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Continuous Probability

1. pdf: Pr [X ∈ (x ,x + δ ]] = fX (x)δ .

2. CDF: Pr [X ≤ x ] = FX (x) =
∫ x
−∞

fX (y)dy .

3. U[a,b], Expo(λ ), target.

4. Expectation: E [X ] =
∫

∞

−∞
xfX (x)dx .

5. Expectation of function: E [h(X )] =
∫

∞

−∞
h(x)fX (x)dx .

6. Variance: var [X ] = E [(X −E [X ])2] = E [X 2]−E [X ]2.

7. Variance of Sum of Independent RVs: If Xn are pairwise
independent, var [X1 + · · ·+ Xn] = var [X1] + · · ·+ var [Xn]
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Normal (Gaussian) Distribution.
For any µ and σ , a normal (aka Gaussian)

random variable Y ,
which we write as Y = N (µ,σ2), has pdf

fY (y) =
1√

2πσ2
e−(y−µ)2/2σ2

.

Standard normal has µ = 0 and σ = 1.

Note: Pr [|Y −µ|> 1.65σ ] = 10%;Pr [|Y −µ|> 2σ ] = 5%.



Normal (Gaussian) Distribution.
For any µ and σ , a normal (aka Gaussian) random variable Y ,
which we write as Y = N (µ,σ2), has pdf

fY (y) =
1√

2πσ2
e−(y−µ)2/2σ2

.

Standard normal has µ = 0 and σ = 1.

Note: Pr [|Y −µ|> 1.65σ ] = 10%;Pr [|Y −µ|> 2σ ] = 5%.



Normal (Gaussian) Distribution.
For any µ and σ , a normal (aka Gaussian) random variable Y ,
which we write as Y = N (µ,σ2), has pdf

fY (y) =
1√

2πσ2
e−(y−µ)2/2σ2

.

Standard normal has µ = 0 and σ = 1.

Note: Pr [|Y −µ|> 1.65σ ] = 10%;Pr [|Y −µ|> 2σ ] = 5%.



Normal (Gaussian) Distribution.
For any µ and σ , a normal (aka Gaussian) random variable Y ,
which we write as Y = N (µ,σ2), has pdf

fY (y) =
1√

2πσ2
e−(y−µ)2/2σ2

.

Standard normal has µ = 0 and σ = 1.

Note: Pr [|Y −µ|> 1.65σ ] = 10%;Pr [|Y −µ|> 2σ ] = 5%.



Normal (Gaussian) Distribution.
For any µ and σ , a normal (aka Gaussian) random variable Y ,
which we write as Y = N (µ,σ2), has pdf

fY (y) =
1√

2πσ2
e−(y−µ)2/2σ2

.

Standard normal has µ = 0 and σ = 1.

Note: Pr [|Y −µ|> 1.65σ ] = 10%;Pr [|Y −µ|> 2σ ] = 5%.



Normal (Gaussian) Distribution.
For any µ and σ , a normal (aka Gaussian) random variable Y ,
which we write as Y = N (µ,σ2), has pdf

fY (y) =
1√

2πσ2
e−(y−µ)2/2σ2

.

Standard normal has µ = 0 and σ = 1.

Note: Pr [|Y −µ|> 1.65σ ] = 10%;

Pr [|Y −µ|> 2σ ] = 5%.



Normal (Gaussian) Distribution.
For any µ and σ , a normal (aka Gaussian) random variable Y ,
which we write as Y = N (µ,σ2), has pdf

fY (y) =
1√

2πσ2
e−(y−µ)2/2σ2

.

Standard normal has µ = 0 and σ = 1.

Note: Pr [|Y −µ|> 1.65σ ] = 10%;Pr [|Y −µ|> 2σ ] = 5%.



Scaling and Shifting

Theorem Let X = N (0,1) and Y = µ + σX . Then

Y = N (µ,σ2).

Proof: fX (x) = 1√
2π

exp{− x2

2 }. Now,

fY (y) =
1
σ

fX (
y −µ

σ
)

=
1√

2πσ2
exp{− (y −µ)2

2σ2 }.
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Expectation, Variance.
Theorem If Y = N (µ,σ2), then

E [Y ] = µ

and var [Y ] = σ
2.

Proof: It suffices to show the result for X = N (0,1) since
Y = µ + σX ,....

Thus, fX (x) = 1√
2π

exp{− x2

2 }.

First note that E [X ] = 0, by symmetry.

var [X ] = E [X 2] =
∫

x2 1√
2π

exp{−x2

2
}dx

= − 1√
2π

∫
xd exp{−x2

2
}=

1√
2π

∫
exp{−x2

2
}dx by IBP1

=
∫

fX (x)dx = 1.

1Integration by Parts:
∫ b
a fdg = [fg]ba−

∫ b
a gdf .
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Review: Law of Large Numbers.

Theorem: For any set of independent identically distributed random
variables, Xi , An = 1

n ∑Xi “tends to the mean.”

Say Xi have expectation µ = E(Xi ) and variance σ2.

Mean of An is µ, and variance is σ2/n.

Thus,

Pr [|An−µ|> ε]≤ var [An]

ε2 =
σ2

nε
→ 0.
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Central Limit Theorem

Central Limit Theorem

Let X1,X2, . . . be i.i.d. with E [X1] = µ and var(X1) = σ2. Define

Sn :=
An−µ

σ/
√

n
=

X1 + · · ·+ Xn−nµ

σ
√

n
.

Then,
Sn→N (0,1),as n→ ∞.

That is,

Pr [Sn ≤ α]→ 1√
2π

∫
α

−∞

e−x2/2dx .

Proof: See EE126.

Note:

E(Sn) =
1

σ/
√

n
(E(An)−µ) = 0

Var(Sn) =
1

σ2/n
Var(An) = 1.
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Coins and normal.

Let X1,X2, . . . be i.i.d. B(p). Thus, X1 + · · ·+ Xn = B(n,p).

Here, µ = p and σ =
√

p(1−p). CLT states that

X1 + · · ·+ Xn−np√
p(1−p)n

→N (0,1).
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Application: Polling.

How many people should one poll to estimate the fraction of votes
that will go for Trump?

Say we want to estimate that fraction within 3% (margin of error), with
95% confidence.

This means that if the fraction is p, we want an estimate p̂ such that

Pr [p̂−0.03 < p < p̂ + 0.03]≥ 95%.

We choose p̂ = X1+···+Xn
n where Xm = 1 if person m says she will vote

for Trump, 0 otherwise.

We assume Xm are i.i.d. B(p).

Thus, p̂± 1√
n is a 95%-confidence interval for p. We need

1√
n

= 0.03, i.e., n = 1112.
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Application: Testing Lightbulbs.

Assume that lightbulbs have i.i.d. Expo(λ ) lifetimes. We want to
make sure that λ−1 > 1. Say that we measure the average lifetime An
of n = 100 bulbs and we find that it is equal to 1.2.

What is the confidence that we have that λ−1 > 1? We have,

An−λ−1

λ−1/
√

n
=
√

n(λAn−1)≈N (0,1).

Thus,

Pr [
√

n(λAn−1) >
√

n(λ1.2−1)]≈ Pr [N (0,1) >
√

n(λ1.2−1)].

If λ−1 < 1, this probability is at most
Pr [N (0,1) >

√
n(1.2−1)] = Pr [N (0,1) > 2] = 2.5%.

Thus, we conclude that Pr [λ−1 > 1]≥ 97.5%.
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Continuous RV and Bayes’ Rule

Example 1:

W.p. 1/2, X ,Y are i.i.d. Expo(1) and w.p. 1/2, they are i.i.d. Expo(3).

Calculate E [Y |X = x ].

Let B be the event that X ∈ [x ,x + δ ] where 0 < δ � 1.

Let A be the event that X ,Y are Expo(1).

Then,

Pr [A|B] =
(1/2)Pr [B|A]

(1/2)Pr [B|A] + (1/2)Pr [B|Ā]
=

exp{−x}δ
exp{−x}δ + 3exp{−3x}δ

=
exp{−x}

exp{−x}+ 3exp{−3x}
=

e2x

3 + e2x .

Now,

E [Y |X = x ] = E [Y |A]Pr [A|X = x ] + E [Y |Ā]Pr [Ā|X = x ]

= 1×Pr [A|X = x ] + (1/3)Pr [Ā|X = x ]... =
1 + e2x

3 + e2x .

We used Pr [Z ∈ [x ,x + δ ]]≈ fZ (x)δ and given A one has
fX (x) = exp{−x} whereas given Ā one has fX (x) = 3exp{−3x}.
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1 + e2x

3 + e2x .

We used Pr [Z ∈ [x ,x + δ ]]≈ fZ (x)δ and given A one has
fX (x) = exp{−x} whereas given Ā one has fX (x) = 3exp{−3x}.
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1 + e2x

3 + e2x .

We used Pr [Z ∈ [x ,x + δ ]]≈ fZ (x)δ and given A one has
fX (x) = exp{−x} whereas given Ā one has fX (x) = 3exp{−3x}.
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=

exp{−x}δ
exp{−x}δ + 3exp{−3x}δ

=
exp{−x}

exp{−x}+ 3exp{−3x}
=

e2x

3 + e2x .

Now,

E [Y |X = x ] = E [Y |A]Pr [A|X = x ] + E [Y |Ā]Pr [Ā|X = x ]
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... =
1 + e2x

3 + e2x .

We used Pr [Z ∈ [x ,x + δ ]]≈ fZ (x)δ and given A one has
fX (x) = exp{−x} whereas given Ā one has fX (x) = 3exp{−3x}.
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Continuous RV and Bayes’ Rule

Example 2:

W.p. 1/2, Bob is a good dart player and shoots uniformly in a circle
with radius 1. Otherwise, Bob is a very good dart player and shoots
uniformly in a circle with radius 1/2.

The first dart of Bob is at distance 0.3 from the center of the target.

(a) What is the probability that he is a very good dart player?

(b) What is the expected distance of his second dart to the center of
the target?

Note: If uniform in radius r , then Pr [X ≤ x ] = (πx2)/(πr2), so that
fX (x) = 2x/(r2).
(a) We use Bayes’ Rule:

Pr [VG|0.3] =
Pr [VG]Pr [≈ 0.3|VG]

Pr [VG]Pr [≈ 0.3|VG]+Pr [G]Pr [≈ 0.3|G]

=
0.5×2(0.32)ε/(0.52)

0.5×2(0.32)ε/(0.52)+0.5×2ε(0.32)
= 0.8.

(b) E [X ] = 0.8×0.5× 2
3 +0.2× 2

3 = 0.4.
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Summary

Gaussian and CLT

1. Gaussian: N (µ,σ2) : fX (x) = ... “bell curve”

2. CLT: Xn i.i.d. =⇒ An−µ

σ/
√

n →N (0,1)

3. CI: [An−2 σ√
n ,An + 2 σ√

n ] = 95%-CI for µ.

4. Bayes’ Rule: Replace {X = x} by {X ∈ (x ,x + ε)}.
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