CS70: Jean Walrand: Lecture 35.

’ Continuous Probability 2 ‘




CS70: Jean Walrand: Lecture 35.

’ Continuous Probability 2 ‘




CS70: Jean Walrand: Lecture 35.

N o ok~ owDd -

‘ Continuous Probability 2 ‘

Review: CDF, PDF
Examples

Properties

Expectation

Expectation of Function
Variance

Independent Continuous RVs



Review: CDF and PDF.



Review: CDF and PDF.

Key idea:



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0,1];



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.
Thus, one cannot define Pr[outcome],



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.
Thus, one cannot define Prjoutcome], then Pr[event].



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].
Instead, one starts by defining Pr[event].



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].
Instead, one starts by defining Pr[event].

Thus, one defines Pr[X € (—e, x]]



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].
Instead, one starts by defining Pr[event].

Thus, one defines Pr[X € (—oo, x]] = Pr(X < x|



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].

Instead, one starts by defining Pr[event].

Thus, one defines Pr[X € (—oo, X]] = Pr(X < x] =: Fx(x),x € R.



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].

Instead, one starts by defining Pr[event].

Thus, one defines Pr[X € (—oo, X]] = Pr(X < x] =: Fx(x),x € R.

Then, one defines fx(x) := & Fx(x).



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].

Instead, one starts by defining Pr[event].

Thus, one defines Pr[X € (—oo, X]] = Pr(X < x] =: Fx(x),x € R.
Then, one defines fx(x) := & Fx(x).

Hence, fx(x)e ~ Pr[X € (x,x +¢€)].



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].

Instead, one starts by defining Pr[event].

Thus, one defines Pr[X € (—oo, X]] = Pr(X < x] =: Fx(x),x € R.
Then, one defines fx(x) := & Fx(x).

Hence, fx(x)e ~ Pr[X € (x,x +¢€)].

Fx(-) is the cumulative distribution function



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].

Instead, one starts by defining Pr[event].

Thus, one defines Pr[X € (—oo, X]] = Pr(X < x] =: Fx(x),x € R.
Then, one defines fx(x) := & Fx(x).

Hence, fx(x)e ~ Pr[X € (x,x +¢€)].

Fx(+) is the cumulative distribution function (CDF)



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].

Instead, one starts by defining Pr[event].

Thus, one defines Pr[X € (—oo, X]] = Pr(X < x] =: Fx(x),x € R.
Then, one defines fx(x) := & Fx(x).

Hence, fx(x)e ~ Pr[X € (x,x +¢€)].

Fx(+) is the cumulative distribution function (CDF) of X.



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].

Instead, one starts by defining Pr[event].

Thus, one defines Pr[X € (—oo, X]] = Pr(X < x] =: Fx(x),x € R.
Then, one defines fx(x) := & Fx(x).

Hence, fx(x)e ~ Pr[X € (x,x +¢€)].

Fx(+) is the cumulative distribution function (CDF) of X.

fx(+) is the probability density function



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].

Instead, one starts by defining Pr[event].

Thus, one defines Pr[X € (—oo, X]] = Pr(X < x] =: Fx(x),x € R.
Then, one defines fx(x) := & Fx(x).

Hence, fx(x)e ~ Pr[X € (x,x +¢€)].

Fx(+) is the cumulative distribution function (CDF) of X.

fx(+) is the probability density function (PDF)



Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € K.
Examples: Uniform in [0, 1]; throw a dart in a target.

Thus, one cannot define Prjoutcome], then Pr[event].

Instead, one starts by defining Pr[event].

Thus, one defines Pr[X € (—oo, X]] = Pr(X < x] =: Fx(x),x € R.
Then, one defines fx(x) := & Fx(x).

Hence, fx(x)e ~ Pr[X € (x,x +¢€)].

Fx(+) is the cumulative distribution function (CDF) of X.

fx(+) is the probability density function (PDF) of X.



A Picture



A Picture

A PriX < o] 1

&\\T‘,@“ 3
.f:a\\\'ﬁ“\'i\\{\\\\\k\“.




A Picture

4

R

AR :
: ..-;:a\h\'ﬁ“xi\\\\\\\\k\h

The pdf fx(x) is a nonnegative function that integrates to 1.



A Picture

4 PrlX < 1 1
Fy(x)

_!rjl" T < _1( < T + d-;
= fx(z)d

AR .
. ..-::a\h\'ﬁ‘\i\\\\\\\\\\h

The pdf fx(x) is a nonnegative function that integrates to 1.
The cdf Fx(x) is the integral of fx.



A Picture

4 PrlX < 1 1

AR f
. .r::a\h\'ﬁ‘\i\\\\\\\\\\h

The pdf fx(x) is a nonnegative function that integrates to 1.
The cdf Fx(x) is the integral of fx.

Prix < X < x+ 8] ~ fx(x)8



A Picture

AP X <ux 1
Fx ()

_!rjll- I = _1( =< I+ (5.
= }l'.ll:rl :I ci
S

AN I
: .r::a\'h\'ﬁ“xi\\\\\\\\\\h

The pdf fx(x) is a nonnegative function that integrates to 1.
The cdf Fx(x) is the integral of fx.

Prix < X < x+ 8] ~ fx(x)5
PrIX < x] = Fy(x) = /j fe(u)au



Target



Target

Random Variable )
. . Outcome

Event {Y < y}

P



Ula, b]



Ula, b]

A
Uniform in |a, b
) S
Fy(x)
1h-a)-H-—-
pdt
0 > X
a b




Expo(1)

The exponential distribution with parameter A > 0 is defined by



Expo(1)

The exponential distribution with parameter A > 0 is defined by
fx(x) = A e 1{x > 0}



Expo(1)

The exponential distribution with parameter A > 0 is defined by
fx(x) = A e 1{x > 0}

0, if x<0
FX(X):{ 1—e**  ifx>0.
1 4
03 |
ol A=1 Fx(z) 3'5 |
0.7 3 )" - 5
0.6 25
05 \ 2 fx I[l'\]
04
04 " Fx(x)
02 fx(z) '
0.1 05
05 1|:| 5 o l




Expo(1)

The exponential distribution with parameter A > 0 is defined by
fx(x) = A e 1{x > 0}

0,

Fx(x) = { 1 e,

0.8} |

oal A=1 Fy(x)
0.7

nak-

n&k

0.4}

04}

02| fx(z)

0.1}

Note that Pr[X > t] = e *!for t > 0.

35;

25}

15}

05t

if x<0
if x>0

on

Fxia)

Fix(x)




Some Properties



Some Properties

1. Expo is memoryless.



Some Properties

1. Expo is memoryless. Let X = Expo(1).



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,



Some Properties
1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX>t+s|X>s] =



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]

PriX>t+s|X>s] = PrIX> 5]



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]
e—)L(t+s)

e*lS

PriX>t+s|X>s] =



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]
e—)L(t+s)

= 76715 = e

PriX>t+s|X>s] =

—At



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e—)L(t+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo.



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(1) and Y = aX for some a > 0.



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PriY>t] =



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrilY >t = PrlaX>1{]=



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e—)L(t+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrlY >t = PrlaX>t=Pr[X>1t/q]



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrlY >t] = PrlaX >t =Pr[X>1t/q]
e Mt/a) _ g—(A/a)t _



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrlY >t] = PrlaX >t =Pr[X>1t/q]
e M/a) — =X/t _ pr(7 > ] for Z = Expo(A/a).



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e—)L(t+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrlY >t = PrlaX>t=Pr[X>1t/q]
e M/a) — =X/t _ pr(7 > ] for Z = Expo(A/a).

Thus, ax Expo(1) = Expo(A/a).



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e—)L(t+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then
PrlY >t = PrlaX>t=Pr[X>1t/q]
e M/a) — =X/t _ pr(7 > ] for Z = Expo(A/a).
Thus, ax Expo(1) = Expo(A/a).
Also, Expo(L) = 1 Expo(1).



More Properties



More Properties

3. Scaling Uniform.



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PriY e (y,y+96)] = Prlat+tbXe(y,y+9)]=



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

y—-ay+dé—-a

PriY e(y,y+9)] = Pr[a+bXe(y,y+6)]:Pr[Xe(T, 5 )




More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

y—-ay+dé—-a

PrY € (y.y+6)] L2 =)

Pria+bX € (y,y+8)] = PriX e (
ay-—

y— a

= Pxe(pR T



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

yay+6 a
b )

1) 1
5)] - 56, fOI’

PrY e (y,y +9)]

Prla+bX € d)]=PriXe(——

y.y+
= Prixe (204



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

y—a y+6 a
b )
y

)]:235, for0<%a<1

PrY e (y,y +9)]

Prla+bX € d)]=PriXe(——

v, y+
—a 1)
= Pf[XG(yT,yT B



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PriY c(y.y+8)] = Prla+bXe(y.y+ )]_P,[Xe(yba y+i a
= uL é _ y—a
= PriXe (T +b)]_b3,foro< <

= 56, fora<y<a+b.



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PriY c(y.y+8)] = Prla+bXe(y.y+ )]_P,[Xe(yba y+i a
- uL Sy_1 y—a
= PriXe( 5 5 +b)]—b6,for0< - <1
= B6,fora<y<a+b.

Thus, fy(y) =1 fora<y < a+b.



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PriY c(y.y+8)] = Prla+bXe(y.y+ )]_P,[Xe(yba y+i a
- uL Sy_1 y—a
= PriXe( 5 5 +b)]—b6,for0< - <1
= B6,fora<y<a+b.

Thus, fy(y) = 1 fora< y < a+b. Hence, Y = U[a,a+ b].



More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PriY c(y.y+8)] = Prla+bXe(y.y+ )]_P,[Xe(yba y+i a
- uL Sy_1 y—a
= PriXe( 5 5 +b)]—b6,for0< - <1
= E6,fora<y<a+b.

Thus, fy(y) = 1 fora< y < a+b. Hence, Y = U[a,a+ b].

Replacing b by b— a we see that, if X = U[0,1], then Y =a+(b—a)X
is Ula, b].



Some More Properties



Some More Properties

4. Scaling pdf.



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b> 0.



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b> 0. Then

PriYe(y,y+8)] = Prla+bXe(y,y+98)]=



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b> 0. Then

PrIY € (y,y+8)] = Prlat+bXe(y,y+8)]=PriXe (y;bavwzfa)]




Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b> 0. Then

)= Prix e (Y2 YO8

PrlY e (y,y+90)] = Prla+bXe(y,



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b> 0. Then

PrlY e (y,y+90)] = Prla+bXe(y,



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b> 0. Then

PriY e(y,y+96)] = Prla+bXe(y,y+96)]=FPr[Xe ,
_ y-—ay-a 8. J
= PriXe (Tt P = K(Tp ) g

Now, the left-hand side is



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b> 0. Then

PriY e(y,y+96)] = Prla+bXe(y,y+96)]=FPr[Xe ,
_ y-—ay-a 8. J
= PriXe (Tt P = K(Tp ) g

Now, the left-hand side is fy(y)o.



Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b> 0. Then

PrlY e (y,y+906)] = Prla+bXe(y
= Pr[Xe(

Now, the left-hand side is fy(y)d. Hence,

fr(y) =




Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a+ bX where
b> 0. Then

PrlY e (y,y+906)] = Prla+bXe(y
= Pr[Xe(

Now, the left-hand side is fy(y)d. Hence,

fr(y) =




Expectation
Definition:



Expectation
Definition: The expectation of a random variable X with pdf f(x) is
defined as



Expectation
Definition: The expectation of a random variable X with pdf f(x) is

defined as o
E[X] = / Xty (x)dx.



Expectation
Definition: The expectation of a random variable X with pdf f(x) is

defined as o
E[X] = / Xty (x)dx.

Justification:



Expectation
Definition: The expectation of a random variable X with pdf f(x) is

defined as o
E[X] = / Xty (x)dx.

Justification: Say X = né w.p. fx(nd)é for ne Z.



Expectation
Definition: The expectation of a random variable X with pdf f(x) is

defined as o
ﬂm:/xmnw.

Justification: Say X = né w.p. fx(nd)éd for ne Z. Then,

E[X] = Y (n8)Pr[X = né]

n



Expectation
Definition: The expectation of a random variable X with pdf f(x) is

defined as o
E[X] = / Xty (x)dx.

Justification: Say X = né w.p. fx(nd)éd for ne Z. Then,

E[X] = Y.(n8)Pr[X = n8] = Y (n8)fx(n&)s

n n



Expectation
Definition: The expectation of a random variable X with pdf f(x) is

defined as o
E[X] = / Xty (x)dx.
Justification: Say X = né w.p. fx(nd)éd for ne Z. Then,

E[X] =Y (n8)Pr[X = nd] =Y (nd)fx(n8)s = /_m xfx(x)dx.

n n



Expectation
Definition: The expectation of a random variable X with pdf f(x) is

defined as o
E[X] = / Xty (x)dx.
Justification: Say X = né w.p. fx(nd)éd for ne Z. Then,

E[X] =Y (n8)Pr[X = nd] =Y (nd)fx(n8)s = /_m xfx(x)dx.

n n

Indeed, for any g, one has [ g(x)dx =~ ¥ ,9(nd)sé.



Expectation
Definition: The expectation of a random variable X with pdf f(x) is

defined as o
E[X] = / Xty (x)dx.
Justification: Say X = né w.p. fx(nd)éd for ne Z. Then,

E[X] =Y (n8)Pr[X = nd] =Y (nd)fx(n8)s = /_m xfx(x)dx.

n n

Indeed, for any g, one has [ g(x)dx ~ Y ,g(nd)s. Choose
g(x) = xfx(x).



Expectation
Definition: The expectation of a random variable X with pdf f(x) is

defined as o
E[X] = / Xty (x)dx.
Justification: Say X = né w.p. fx(nd)éd for ne Z. Then,

E[X] =Y (n8)Pr[X = nd] =Y (nd)fx(n8)s = /_oo xfx(x)dx.

n n

Indeed, for any g, one has [g(x)dx ~Y,g(nd)s. Choose
9(x) = xfx(x).

AN
L

g(nd)d




Examples of Expectation



Examples of Expectation

1. X =U[0,1].



Examples of Expectation

1. X =U[0,1]. Then, fx(x) =



Examples of Expectation

1. X = U[0,1]. Then, fx(x) =1{0 < x < 1}.



Examples of Expectation

1. X =U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X] = / Z Xfx (x)dx



Examples of Expectation

1. X =U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]= /:oxfx(x)dx = /01 x.1dx =



Examples of Expectation

1. X =U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]=/‘:xfx(x)dx=/01 x.1dx = [X?];:



Examples of Expectation

1. X =U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

ElX]= /;Xfx(X)dX= /01 xddx=["



Examples of Expectation

1. X =U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/‘:xfx(x)dx:/o1 x.1dx = [%];:E.

2. X = distance to 0 of dart shot uniformly in unit circle.



Examples of Expectation

1. X =U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/ixfx(x)dx:/o1 x.1dx = [%];:E.

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fx(x)=2x1{0 < x <1}.



Examples of Expectation

1. X =U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/ixfx(x)dx:/o1 x.1dx = [%];:E.

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fx(x) =2x1{0 < x <1}. Thus,

=

E[X] = /_ xf(x)ax



Examples of Expectation

1. X =U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/ixfx(x)dx:/o1 x.1dx = [%]Ozé.

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fx(x) =2x1{0 < x <1}. Thus,

=

E[X]:/_mxfx(x)dx:/o1 x.2xdx =



Examples of Expectation

1. X =U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/ixfx(x)dx:/o1 x.1dx = [%]Ozé.

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fx(x) =2x1{0 < x <1}. Thus,

e 1

E[X]= /_wxfx(x)dx: /01 x.2xdx = [2%}0 =



Examples of Expectation

1. X =U[0,1]. Then, fx(x) =1{0 < x < 1}. Thus,

E[X]:/ixfx(x)dx:/o1 x.1dx = [%]Ozé.

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fx(x) =2x1{0 < x <1}. Thus,

= ! 2x3.1 2
EX) = [ xix(x)ox = [ xaxax= [ ]3 = 2.



Examples of Expectation



Examples of Expectation
3. X = Expo(1).



Examples of Expectation
3. X = Expo(L). Then, fx(x) = Ae **1{x > 0}.



Examples of Expectation
3. X = Expo(L). Then, fx(x) = e **1{x > 0}. Thus,

E[X] = / " xne M dx
0



Examples of Expectation
3. X = Expo(L). Then, fx(x) = e **1{x > 0}. Thus,

E[X] = / " xne M dx = — / " xde .
0 0



Examples of Expectation
3. X = Expo(L). Then, fx(x) = e **1{x > 0}. Thus,

E[X] = / " xne M dx = — / " xde .
0 0

Recall the integration by parts formula:

b b (P
/au(x)dv(x) = [u(x)v(x)]a—/a v(x)du(x)



Examples of Expectation
3. X = Expo(L). Then, fx(x) = e **1{x > 0}. Thus,

E[X] = / " xne M dx = — / " xde .
0 0

Recall the integration by parts formula:
b

/bu(x)dv(x) = [u(x)v(x)]g— v(x)du(x)

a

b
—  u(b)v(b) - u(a)v(a)— / v(x)du(x).



Examples of Expectation
3. X = Expo(L). Then, fx(x) = e **1{x > 0}. Thus,

E[X] = / " xne M dx = — / " xde .
0 0

Recall the integration by parts formula:

b

/bu(x)dv(x) = [u(x)v(x)]g— v(x)du(x)

? b
—  u(b)v(b) - u(a)v(a)— / v(x)du(x).
Thus,

/xde*“ = [xe*“]g"—/ e Madx
0 0



Examples of Expectation
3. X = Expo(L). Then, fx(x) = e **1{x > 0}. Thus,

E[X] = / " xne M dx = — / " xde .
0 0

Recall the integration by parts formula:

b
/ u(x)dv(x)

I
=
>
=
>

|
=
>

Q
£
>

|
j~
—~
o
~
<
—~
&)
~
|
c
—~
QD
~
<
—~
QD
~—~
I
\
<
—~
x
g
c
—
~

Thus,

/xde*“ = [xe*“]g"—/ e Madx
0 0

|
o
|
o
+
> —
o\g
®
>
>
I



Examples of Expectation
3. X = Expo(L). Then, fx(x) = e **1{x > 0}. Thus,

E[X] = / " xne M dx = — / " xde .
0 0

Recall the integration by parts formula:

b
/ u(x)dv(x)

I
=
>
=
>

|
=
>

Q
£
>

|
j~
—~
o
~
<
—~
&)
~
|
c
—~
QD
~
<
—~
QD
~—~
I
\
<
—~
x
g
c
—
~

Thus,

/xde*“ = [xe*“]g"—/ e Madx
0 0

|
o
|
o
+
> —
o\g
®
>
>
I



Examples of Expectation
3. X = Expo(L). Then, fx(x) = e **1{x > 0}. Thus,

E[X] = / " xne M dx = — / " xde .
0 0

Recall the integration by parts formula:

b R
/a u(x)av(x) = [u(x)v(x)],— : v(x)du(x)
—  u(b)v(b)— u(a)v(a)— / v(x)du(x).
Thus,
/wade*“ = [xe*“]g"—/ow e *dx
- O—0+%/omde*“= —%.

Hence, E[X] = 1.



Multiple Continuous Random Variables



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
forx,y e R



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.

Example:



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set A ¢ R2.



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set A C 2. Then

fy(xy) = |A| Hxy) € A}



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set A C 2. Then

fy(xy) = |A| Hxy) € A}

where |A| is the area of A.



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set A C 2. Then

fy(xy) = |A| Hxy) € A}

where |A| is the area of A.
Interpretation.



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set A C 2. Then

fev(x.y)= |A| Hxy) € A}

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh
size €



Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set A C 2. Then

fev(x.y)= |A| Hxy) € A}

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh
size € and Pr[X = me, Y = ne| = fx y(me, ne)e?.



Multiple Continuous Random Variables
One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set A C 2. Then

fev(x.y)= |A| Hxy) € A}

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh
size € and Pr[X = me, Y = ne| = fx y(me, ne)e?.

Extension:



Multiple Continuous Random Variables
One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)dxdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set A C 2. Then

fev(x.y)= |A| Hxy) € A}

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh
size € and Pr[X = me, Y = ne| = fx y(me, ne)e?.

Extension: X = (Xi,..., Xp) with fx(x).



Example of Continuous (X, Y)



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

-




Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

-

Thus, fx y(x,y) = 21{x2+y2 <1}.



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

-

Thus, fx y(x,y) = 21{x2+y2 <1}.
Consequently,

PriX>0,Y>0]=



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

-

Thus, fx y(x,y) = 21{x2+y2 <1}.
Consequently,

Pr[X>O,Y>O]:%



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

-

Thus, fx y(x,y) = 21{x2+y2 <1}.
Consequently,

Pr[X>O,Y>O]:%

PriX<0,Y>0]=



Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

-

X
Thus, fx y(x,y) = 21{x2+y2 <1}.
Consequently,
PriX>0,Y>0]=
PriX<0,Y>0]=

A\

PN



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

-

A\

Thus, fx y(x,y) = 21{x2+y2 <1}.
Consequently,

PriX>0,Y>0]=

PriX<0,Y>0]=

PN

Prix?+ Y2 <r? =



Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

-

X
Thus, fx y(x,y) = 21{x2+y2 <1}.
Consequently,
Pr[X>O,Y>O]:%
Pr[X<O,Y>O]:%
Prix?+ Y2 <r?]=r?



Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

-

X
Thus, fx y(x,y) = 21{x2+y2 <1}.
Consequently,
Pr[X>O,Y>O]:%
Pr[X<O,Y>O]:%
Prix?+ Y2 <r?]=r?

PriX > Y] =



Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

4

X
Thus, fx y(x,y) = 21{x2+y2 <1}.
Consequently,
Pr[X>O,Y>O]:%
Pr[X<O,Y>O]:%
Prix?+ Y2 <r?]=r?

Mw>n:%



Independent Continuous Random Variables



Independent Continuous Random Variables
Definition:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = ix(xX)fy (y).



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = ix(xX)fy (y).

Proof:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = ix(xX)fy (y).

Proof: As in the discrete case.



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X e A Y € Bl|= Pr[X € A|Pr[Y € B],VA,B.
Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = ix(xX)fy (y).

Proof: As in the discrete case.
Definition:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = ix(xX)fy (y).

Proof: As in the discrete case.

Definition: The continuous RVs Xj,..., X, are mutually independent
if



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.v(x,¥) = fx(xX)fy ().
Proof: As in the discrete case.
Definition: The continuous RVs Xj,..., X, are mutually independent
if
Pr(Xi € Ay,...,Xn € Apg] = Pr(Xy € A1]--- Pr[Xn € An],VA4,...,An.



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X e A Y € Bl|= Pr[X € A|Pr[Y € B],VA,B.
Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = ix(xX)fy (y).

Proof: As in the discrete case.

Definition: The continuous RVs Xj,..., X, are mutually independent
if

Pr(Xi € Ay,...,Xn € Apg] = Pr(Xy € A1]--- Pr[Xn € An],VA4,...,An.

Theorem:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.v(x,¥) = fx(xX)fy ().
Proof: As in the discrete case.
Definition: The continuous RVs Xj,..., X, are mutually independent
if
Pr(Xi € Ay,...,Xn € Apg] = Pr(Xy € A1]--- Pr[Xn € An],VA4,...,An.

Theorem: The continuous RVs Xj,..., X, are mutually independent if
and only if



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = ix(xX)fy (y).

Proof: As in the discrete case.
Definition: The continuous RVs Xj,..., X, are mutually independent
if

Pr(Xi € Ay,...,Xn € Apg] = Pr(Xy € A1]--- Pr[Xn € An],VA4,...,An.

Theorem: The continuous RVs Xj,..., X, are mutually independent if
and only if

fx(X1,...,Xn) = f)(1 (X1)- = an(Xn).



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.v(x,¥) = fx(xX)fy ().
Proof: As in the discrete case.
Definition: The continuous RVs Xj,..., X, are mutually independent
if
Pr(Xi € Ay,...,Xn € Apg] = Pr(Xy € A1]--- Pr[Xn € An],VA4,...,An.

Theorem: The continuous RVs Xj,..., X, are mutually independent if
and only if
fx(X1 e ,Xn) = f)(1 (X1 ) s an(Xn).

Proof:



Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr[X € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.v(x,¥) = fx(xX)fy ().
Proof: As in the discrete case.
Definition: The continuous RVs Xj,..., X, are mutually independent
if
Pr(Xi € Ay,...,Xn € Apg] = Pr(Xy € A1]--- Pr[Xn € An],VA4,...,An.

Theorem: The continuous RVs Xj,..., X, are mutually independent if
and only if
fx(X1 e ,Xn) = f)(1 (X1 ) s an(Xn).

Proof: As in the discrete case.



Examples of Independent Continuous RVs



Examples of Independent Continuous RVs
1. Minimum of Independent Expo.



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e V.



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] =



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = PriX>uY>u=



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]l=Pr[X>u]Pr[Y > u]



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
e M x el =



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
e—)Lu x @ HU — e—(kﬂl)u’



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
_ e—)Lu x @ HU — e—(kﬂt)u’

This shows that min{X, Y} = Expo(A + ).



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then
Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]

_ e—)Lu x @ HU — e—(kﬂi)u’

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
e—)Lu x @ HU — e—(x‘F[J)U'

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1].



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then
Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
= e Mxe =g RAtmu
This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs.



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then
Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
= e Mxe =g RAtmu
This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}.



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then
Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
= e Mxe =g RAtmu
This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
e—)Lu x @ HU — e—(x‘F[J)U'

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?

One has
Pr(Z > u] =



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
e—)Lu x @ HU — e—(x‘F[J)U'

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?

One has
Pr(Z > u] = Pr[X > u]Pr[Y > u] =



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
e—)Lu x @ HU — e—(x‘F[J)U'

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?

One has
Pr(Z > u] = Pr[X > u]Pr[Y > u] = (1 — u)®.



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
e—)Lu x @ HU — e—(x‘F[J)U'

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?

One has
Pr(Z > u] = Pr[X > u]Pr[Y > u] = (1 — u)®.

Thus Fz(u) = Pr(Z < u]=



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
e—)Lu x @ HU — e—(x‘F[J)U'

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?

One has
Pr(Z > u] = Pr[X > u]Pr[Y > u] = (1 — u)®.

Thus Fz(u)=PriZ <ul=1-(1-u)?



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]

_ e—)Lu x @ MU — g~ ()L+u)u’

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?

One has
Pr(Z > u] = Pr[X > u]Pr[Y > u] = (1 — u)®.

Thus Fz(u)=PriZ<u]l=1-(1-u)?.
Hence, f7(u) = duFZ( Y=2(1-u),uel0,1].



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]

_ e—lu x @ MU — g~ ()L+u)u’

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?

One has
Pr(Z > u] = Pr[X > u]Pr[Y > u] = (1 — u)®.

Thus Fz(u)=PriZ<u]l=1—-(1-u)?.

Hence, fz(u) = duFZ( )=2(1—u),u€[0,1]. In particular,
E[Z]=



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]

_ e—lu x @ MU — g~ ()L+u)u’

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?

One has
Pr(Z > u] = Pr[X > u]Pr[Y > u] = (1 — u)®.

Thus Fz(u)=PriZ<u]l=1—-(1-u)?.

Hence, fz(u) = duFZ( )=2(1—u),u€[0,1]. In particular,
E[Z] = [y ufz(u)du =



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
e—lu x @ HU — e—(x‘F[J)U'

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?

One has
Pr(Z > u] = Pr[X > u]Pr[Y > u] = (1 — u)®.

Thus Fz(u)=PriZ <ul=1-(1-u)?

Hence, fz(u) = & Fz(u)=2(1—u),u € [0,1]. In particular,
E[Z] = Jj ufz(u)du = [ 2u(1 — u)du =



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]
e—lu x @ HU — e—(x‘F[J)U'

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?

One has
Pr(Z > u] = Pr[X > u]Pr[Y > u] = (1 — u)®.

Thus Fz(u)=PriZ <ul=1-(1-u)?

Hence, fz(u) = & Fz(u)=2(1—u),u € [0,1]. In particular,
E[Z] = [g ufz(u)du= [ 2u(1 —u)du=2} —2] =



Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then

Primin{X,Y}>u] = Pr[X>u,Y >u]=Pr[X>ulPrlY > u]

_ e—lu x @ MU — g~ ()L+u)u’

This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z =min{X,Y}. What is f>?
One has

Pr(Z > u] = Pr[X > u]Pr[Y > u] = (1 — u)®.
Thus Fz(u)=PriZ <ul=1-(1-u)?
Hence, fz(u) = £ Fz(u)=2(1—u),uc[0,1].In particular,

E[Z] = Jg ufz(u)du= [ 2u(1 —u)du=2} —2% = 1.



Expectation of Function of RVs



Expectation of Function of RVs

Definitions:



Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as



Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E[h(X)] = /_ Z h(x)fx (x)dx.



Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E[h(X)] = /_ Z h(x)fx (x)dx.

(b) The expectation of a function of multiple random variables is
defined as



Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E[h(X)] = /_ Z h(x)fx (x)dx.

(b) The expectation of a function of multiple random variables is
defined as

Eh(X)] = / / h(x)fx (X)dx; - -- dxp.



Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E[h(X)] = /_ Z h(x)fx (x)dx.

(b) The expectation of a function of multiple random variables is
defined as

Eh(X)] = / / h(x)fx (X)dx; - -- dxp.

Justification: Say X = né w.p. fx(né)é.



Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E[h(X)] = /_ Z h(x)fx (x)dx.

(b) The expectation of a function of multiple random variables is
defined as

Eh(X)] = / / h(x)fx (X)dx; - -- dxp.
Justification: Say X = né w.p. fx(nd)é. Then,

E[h(X)] = ¥ h(n8)Pr[X = né]



Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E[h(X)] = /_ Z h(x)fx (x)dx.

(b) The expectation of a function of multiple random variables is
defined as

Eh(X)] = / / h(x)fx (X)dx; - -- dxp.
Justification: Say X = né w.p. fx(nd)é. Then,

E[h(X)] = Y. h(n8)Pr[X = n8] = ¥ h(n§)tx(n&)5



Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E[h(X)] = /_ Z h(x)fx (x)dx.

(b) The expectation of a function of multiple random variables is
defined as

Eh(X)] = / / h(x)fx (X)dx; - -- dxp.
Justification: Say X = né w.p. fx(nd)é. Then,

E[h(X)] = ¥ h(n8)Pr[X = n8] = ¥ h(né)fx(n8)S = /_ " RO (x)dx.



Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E[h(X)] = /_ Z h(x)fx (x)dx.

(b) The expectation of a function of multiple random variables is
defined as

Eh(X)] = / / h(x)fx (X)dx; - -- dxp.
Justification: Say X = né w.p. fx(nd)é. Then,

E[h(X)] = ¥ h(n8)Pr[X = n8] = ¥ h(né)fx(n8)S = /_ " RO (x)dx.

Indeed, for any g, one has [ g(x)dx ~ Y ,9(nd)sé.



Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E[h(X)] = /_ Z h(x)fx (x)dx.

(b) The expectation of a function of multiple random variables is
defined as

Eh(X)] = / / h(x)fx (X)dx; - -- dxp.
Justification: Say X = né w.p. fx(nd)é. Then,

E[h(X)] = ¥ h(n8)Pr[X = n8] = ¥ h(né)fx(n8)S = /_ " RO (x)dx.

Indeed, for any g, one has [g(x)dx ~Y,g(nd)s. Choose
g(x) = h(x)fx(x).



Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E[h(X)] = /_ Z h(x)fx (x)dx.

(b) The expectation of a function of multiple random variables is
defined as

Eh(X)] = / / h(x)fx (X)dx; - -- dxp.
Justification: Say X = né w.p. fx(nd)é. Then,

E[h(X)] = ¥ h(n8)Pr[X = n8] = ¥ h(né)fx(n8)S = /_ " RO (x)dx.

Indeed, for any g, one has [g(x)dx ~Y,g(nd)s. Choose
9(x) = h(x)fx(x).
The case of multiple RVs is similar.



Examples of Expectation of Function



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.

1. Let X = U[0,1]. Then



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.

1. Let X = U[0,1]. Then

E[X"] =



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.

1. Let X = U[0,1]. Then

1
E[X"] = = / X"dx =
0



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
Xn+1

1
E[X" = = /0 xhax = [2 ]



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.

1. Let X = U[0,1]. Then
x+1 1 1

1



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
X1y 1

1

2. Let X=U[0,1] and 6 > 0. Then



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
X1y 1

1

2. Let X=U[0,1] and 6 > 0. Then

E[cos(6X)] =



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
X1y 1

1

2. Let X=U[0,1] and 6 > 0. Then

|
E[cos(BX)]:/0 cos(6x)dx =



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
X1y 1

1

2. Let X=U[0,1] and 6 > 0. Then

1 1 . 1
Elcos(6X)] = /0 cos(6x)x = [ 5 sin(6x)], =



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
X1y 1

1

2. Let X=U[0,1] and 6 > 0. Then

sin(0)

1 1 . 1
Elcos(6X)] = /0 cos(6x)x = [ sin(0)] = g




Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
X1y 1

1

2. Let X=U[0,1] and 6 > 0. Then
sin(0)

1 1 . 1
Elcos(6X)] = /0 cos(6x)x = [ sin(0)] = g

3. Let X = Expo(A). Then




Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
X1y 1

)
m_ _ ny —_

E[X]__/(,de_[nﬂ}o n+1

2. Let X=U[0,1] and 6 > 0. Then

sin(0)

1 1 . 1
Elcos(6X)] = /0 cos(6x)x = [ sin(0)] = g

3. Let X = Expo(A). Then
EX" =




Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
X1y 1

)
m_ _ ny —_

E[X]__/(,de_[nﬂ}o n+1

2. Let X=U[0,1] and 6 > 0. Then

sin(0)

1 1 . 1
Elcos(6X)] = /0 cos(6x)x = [ sin(0)] = g

3. Let X = Expo(A). Then
E[X" - / " x"he M =
0




Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
X1y 1

)
m_ _ ny —_

E[X]__/(,de_[nﬂ}o n+1

2. Let X=U[0,1] and 6 > 0. Then

sin(0)

1 1 . 1
Elcos(6X)] = /0 cos(6x)x = [ sin(0)] = g

3. Let X = Expo(A). Then
E[X" — / T x"he Max = — / " X"de
0 0




Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.

1. Let X = U[0,1]. Then

1 Xn+1 1 1
m_ _ Ny _
E[X]__/(,de_[nﬂ}o n+1

2. Let X=U[0,1] and 6 > 0. Then
] .
Elcos(6X)] = / cos(6x)dx = [% sin(x)] 3 = S'”G(e).
0

3. Let X = Expo(A). Then
E[X" — / T x"he Max = — / " X"de
0 0

— _[Xneka]fg_‘_/owef/lxdxn



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
X1y 1

1

2. Let X=U[0,1] and 6 > 0. Then

Eloos(6)] = [ cos(0x)x = [} sin(ex]; = 30O

3. Let X = Expo(A). Then
E[X" — / T x"he Max = — / X"de X
0 0
— _[Xneka]fg_i_/o ef/lxdxn

= 1 taetrax=



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.
1. Let X = U[0,1]. Then
X1y 1

1

2. Let X=U[0,1] and 6 > 0. Then

Eloos(6)] = [ cos(0x)x = [} sin(ex]; = 30O

3. Let X = Expo(A). Then
E[X" — / T x"he Max = — / X"de X
0 0
— _[Xneka]fg_i_/o ef/lxdxn

_ Q 1 —Ax _ﬁ n—1
- )L/Ox reHax = LEX]



Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dXx.

1. Let X = U[0,1]. Then

1 n+1
E[X"] = :/ xax = [t~ ]
0

nFTo T e

2. Let X=U[0,1] and 6 > 0. Then
sin(0)

1 1 . 1
Elcos(6X)] = /0 cos(6x)x = [ sin(0)] = g

3. Let X = Expo(A). Then
E[X" — / T x"he Max = — / " X"de
0 0
— _[Xneflx]‘g_i_/o efitxdxn
- %/:x”*%e*“dx: ZEX™)

Since E[X°] = 1, this implies by induction that E[X"] = .



Linearity of Expectation



Linearity of Expectation
Theorem Expectation is linear.



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1:



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = yz1{a< x < b}.



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

EIX b 1 a
[ ]=/axb,a X =




Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

E[X]—/bx V=1
~Ja"b-a b-a




Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

EX] =[xt ax— 1 [Xyp_ath
_/a b—-a ~  b-a-2'a 2~




Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

b 1
Hﬂzéxmaw:Efﬂ?h_ﬁf'

(b) X =a+(b—a)Y,Y = U[0,1].




Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

b o 1
EX= [ g palz e 5

(b) X=a+(b—a)Y,Y = U][0,1]. Hence,

E[X]=a+(b—a)E[Y]=



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

b o 1
EX= [ g palz e 5

(b) X=a+(b—a)Y,Y = U][0,1]. Hence,

E[X] = a+(b—a)E[Y] = a+% _




Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

b o 1
EX= [ g palz e 5

(b) X=a+(b—a)Y,Y = U][0,1]. Hence,

EX|=a+(b-aE[Y]=a+ 2,8 =210



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

EX] =[xt ax— 1 [Xyp_ath
_/a b—-a ~  b-a-2'a 2~

(b) X=a+(b—a)Y,Y = U][0,1]. Hence,

EX|=a+(b-aE[Y]=a+ 2,8 =210

Example 2:



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

EX] =[xt ax— 1 [Xyp_ath
_/a b—-a ~  b-a-2'a 2~

(b) X=a+(b—a)Y,Y = U][0,1]. Hence,

EX|=a+(b-aE[Y]=a+ 2,8 =210

Example 2: X, Y are U[0,1].



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

EX] =[xt ax— 1 [Xyp_ath
_/a b—-a ~  b-a-2'a 2~

(b) X=a+(b—a)Y,Y = U][0,1]. Hence,

EX|=a+(b-aE[Y]=a+ 2,8 =210

Example 2: X, Y are U[0,1]. Then

E[3X—2Y +5] =



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

EX] =[xt ax— 1 [Xyp_ath
_/a b—-a ~  b-a-2'a 2~

(b) X=a+(b—a)Y,Y = U][0,1]. Hence,

EX|=a+(b-aE[Y]=a+ 2,8 =210

Example 2: X, Y are U[0,1]. Then

E[3X —2Y +5] = 3E[X] — 2E[Y] +5 =



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

EX] =[xt ax— 1 [Xyp_ath
_/a b—-a ~  b-a-2'a 2~

(b) X=a+(b—a)Y,Y = U][0,1]. Hence,

EX|=a+(b-aE[Y]=a+ 2,8 =210

Example 2: X, Y are U[0,1]. Then

1 .1
E[8X —2Y +5] = 3E[X] - 2E[Y]+5 =35 ~25 45 =



Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = Ula, b]. Then
(a) fx(x) = 55z1{a< x < b}. Thus,

EX] =[xt ax— 1 [Xyp_ath
_/a b—-a ~  b-a-2'a 2~

(b) X=a+(b—a)Y,Y = U][0,1]. Hence,

EX|=a+(b-aE[Y]=a+ 2,8 =210

Example 2: X, Y are U[0,1]. Then

1 .1
E[3X —2Y +5] = 3E[X] - 2E[Y] +5 =35 ~ 2 +5=55.



Expectation of Product of Independent RVs



Expectation of Product of Independent RVs

Theorem If X, Y X are mutually independent, then



Expectation of Product of Independent RVs

Theorem If X, Y X are mutually independent, then

E[XYZ] = E[X]E[Y]E[Z).



Expectation of Product of Independent RVs

Theorem If X, Y X are mutually independent, then

E[XYZ] = E[X]E[Y]E[Z).

Proof:



Expectation of Product of Independent RVs

Theorem If X, Y X are mutually independent, then

E[XYZ] = E[X]E[Y]E[Z).

Proof: Same as discrete case.



Expectation of Product of Independent RVs

Theorem If X, Y X are mutually independent, then

E[XYZ] = E[X]E[Y]E[Z).

Proof: Same as discrete case.
Example:



Expectation of Product of Independent RVs

Theorem If X, Y X are mutually independent, then

E[XYZ] = E[X]E[Y]E[Z).

Proof: Same as discrete case.
Example: Let X, Y, Z be mutually independent and U[0,1].



Expectation of Product of Independent RVs

Theorem If X, Y X are mutually independent, then

E[XYZ] = E[X]E[Y]E[Z).

Proof: Same as discrete case.
Example: Let X, Y, Z be mutually independent and U[0,1]. Then

E[(X+2Y+32)% =



Expectation of Product of Independent RVs

Theorem If X, Y X are mutually independent, then

E[XYZ] = E[X]E[Y]E[Z).

Proof: Same as discrete case.
Example: Let X, Y, Z be mutually independent and U[0,1]. Then

E[(X+2Y+32)%] = E[X?+4Y?1+9Z2 +4XY +6XZ+12YZ]



Expectation of Product of Independent RVs

Theorem If X, Y X are mutually independent, then

E[XYZ] = E[X]E[Y]E[Z).

Proof: Same as discrete case.
Example: Let X, Y, Z be mutually independent and U[0,1]. Then

E[(X+2Y+32)% =

E[X?4+4Y2+97% 1+ 4XY +6XZ +12YZ]

1 1 1 11 11 11



Expectation of Product of Independent RVs

Theorem If X, Y X are mutually independent, then
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Expectation of Product of Independent RVs

Theorem If X, Y X are mutually independent, then

E[XYZ] = E[X]E[Y]E[Z).

Proof: Same as discrete case.
Example: Let X, Y, Z be mutually independent and U[0,1]. Then

E[(X+2Y+32)% =

E[X2+4Y2+9ZZ+4XY+6XZ+12YZ]

1 1 11 11

14 22
+22210.17.
33 ~10
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Variance

Definition: The variance of a continuous random variable X is
defined as

varlX] = E((X - E(X))?) = E(X?) — (E(X))%.

Example 1: X = U[0,1]. Then

1

var[X] = E[X?] - E[X]? = 1= 75

w| —

Example 2: X = Expo(A). Then E[X] =1~ and E[X?] =2/(A?).
Hence, var[X] = 1/(12).
Example 3: Let X, Y,Z be independent. Then

var|X + Y + Z] = var|X] + var[Y] + var[Z],

as in the discrete case.
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. pdf: PriX € (x,x + 8]] = fx(x)$.
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. Expectation is linear.
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