CS70: Jean Walrand: Lecture 36.

Continuous Probability 3

- 1. Review: CDF, PDF
- 2. Review: Expectation
- 3. Review: Independence
- 4. Meeting at a Restaurant
- Breaking a Stick
- 6. Maximum of Exponentials
- Quantization Noise
- 8. Replacing Light Bulbs
- 9. Expected Squared Distance
- Geometric and Exponential

Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon = Pr[X \in (x, x + \varepsilon)].$

 $F_X(\cdot)$ is the cumulative distribution function (CDF) of X.

 $f_X(\cdot)$ is the probability density function (PDF) of X.

Expectation

Definitions: (a) The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

(b) The expectation of a function of a random variable is defined as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

(c) The expectation of a function of multiple random variables is defined as

$$E[h(\mathbf{X})] = \int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n.$$

Justifications: Think of the discrete approximations of the continuous RVs.

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Theorem: The continuous RVs $X_1, ..., X_n$ are mutually independent if and only if

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Proof: As in the discrete case.

Meeting at a Restaurant

Two friends go to a restaurant independently uniformly at random between noon and 1pm.

They agree they will wait for 10 minutes. What is the probability they meet?

Thus,
$$Pr[meet] = 1 - (\frac{5}{6})^2 = \frac{11}{36}$$
.

Here, (X, Y) are the times when the friends reach the restaurant.

The shaded area are the pairs where |X - Y| < 1/6, i.e., such that they meet.

The complement is the sum of two rectangles. When you put them together, they form a square with sides 5/6.

Breaking a Stick

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?

Let X, Y be the two break points along the [0,1] stick.

You can make a triangle if A < B + C, B < A + C, and C < A + B.

If X < Y, this means X < 0.5, Y < X + 0.5, Y > 0.5. This is the blue triangle.

If X > Y, we get the red triangle, by symmetry.

Thus, Pr[make triangle] = 1/4.

Maximum of Two Exponentials

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Calculate E[Z].

We compute f_Z , then integrate.

One has

$$Pr[Z < z] = Pr[X < z, Y < z] = Pr[X < z]Pr[Y < z]$$

$$= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z}$$

Thus,

$$f_Z(z) = \lambda e^{-\lambda z} + \mu e^{-\mu z} - (\lambda + \mu) e^{-(\lambda + \mu)z}, \forall z > 0.$$

Hence,

$$E[Z] = \int_0^\infty z f_Z(z) dz = \frac{1}{\lambda} + \frac{1}{\mu} - \frac{1}{\lambda + \mu}.$$

Maximum of *n* i.i.d. Exponentials

Let $X_1, ..., X_n$ be i.i.d. Expo(1). Define $Z = \max\{X_1, X_2, ..., X_n\}$.

Calculate E[Z].

We use a recursion. The key idea is as follows:

$$Z = \min\{X_1, \dots, X_n\} + V$$

where V is the maximum of n-1 i.i.d. Expo(1). This follows from the memoryless property of the exponential.

Let then $A_n = E[Z]$. We see that

$$A_n = E[\min\{X_1, \dots, X_n\}] + A_{n-1}$$

= $\frac{1}{n} + A_{n-1}$

because the minimum of *Expo* is *Expo* with the sum of the rates.

Hence,

$$E[Z] = A_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = H(n).$$

Quantization Noise

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Model: X = U[0,1] is the continuous value. Y is the closest multiple of 2^{-n} to X. Thus, we can represent Y with n bits. The error is Z := X - Y.

The power of the noise is $E[Z^2]$.

Analysis: We see that Z is uniform in $[0, a = 2^{-(n+1)}]$.

Thus,

$$E[Z^2] = \frac{a^2}{3} = \frac{1}{3}2^{-2(n+1)}.$$

The power of the signal *X* is $E[X^2] = \frac{1}{3}$.

Quantization Noise

We saw that $E[Z^2] = \frac{1}{3}2^{-2(n+1)}$ and $E[X^2] = \frac{1}{3}$.

The **signal to noise ratio** (SNR) is the power of the signal divided by the power of the noise.

Thus,

$$SNR = 2^{2(n+1)}$$
.

Expressed in decibels, one has

$$SNR(dB) = 10\log_{10}(SNR) = 20(n+1)\log_{10}(2) \approx 6(n+1).$$

For instance, if n = 16, then $SNR(dB) \approx 112dB$.

Replacing Light Bulbs

Say that light bulbs have i.i.d. *Expo*(1) lifetimes.

We turn a light on, and replace it as soon as it burns out.

How many light bulbs do we need to replace in t units of time?

Theorem: The number X_t of replaced light bulbs is P(t).

That is,
$$Pr[X_t = n] = \frac{t^n}{n!}e^{-t}$$
.

Proof: We see how X_t increases over the next $\varepsilon \ll 1$ time units.

Let A be the event that a burns out during $[t, t+\varepsilon]$. Then,

$$Pr[X_{t+\varepsilon} = n] \approx Pr[X_t = n, A^c] + Pr[X_t = n-1, A]$$

$$= Pr[X_t = n]Pr[A^c] + Pr[X_t = n-1]Pr[A]$$

$$\approx Pr[X_t = n](1-\varepsilon) + Pr[X_t = n-1]\varepsilon.$$

Hence, $g(n,t) := Pr[X_t = n]$ is such that

$$g(n, t+\varepsilon) \approx g(n, t) - g(n, t)\varepsilon + g(n-1, t)\varepsilon.$$

Replacing Light Bulbs

Say that light bulbs have i.i.d. Expo(1) lifetimes.

We turn a light on, and replace it as soon as it burns out.

How many light bulbs do we need to replace in *t* units of time?

Theorem: The number X_t of replaced light bulbs is P(t).

That is,
$$Pr[X_t = n] = \frac{t^n}{n!}e^{-t}$$
.

Proof: (continued) We saw that

$$g(n, t+\varepsilon) \approx g(n, t) - g(n, t)\varepsilon + g(n-1, t)\varepsilon$$
.

Subtracting g(n,t), dividing by ε , and letting $\varepsilon \to 0$, one gets

$$g'(n,t) = -g(n,t) + g(n-1,t).$$

You can check that these equations are solved by $g(n,t) = \frac{t^n}{n!}e^{-t}$. Indeed, then

$$g'(n,t) = \frac{t^{n-1}}{(n-1)!}e^{-t} - g(n,t)$$

= $g(n-1,t) - g(n,t)$.

Expected Squared Distance

Problem 1: Pick two points X and Y independently and uniformly at random in [0,1].

What is $E[(X - Y)^2]$?

Analysis: One has

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY]$$

$$= \frac{1}{3} + \frac{1}{3} - 2\frac{1}{2}\frac{1}{2}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Problem 2: What about in a unit square?

Analysis: One has

$$E[||\mathbf{X} - \mathbf{Y}||^2] = E[(X_1 - Y_1)^2] + E[(X_2 - Y_2)^2]$$

= $2 \times \frac{1}{6}$.

Problem 3: What about in *n* dimensions? $\frac{n}{6}$.

Geometric and Exponential

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let *X* be the time until the first *H*.

Fact: $X \approx Expo(p)$.

Analysis: Note that

$$Pr[X > t] \approx Pr[\text{first Nt flips are tails}]$$

= $(1 - \frac{p}{N})^{Nt} \approx \exp\{-pt\}.$

Indeed, $(1-\frac{a}{N})^N \approx \exp\{-a\}$.

Summary

Continuous Probability 3

- Continuous RVs are essentially the same as discrete RVs
- ▶ Think that $X \approx x$ with probability $f_X(x)\varepsilon$
- Sums become integrals,
- The exponential distribution is magical: memoryless.