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Definitions: (a) The expectation of a random variable X with pdf
f(x) is defined as o

E[X] = / xhy(X)ax.
(b) The expectation of a function of a random variable is defined as

E[h(X)] = /7 Z h(x)fx (x)dx.

(c) The expectation of a function of multiple random variables is
defined as

E[h(X)] = / / h(X)fx (X)dx; - -~ dXp.

Justifications: Think of the discrete approximations of the
continuous RVs.
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You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?
Let X, Y be the two break points

A, B O along the [0, 1] stick.

’ i You can make a triangle if

A<B+C,B<A+C,and
C<A+B.

If X <Y, this means
X<05Y<X+05Y>0.5. This
is the blue triangle.

If X > Y, we get the red triangle,
by symmetry.

Thus, Pr[make triangle] = 1/4.
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Calculate E[Z].
We use a recursion. The key idea is as follows:
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Hence,
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We saw that E[Z2] = 2721 and E[X?] = {.

The signal to noise ratio (SNR) is the power of the signal divided by
the power of the noise.

Thus,
SNR = 23(n+1)

Expressed in decibels, one has
SNR(dB) = 10logo(SNR) =20(n+1)log(2) = 6(n+1).

For instance, if n= 16, then SNR(dB) ~ 112dB.
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Geometric and Exponential

The geometric and exponential distributions are similar. They are
both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where
N> 1.

Let X be the time until the first H.
Fact: X ~ Expo(p).
Analysis: Note that

PriX >t ~ Prffirst Nt flips are tails]

= (1- %)’W ~ exp{—pt}.

Indeed, (1 — &)V ~ exp{-a}.
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