y are Expo(1).
Then,

$$
\begin{aligned}
\operatorname{Pr}[A \mid B] & =\frac{(1 / 2) \operatorname{Pr}[B \mid A]}{(1 / 2) \operatorname{Pr}[B \mid A]+(1 / 2) \operatorname{Pr}[B \mid \bar{A}]}=\frac{\exp \{-x\} \delta}{\exp \{-x\} \delta+3 \exp \{-3 x\} \delta} \\
& =\frac{\exp \{-x\}}{\exp \{-x\}+3 \exp \{-3 x\}}=\frac{e^{2 x}}{3+e^{2 x}} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
E[Y \mid X=x] & =E[Y \mid A] \operatorname{Pr}[A \mid X=x]+E[Y \mid \bar{A}] \operatorname{Pr}[\bar{A} \mid X=x] \\
& =1 \times \operatorname{Pr}[A \mid X=x]+(1 / 3) \operatorname{Pr}[\bar{A} \mid X=x]
\end{aligned}
$$

Continuous RV and Bayes' Rule

Example 1:

W.p. $1 / 2, X, Y$ are i.i.d. $\operatorname{Expo(1)}$ and w.p. $1 / 2$, they are i.i.d. Expo(3).

Calculate $E[Y \mid X=x]$.
Let B be the event that $X \in[x, x+\delta]$ where $0<\delta \ll 1$.
Let A be the event that X, Y are Expo(1).
Then,

$$
\begin{aligned}
\operatorname{Pr}[A \mid B] & =\frac{(1 / 2) \operatorname{Pr}[B \mid A]}{(1 / 2) \operatorname{Pr}[B \mid A]+(1 / 2) \operatorname{Pr}[B \mid \bar{A}]}=\frac{\exp \{-x\} \delta}{\exp \{-x\} \delta+3 \exp \{-3 x\} \delta} \\
& =\frac{\exp \{-x\}}{\exp \{-x\}+3 \exp \{-3 x\}}=\frac{e^{2 x}}{3+e^{2 x}} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
E[Y \mid X=x] & =E[Y \mid A] \operatorname{Pr}[A \mid X=x]+E[Y \mid \bar{A}] \operatorname{Pr}[\bar{A} \mid X=x] \\
& =1 \times \operatorname{Pr}[A \mid X=x]+(1 / 3) \operatorname{Pr}[\bar{A} \mid X=x] \ldots=\frac{1+e^{2 x}}{3+e^{2 x}}
\end{aligned}
$$

We used $\operatorname{Pr}[Z \in[x, x+\delta]] \approx f_{Z}(x) \delta$ and given A one has $f_{X}(x)=\exp \{-x\}$ whereas given \hat{A} one has $f_{X}(x)=3 \exp \{-3 x\}$.

Continuous RV and Bayes' Rule

Continuous RV and Bayes' Rule

Example 2:

Continuous RV and Bayes' Rule

Example 2:

W.p. $1 / 2$, Bob is a good dart player and shoots uniformly in a circle with radius 1 .

Continuous RV and Bayes' Rule

Example 2:

W.p. $1 / 2$, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.

Continuous RV and Bayes' Rule

Example 2:

W.p. $1 / 2$, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.

Continuous RV and Bayes' Rule

Example 2:

W.p. $1 / 2$, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?

Continuous RV and Bayes' Rule

Example 2:

W.p. $1 / 2$, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?

Continuous RV and Bayes' Rule

Example 2:

W.p. $1 / 2$, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?
Note: If uniform in radius r,

Continuous RV and Bayes' Rule

Example 2:

W.p. $1 / 2$, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?
Note: If uniform in radius r, then $\operatorname{Pr}[X \leq x]=\left(\pi x^{2}\right) /\left(\pi r^{2}\right)$,

Continuous RV and Bayes' Rule

Example 2:

W.p. $1 / 2$, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?
Note: If uniform in radius r, then $\operatorname{Pr}[X \leq x]=\left(\pi x^{2}\right) /\left(\pi r^{2}\right)$, so that $f_{X}(x)=2 x /\left(r^{2}\right)$.
(a) We use Bayes' Rule:

Continuous RV and Bayes' Rule

Example 2:

W.p. $1 / 2$, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?
Note: If uniform in radius r, then $\operatorname{Pr}[X \leq x]=\left(\pi x^{2}\right) /\left(\pi r^{2}\right)$, so that $f_{X}(x)=2 x /\left(r^{2}\right)$.
(a) We use Bayes' Rule:

$$
\operatorname{Pr}[V G \mid 0.3]=
$$

Continuous RV and Bayes' Rule

Example 2:

W.p. 1/2, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?
Note: If uniform in radius r, then $\operatorname{Pr}[X \leq x]=\left(\pi x^{2}\right) /\left(\pi r^{2}\right)$, so that $f_{X}(x)=2 x /\left(r^{2}\right)$.
(a) We use Bayes' Rule:

$$
\operatorname{Pr}[V G \mid 0.3]=\frac{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]}{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]+\operatorname{Pr}[G] \operatorname{Pr}[\approx 0.3 \mid G]}
$$

Continuous RV and Bayes' Rule

Example 2:

W.p. 1/2, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?
Note: If uniform in radius r, then $\operatorname{Pr}[X \leq x]=\left(\pi x^{2}\right) /\left(\pi r^{2}\right)$, so that $f_{X}(x)=2 x /\left(r^{2}\right)$.
(a) We use Bayes' Rule:

$$
\operatorname{Pr}[V G \mid 0.3]=\frac{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]}{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]+\operatorname{Pr}[G] \operatorname{Pr}[\approx 0.3 \mid G]}
$$

Continuous RV and Bayes' Rule

Example 2:

W.p. 1/2, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?
Note: If uniform in radius r, then $\operatorname{Pr}[X \leq x]=\left(\pi x^{2}\right) /\left(\pi r^{2}\right)$, so that $f_{X}(x)=2 x /\left(r^{2}\right)$.
(a) We use Bayes' Rule:

$$
\begin{aligned}
\operatorname{Pr}[V G \mid 0.3] & =\frac{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]}{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]+\operatorname{Pr}[G] \operatorname{Pr}[\approx 0.3 \mid G]} \\
& =\frac{0.5 \times 2\left(0.3^{2}\right) \varepsilon /\left(0.5^{2}\right)}{0.5 \times 2\left(0.3^{2}\right) \varepsilon /\left(0.5^{2}\right)+0.5 \times 2 \varepsilon\left(0.3^{2}\right)}
\end{aligned}
$$

Continuous RV and Bayes' Rule

Example 2:

W.p. 1/2, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?
Note: If uniform in radius r, then $\operatorname{Pr}[X \leq x]=\left(\pi x^{2}\right) /\left(\pi r^{2}\right)$, so that $f_{X}(x)=2 x /\left(r^{2}\right)$.
(a) We use Bayes' Rule:

$$
\begin{aligned}
\operatorname{Pr}[V G \mid 0.3] & =\frac{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]}{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]+\operatorname{Pr}[G] \operatorname{Pr}[\approx 0.3 \mid G]} \\
& =\frac{0.5 \times 2\left(0.3^{2}\right) \varepsilon /\left(0.5^{2}\right)}{0.5 \times 2\left(0.3^{2}\right) \varepsilon /\left(0.5^{2}\right)+0.5 \times 2 \varepsilon\left(0.3^{2}\right)}=0.8 .
\end{aligned}
$$

Continuous RV and Bayes' Rule

Example 2:

W.p. 1/2, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?
Note: If uniform in radius r, then $\operatorname{Pr}[X \leq x]=\left(\pi x^{2}\right) /\left(\pi r^{2}\right)$, so that $f_{X}(x)=2 x /\left(r^{2}\right)$.
(a) We use Bayes' Rule:

$$
\begin{aligned}
\operatorname{Pr}[V G \mid 0.3] & =\frac{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]}{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]+\operatorname{Pr}[G] \operatorname{Pr}[\approx 0.3 \mid G]} \\
& =\frac{0.5 \times 2\left(0.3^{2}\right) \varepsilon /\left(0.5^{2}\right)}{0.5 \times 2\left(0.3^{2}\right) \varepsilon /\left(0.5^{2}\right)+0.5 \times 2 \varepsilon\left(0.3^{2}\right)}=0.8 .
\end{aligned}
$$

(b) $E[X]=$

Continuous RV and Bayes' Rule

Example 2:

W.p. 1/2, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?
Note: If uniform in radius r, then $\operatorname{Pr}[X \leq x]=\left(\pi x^{2}\right) /\left(\pi r^{2}\right)$, so that $f_{X}(x)=2 x /\left(r^{2}\right)$.
(a) We use Bayes' Rule:

$$
\begin{aligned}
\operatorname{Pr}[V G \mid 0.3] & =\frac{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]}{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]+\operatorname{Pr}[G] \operatorname{Pr}[\approx 0.3 \mid G]} \\
& =\frac{0.5 \times 2\left(0.3^{2}\right) \varepsilon /\left(0.5^{2}\right)}{0.5 \times 2\left(0.3^{2}\right) \varepsilon /\left(0.5^{2}\right)+0.5 \times 2 \varepsilon\left(0.3^{2}\right)}=0.8 .
\end{aligned}
$$

(b) $E[X]=0.8 \times 0.5 \times \frac{2}{3}+0.2 \times \frac{2}{3}$

Continuous RV and Bayes' Rule

Example 2:

W.p. 1/2, Bob is a good dart player and shoots uniformly in a circle with radius 1 . Otherwise, Bob is a very good dart player and shoots uniformly in a circle with radius $1 / 2$.
The first dart of Bob is at distance 0.3 from the center of the target.
(a) What is the probability that he is a very good dart player?
(b) What is the expected distance of his second dart to the center of the target?
Note: If uniform in radius r, then $\operatorname{Pr}[X \leq x]=\left(\pi x^{2}\right) /\left(\pi r^{2}\right)$, so that $f_{X}(x)=2 x /\left(r^{2}\right)$.
(a) We use Bayes' Rule:

$$
\begin{aligned}
\operatorname{Pr}[V G \mid 0.3] & =\frac{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]}{\operatorname{Pr}[V G] \operatorname{Pr}[\approx 0.3 \mid V G]+\operatorname{Pr}[G] \operatorname{Pr}[\approx 0.3 \mid G]} \\
& =\frac{0.5 \times 2\left(0.3^{2}\right) \varepsilon /\left(0.5^{2}\right)}{0.5 \times 2\left(0.3^{2}\right) \varepsilon /\left(0.5^{2}\right)+0.5 \times 2 \varepsilon\left(0.3^{2}\right)}=0.8 .
\end{aligned}
$$

(b) $E[X]=0.8 \times 0.5 \times \frac{2}{3}+0.2 \times \frac{2}{3}=0.4$.

Summary

Gaussian and CLT

1. Gaussian: $\mathscr{N}\left(\mu, \sigma^{2}\right): f_{X}(x)=\ldots$ "bell curve"

Summary

Gaussian and CLT

1. Gaussian: $\mathscr{N}\left(\mu, \sigma^{2}\right): f_{X}(x)=\ldots$ "bell curve"
2. CLT: X_{n} i.i.d. $\Longrightarrow \frac{A_{n}-\mu}{\sigma / \sqrt{n}} \rightarrow \mathscr{N}(0,1)$

Summary

Gaussian and CLT

1. Gaussian: $\mathscr{N}\left(\mu, \sigma^{2}\right): f_{X}(x)=\ldots$ "bell curve"
2. CLT: X_{n} i.i.d. $\Longrightarrow \frac{A_{n}-\mu}{\sigma / \sqrt{n}} \rightarrow \mathscr{N}(0,1)$
3. $\mathrm{CI}:\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right]=95 \%-\mathrm{Cl}$ for μ.

Summary

Gaussian and CLT

1. Gaussian: $\mathscr{N}\left(\mu, \sigma^{2}\right): f_{X}(x)=\ldots$ "bell curve"
2. CLT: X_{n} i.i.d. $\Longrightarrow \frac{A_{n}-\mu}{\sigma / \sqrt{n}} \rightarrow \mathscr{N}(0,1)$
3. $\mathrm{CI}:\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right]=95 \%-\mathrm{Cl}$ for μ.
4. Bayes' Rule: Replace $\{X=x\}$ by $\{X \in(x, x+\varepsilon)\}$.
