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Review: CDF and PDF.

Key idea: For a continuous RV, Pr [X = x ] = 0 for all x ∈ℜ.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr [outcome], then Pr [event].

Instead, one starts by defining Pr [event].

Thus, one defines Pr [X ∈ (−∞,x ]] = Pr [X ≤ x ] =: FX (x),x ∈ℜ.

Then, one defines fX (x) := d
dx FX (x).

Hence, fX (x)ε = Pr [X ∈ (x ,x + ε)].

FX (·) is the cumulative distribution function (CDF) of X .

fX (·) is the probability density function (PDF) of X .
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Expectation

Definitions: (a) The expectation of a random variable X with pdf
f (x) is defined as

E [X ] =
∫

∞

−∞

xfX (x)dx .

(b) The expectation of a function of a random variable is defined as

E [h(X )] =
∫

∞

−∞

h(x)fX (x)dx .

(c) The expectation of a function of multiple random variables is
defined as

E [h(X)] =
∫
· · ·

∫
h(x)fX(x)dx1 · · ·dxn.

Justifications: Think of the discrete approximations of the
continuous RVs.
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Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

Pr [X ∈ A,Y ∈ B] = Pr [X ∈ A]Pr [Y ∈ B],∀A,B.

Theorem: The continuous RVs X and Y are independent if and only
if

fX ,Y (x ,y) = fX (x)fY (y).

Proof: As in the discrete case.

Definition: The continuous RVs X1, . . . ,Xn are mutually independent
if

Pr [X1 ∈ A1, . . . ,Xn ∈ An] = Pr [X1 ∈ A1] · · ·Pr [Xn ∈ An],∀A1, . . . ,An.

Theorem: The continuous RVs X1, . . . ,Xn are mutually independent if
and only if

fX(x1, . . . ,xn) = fX1(x1) · · · fXn(xn).

Proof: As in the discrete case.
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Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random
between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they
meet?

Here, (X ,Y ) are the times when
the friends reach the restaurant.

The shaded area are the pairs
where |X −Y |< 1/6, i.e., such
that they meet.

The complement is the sum of two
rectangles. When you put them
together, they form a square with
sides 5/6.

Thus, Pr [meet] = 1− (5
6 )

2 = 11
36 .
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Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?
Let X ,Y be the two break points
along the [0,1] stick.

You can make a triangle if
A < B+C,B < A+C, and
C < A+B.

If X < Y , this means
X < 0.5,Y < X +0.5,Y > 0.5. This
is the blue triangle.

If X > Y , we get the red triangle,
by symmetry.

Thus, Pr [make triangle] = 1/4.



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?
Let X ,Y be the two break points
along the [0,1] stick.

You can make a triangle if
A < B+C,B < A+C, and
C < A+B.

If X < Y , this means
X < 0.5,Y < X +0.5,Y > 0.5. This
is the blue triangle.

If X > Y , we get the red triangle,
by symmetry.

Thus, Pr [make triangle] = 1/4.



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

Let X ,Y be the two break points
along the [0,1] stick.

You can make a triangle if
A < B+C,B < A+C, and
C < A+B.

If X < Y , this means
X < 0.5,Y < X +0.5,Y > 0.5. This
is the blue triangle.

If X > Y , we get the red triangle,
by symmetry.

Thus, Pr [make triangle] = 1/4.



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

Let X ,Y be the two break points
along the [0,1] stick.

You can make a triangle if
A < B+C,B < A+C, and
C < A+B.

If X < Y , this means
X < 0.5,Y < X +0.5,Y > 0.5. This
is the blue triangle.

If X > Y , we get the red triangle,
by symmetry.

Thus, Pr [make triangle] = 1/4.



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?
Let X ,Y be the two break points
along the [0,1] stick.

You can make a triangle if
A < B+C,B < A+C, and
C < A+B.

If X < Y , this means
X < 0.5,Y < X +0.5,Y > 0.5. This
is the blue triangle.

If X > Y , we get the red triangle,
by symmetry.

Thus, Pr [make triangle] = 1/4.



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?
Let X ,Y be the two break points
along the [0,1] stick.

You can make a triangle if
A < B+C,B < A+C, and
C < A+B.

If X < Y , this means
X < 0.5,Y < X +0.5,Y > 0.5. This
is the blue triangle.

If X > Y , we get the red triangle,
by symmetry.

Thus, Pr [make triangle] = 1/4.



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?
Let X ,Y be the two break points
along the [0,1] stick.

You can make a triangle if
A < B+C,B < A+C, and
C < A+B.

If X < Y , this means
X < 0.5,Y < X +0.5,Y > 0.5.

This
is the blue triangle.

If X > Y , we get the red triangle,
by symmetry.

Thus, Pr [make triangle] = 1/4.



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?
Let X ,Y be the two break points
along the [0,1] stick.

You can make a triangle if
A < B+C,B < A+C, and
C < A+B.

If X < Y , this means
X < 0.5,Y < X +0.5,Y > 0.5. This
is the blue triangle.

If X > Y , we get the red triangle,
by symmetry.

Thus, Pr [make triangle] = 1/4.



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?
Let X ,Y be the two break points
along the [0,1] stick.

You can make a triangle if
A < B+C,B < A+C, and
C < A+B.

If X < Y , this means
X < 0.5,Y < X +0.5,Y > 0.5. This
is the blue triangle.

If X > Y , we get the red triangle,
by symmetry.

Thus, Pr [make triangle] = 1/4.



Breaking a Stick

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?
Let X ,Y be the two break points
along the [0,1] stick.

You can make a triangle if
A < B+C,B < A+C, and
C < A+B.

If X < Y , this means
X < 0.5,Y < X +0.5,Y > 0.5. This
is the blue triangle.

If X > Y , we get the red triangle,
by symmetry.

Thus, Pr [make triangle] = 1/4.



Maximum of Two Exponentials

Let X = Expo(λ ) and Y = Expo(µ) be independent. Define
Z = max{X ,Y}.
Calculate E [Z ].

We compute fZ , then integrate.

One has

Pr [Z < z] = Pr [X < z,Y < z] = Pr [X < z]Pr [Y < z]

= (1−e−λz)(1−e−µz) = 1−e−λz −e−µz +e−(λ+µ)z

Thus,
fZ (z) = λe−λz +µe−µz − (λ +µ)e−(λ+µ)z ,∀z > 0.

Hence,

E [Z ] =
∫

∞

0
zfZ (z)dz =

1
λ
+

1
µ
− 1

λ +µ
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Z = max{X ,Y}.
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Maximum of n i.i.d. Exponentials

Let X1, . . . ,Xn be i.i.d. Expo(1). Define Z = max{X1,X2, . . . ,Xn}.
Calculate E [Z ].

We use a recursion. The key idea is as follows:

Z = min{X1, . . . ,Xn}+V

where V is the maximum of n−1 i.i.d. Expo(1). This follows from the
memoryless property of the exponential.

Let then An = E [Z ]. We see that

An = E [min{X1, . . . ,Xn}]+An−1

=
1
n
+An−1

because the minimum of Expo is Expo with the sum of the rates.

Hence,

E [Z ] = An = 1+
1
2
+ · · ·+ 1

n
= H(n).
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Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error

perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.

What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model:

X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value.

Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X .

Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits.

The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis:

We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] =

1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

In digital video and audio, one represents a continuous value by a
finite number of bits.

This introduces an error perceived as noise: the quantization noise.
What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple
of 2−n to X . Thus, we can represent Y with n bits. The error is
Z := X −Y .

The power of the noise is E [Z 2].

Analysis: We see that Z is uniform in [0,a = 2−(n+1)].

Thus,

E [Z 2] =
a2

3
=

1
3

2−2(n+1).

The power of the signal X is E [X 2] = 1
3 .



Quantization Noise

We saw that E [Z 2] = 1
32−2(n+1) and E [X 2] = 1

3 .

The signal to noise ratio (SNR) is the power of the signal divided by
the power of the noise.

Thus,
SNR = 22(n+1).

Expressed in decibels, one has

SNR(dB) = 10log10(SNR) = 20(n+1) log10(2)≈ 6(n+1).

For instance, if n = 16, then SNR(dB)≈ 112dB.



Quantization Noise

We saw that E [Z 2] = 1
32−2(n+1) and E [X 2] = 1

3 .

The signal to noise ratio (SNR) is the power of the signal divided by
the power of the noise.

Thus,
SNR = 22(n+1).

Expressed in decibels, one has

SNR(dB) = 10log10(SNR) = 20(n+1) log10(2)≈ 6(n+1).

For instance, if n = 16, then SNR(dB)≈ 112dB.



Quantization Noise

We saw that E [Z 2] = 1
32−2(n+1) and E [X 2] = 1

3 .

The signal to noise ratio (SNR)

is the power of the signal divided by
the power of the noise.

Thus,
SNR = 22(n+1).

Expressed in decibels, one has

SNR(dB) = 10log10(SNR) = 20(n+1) log10(2)≈ 6(n+1).

For instance, if n = 16, then SNR(dB)≈ 112dB.



Quantization Noise

We saw that E [Z 2] = 1
32−2(n+1) and E [X 2] = 1

3 .

The signal to noise ratio (SNR) is the power of the signal divided by
the power of the noise.

Thus,
SNR = 22(n+1).

Expressed in decibels, one has

SNR(dB) = 10log10(SNR) = 20(n+1) log10(2)≈ 6(n+1).

For instance, if n = 16, then SNR(dB)≈ 112dB.



Quantization Noise

We saw that E [Z 2] = 1
32−2(n+1) and E [X 2] = 1

3 .

The signal to noise ratio (SNR) is the power of the signal divided by
the power of the noise.

Thus,
SNR = 22(n+1).

Expressed in decibels, one has

SNR(dB) = 10log10(SNR) = 20(n+1) log10(2)≈ 6(n+1).

For instance, if n = 16, then SNR(dB)≈ 112dB.



Quantization Noise

We saw that E [Z 2] = 1
32−2(n+1) and E [X 2] = 1

3 .

The signal to noise ratio (SNR) is the power of the signal divided by
the power of the noise.

Thus,
SNR = 22(n+1).

Expressed in decibels, one has

SNR(dB) = 10log10(SNR)

= 20(n+1) log10(2)≈ 6(n+1).

For instance, if n = 16, then SNR(dB)≈ 112dB.



Quantization Noise

We saw that E [Z 2] = 1
32−2(n+1) and E [X 2] = 1

3 .

The signal to noise ratio (SNR) is the power of the signal divided by
the power of the noise.

Thus,
SNR = 22(n+1).

Expressed in decibels, one has

SNR(dB) = 10log10(SNR) = 20(n+1) log10(2)

≈ 6(n+1).

For instance, if n = 16, then SNR(dB)≈ 112dB.



Quantization Noise

We saw that E [Z 2] = 1
32−2(n+1) and E [X 2] = 1

3 .

The signal to noise ratio (SNR) is the power of the signal divided by
the power of the noise.

Thus,
SNR = 22(n+1).

Expressed in decibels, one has

SNR(dB) = 10log10(SNR) = 20(n+1) log10(2)≈ 6(n+1).

For instance, if n = 16, then SNR(dB)≈ 112dB.



Quantization Noise

We saw that E [Z 2] = 1
32−2(n+1) and E [X 2] = 1

3 .

The signal to noise ratio (SNR) is the power of the signal divided by
the power of the noise.

Thus,
SNR = 22(n+1).

Expressed in decibels, one has

SNR(dB) = 10log10(SNR) = 20(n+1) log10(2)≈ 6(n+1).

For instance, if n = 16, then SNR(dB)≈ 112dB.



Replacing Light Bulbs
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How many light bulbs do we need to replace in t units of time?

Theorem: The number Xt of replaced light bulbs is P(t).

That is, Pr [Xt = n] = tn

n!e
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≈ Pr [Xt = n](1− ε)+Pr [Xt = n−1]ε.

Hence, g(n, t) := Pr [Xt = n] is such that

g(n, t + ε)≈ g(n, t)−g(n, t)ε +g(n−1, t)ε.
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Proof: (continued) We saw that

g(n, t + ε)≈ g(n, t)−g(n, t)ε +g(n−1, t)ε.

Subtracting g(n, t), dividing by ε, and letting ε → 0, one gets

g′(n, t) =−g(n, t)+g(n−1, t).

You can check that these equations are solved by g(n, t) = tn

n!e
−t .

Indeed, then

g′(n, t) =
tn−1

(n−1)!
e−t −g(n, t)

= g(n−1, t)−g(n, t).
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Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at
random in [0,1].

What is E [(X −Y )2]?

Analysis: One has

E [(X −Y )2] = E [X 2 +Y 2−2XY ]

=
1
3
+

1
3
−2

1
2

1
2

=
2
3
− 1

2
=

1
6
.

Problem 2: What about in a unit square?

Analysis: One has

E [||X−Y||2] = E [(X1−Y1)
2]+E [(X2−Y2)

2]

= 2× 1
6
.

Problem 3: What about in n dimensions? n
6 .
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Geometric and Exponential

The geometric and exponential distributions are similar. They are
both memoryless.

Consider flipping a coin every 1/N second with Pr [H] = p/N, where
N� 1.

Let X be the time until the first H.

Fact: X ≈ Expo(p).

Analysis: Note that

Pr [X > t ] ≈ Pr [first Nt flips are tails]

= (1− p
N
)Nt ≈ exp{−pt}.

Indeed, (1− a
N )N ≈ exp{−a}.
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Summary

Continuous Probability 3

I Continuous RVs are essentially the same as discrete RVs
I Think that X ≈ x with probability fX (x)ε
I Sums become integrals, ....
I The exponential distribution is magical: memoryless.
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