CS70: Jean Walrand: Lecture 35.

Continuous Probability 2

CS70: Jean Walrand: Lecture 35.

Continuous Probability 2

CS70: Jean Walrand: Lecture 35.

Continuous Probability 2

- 1. Review: CDF, PDF
- 2. Examples
- 3. Properties
- 4. Expectation
- 5. Expectation of Function
- 6. Variance
- 7. Independent Continuous RVs

Key idea:

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define *Pr*[outcome],

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining Pr[event].

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]]$

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x]$

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x+\varepsilon)].$

 $F_X(\cdot)$ is the cumulative distribution function

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

 $F_X(\cdot)$ is the cumulative distribution function (CDF)

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

 $F_X(\cdot)$ is the cumulative distribution function (CDF) of X.

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

 $F_X(\cdot)$ is the cumulative distribution function (CDF) of X.

 $f_X(\cdot)$ is the probability density function

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

 $F_X(\cdot)$ is the cumulative distribution function (CDF) of X.

 $f_X(\cdot)$ is the probability density function (PDF)

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

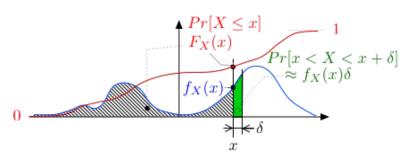
Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

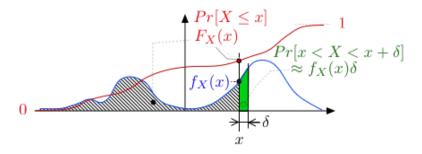
Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

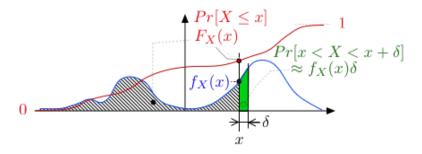
 $F_X(\cdot)$ is the cumulative distribution function (CDF) of X.

 $f_X(\cdot)$ is the probability density function (PDF) of X.

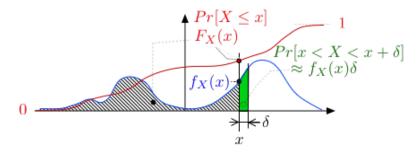




The pdf $f_X(x)$ is a nonnegative function that integrates to 1.

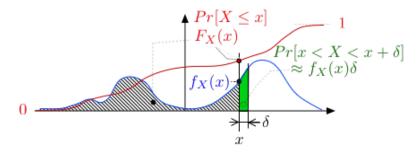


The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .



The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$



The pdf $f_X(x)$ is a nonnegative function that integrates to 1.

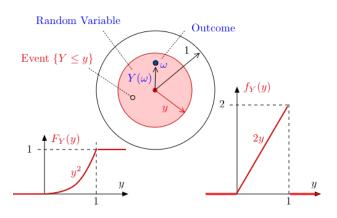
The cdf $F_X(x)$ is the integral of f_X .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$

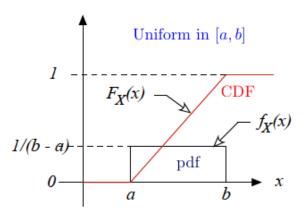
 $Pr[X \le x] = F_X(x) = \int_{-\infty}^{x} f_X(u) du$

Target

Target



U[a,b]

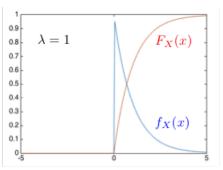


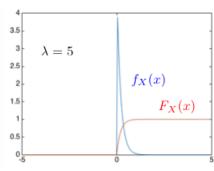
The exponential distribution with parameter $\lambda > 0$ is defined by

The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

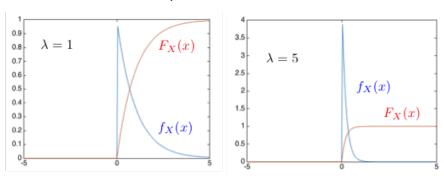
$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$$





The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$$



Note that $Pr[X > t] = e^{-\lambda t}$ for t > 0.

1. Expo is memoryless.

1. *Expo* **is memoryless.** Let $X = Expo(\lambda)$.

$$Pr[X > t + s \mid X > s] =$$

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} =$$

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$

$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$

$$= Pr[X > t].$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

2. Scaling Expo.

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] =$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] = Pr[aX > t] =$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t]$$
 = $Pr[aX > t] = Pr[X > t/a]$
 = $e^{-\lambda(t/a)} = e^{-(\lambda/a)t}$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]$$

= $e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = Pr[Z > t]$ for $Z = Expo(\lambda/a)$.

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

2. Scaling Expo. Let $X = Expo(\lambda)$ and Y = aX for some a > 0. Then

$$Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]$$

= $e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = Pr[Z > t]$ for $Z = Expo(\lambda/a)$.

Thus, $a \times Expo(\lambda) = Expo(\lambda/a)$.

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]$$

= $e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = Pr[Z > t]$ for $Z = Expo(\lambda/a)$.

Thus,
$$a \times Expo(\lambda) = Expo(\lambda/a)$$
.
Also, $Expo(\lambda) = \frac{1}{2} Expo(1)$.

3. Scaling Uniform.

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0.

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] =$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then.

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] =$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for}$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then.

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y - a}{b} < 1$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then.

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y - a}{b} < 1$$

$$= \frac{1}{b}\delta, \text{ for } a < y < a + b.$$

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then.

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y - a}{b} < 1$$

$$= \frac{1}{b}\delta, \text{ for } a < y < a + b.$$

Thus, $f_Y(y) = \frac{1}{b}$ for a < y < a + b.

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y - a}{b} < 1$$

$$= \frac{1}{b}\delta, \text{ for } a < y < a + b.$$

Thus, $f_Y(y) = \frac{1}{b}$ for a < y < a + b. Hence, Y = U[a, a + b].

3. Scaling Uniform. Let X = U[0,1] and Y = a + bX where b > 0. Then,

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = \frac{1}{b}\delta, \text{ for } 0 < \frac{y - a}{b} < 1$$

$$= \frac{1}{b}\delta, \text{ for } a < y < a + b.$$

Thus, $f_Y(y) = \frac{1}{b}$ for a < y < a + b. Hence, Y = U[a, a + b].

Replacing b by b-a we see that, if X = U[0,1], then Y = a+(b-a)X is U[a,b].

4. Scaling pdf.

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0.

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] =$$

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] =$$

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = f_X(\frac{y - a}{b})\frac{\delta}{b}.$$

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = f_X(\frac{y - a}{b})\frac{\delta}{b}.$$

Now, the left-hand side is

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = f_X(\frac{y - a}{b})\frac{\delta}{b}.$$

Now, the left-hand side is $f_Y(y)\delta$.

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = f_X(\frac{y - a}{b})\frac{\delta}{b}.$$

Now, the left-hand side is $f_Y(y)\delta$. Hence,

$$f_Y(y) = \frac{1}{b} f_X(\frac{y-a}{b}).$$

4. Scaling pdf. Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then

$$Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)] = Pr[X \in (\frac{y - a}{b}, \frac{y + \delta - a}{b})]$$
$$= Pr[X \in (\frac{y - a}{b}, \frac{y - a}{b} + \frac{\delta}{b})] = f_X(\frac{y - a}{b})\frac{\delta}{b}.$$

Now, the left-hand side is $f_Y(y)\delta$. Hence,

$$f_Y(y) = \frac{1}{b} f_X(\frac{y-a}{b}).$$

Expectation Definition:

Definition: The **expectation** of a random variable X with pdf f(x) is *defined* as

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Definition: The **expectation** of a random variable X with pdf f(x) is

defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification:

Definition: The **expectation** of a random variable X with pdf f(x) is

defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$.

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta]$$

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta$$

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$.

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$. Choose $g(x) = xf_X(x)$.

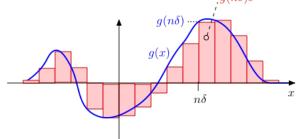
Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$. Choose $g(x) = xf_X(x)$.



1. X = U[0,1].

1.
$$X = U[0,1]$$
. Then, $f_X(x) =$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx =$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} =$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x \cdot 1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x . 1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

2. X = distance to 0 of dart shot uniformly in unit circle.

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x . 1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x.2x dx =$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.2x dx = \left[\frac{2x^3}{3}\right]_{0}^{1} =$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x \cdot 2x dx = \left[\frac{2x^3}{3}\right]_{0}^{1} = \frac{2}{3}.$$

3. $X = Expo(\lambda)$.

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$.

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} 1\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = - \int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = - \int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} =$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} = -\frac{1}{\lambda}.$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} 1\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = - \int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} = -\frac{1}{\lambda}.$$

Hence, $E[X] = \frac{1}{\lambda}$.

One defines a pair (X, Y) of continuous RVs by specifying

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the

One defines a pair (X,Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x,y\in\Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

One defines a pair (X,Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x,y\in\Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example:

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} 1\{(x,y) \in A\}$$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} 1\{(x,y) \in A\}$$

where |A| is the area of A.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X,Y) as being discrete on a grid with mesh size ε

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} 1\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Extension:

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \Re$ where

$$f_{X,Y}(x,y)dxdy = Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

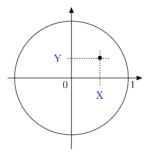
Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} 1\{(x,y) \in A\}$$

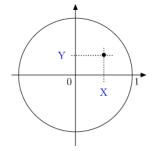
where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Extension: $\mathbf{X} = (X_1, \dots, X_n)$ with $f_{\mathbf{X}}(\mathbf{x})$.

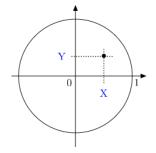


Pick a point (X, Y) uniformly in the unit circle.



Thus, $f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$

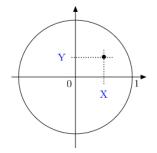
Pick a point (X, Y) uniformly in the unit circle.



Thus,
$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1}\{x^2 + y^2 \le 1\}.$$

$$\textit{Pr}[X>0,\,Y>0] =$$

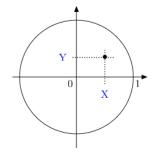
Pick a point (X, Y) uniformly in the unit circle.



Thus,
$$f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

Pick a point (X, Y) uniformly in the unit circle.

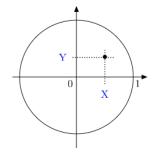


Thus,
$$f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

 $Pr[X < 0, Y > 0] =$

Pick a point (X, Y) uniformly in the unit circle.

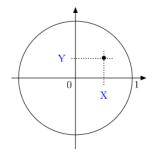


Thus,
$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

 $Pr[X < 0, Y > 0] = \frac{1}{4}$

Pick a point (X, Y) uniformly in the unit circle.

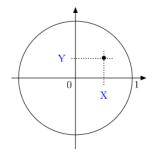


Thus,
$$f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

 $Pr[X < 0, Y > 0] = \frac{1}{4}$
 $Pr[X^2 + Y^2 \le r^2] =$

Pick a point (X, Y) uniformly in the unit circle.

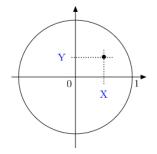


Thus,
$$f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

 $Pr[X < 0, Y > 0] = \frac{1}{4}$
 $Pr[X^2 + Y^2 \le r^2] = r^2$

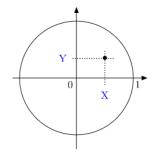
Pick a point (X, Y) uniformly in the unit circle.



Thus,
$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbb{1}\{x^2 + y^2 \le 1\}.$$

$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

 $Pr[X < 0, Y > 0] = \frac{1}{4}$
 $Pr[X^2 + Y^2 \le r^2] = r^2$
 $Pr[X > Y] =$



Thus,
$$f_{X,Y}(x,y) = \frac{1}{\pi} \mathbb{1}\{x^2 + y^2 \le 1\}.$$

Consequently,
$$Pr[X>0,Y>0] = \frac{1}{4}$$

$$Pr[X<0,Y>0] = \frac{1}{4}$$

$$Pr[X0] = \frac{1}{4}$$

$$Pr[X^2+Y^2 \le r^2] = r^2$$

$$Pr[X>Y] = \frac{1}{2}.$$

Independent Continuous Random Variables

Independent Continuous Random Variables Definition:

Definition: The continuous RVs X and Y are independent if

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem:

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof:

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition:

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Theorem:

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Theorem: The continuous RVs $X_1, ..., X_n$ are mutually independent if and only if

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Theorem: The continuous RVs $X_1, ..., X_n$ are mutually independent if and only if

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs $X_1, ..., X_n$ are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Theorem: The continuous RVs $X_1, ..., X_n$ are mutually independent if and only if

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Proof:

Definition: The continuous RVs X and Y are independent if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: The continuous RVs *X* and *Y* are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: As in the discrete case.

Definition: The continuous RVs X_1, \ldots, X_n are mutually independent if

$$Pr[X_1 \in A_1, \dots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \dots, A_n.$$

Theorem: The continuous RVs $X_1, ..., X_n$ are mutually independent if and only if

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Proof: As in the discrete case.

1. Minimum of Independent Expo.

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

1. Minimum of Independent Expo. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

$$Pr[\min\{X,Y\} > u] =$$

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

$$Pr[\min\{X,Y\} > u] = Pr[X > u, Y > u] =$$

1. Minimum of Independent Expo. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

$$Pr[\min\{X,Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

$$Pr[\min\{X,Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$
$$= e^{-\lambda u} \times e^{-\mu u} =$$

1. Minimum of Independent Expo. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

1. Minimum of Independent Expo. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1].

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs.

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$.

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

$$Pr[Z > u] =$$

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

$$Pr[Z > u] = Pr[X > u]Pr[Y > u] =$$

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

$$Pr[Z > u] = Pr[X > u]Pr[Y > u] = (1 - u)^{2}.$$

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

$$Pr[Z > u] = Pr[X > u]Pr[Y > u] = (1 - u)^{2}.$$

Thus
$$F_Z(u) = Pr[Z \le u] =$$

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

$$Pr[Z > u] = Pr[X > u]Pr[Y > u] = (1 - u)^{2}.$$

Thus
$$F_Z(u) = Pr[Z \le u] = 1 - (1 - u)^2$$
.

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

$$Pr[Z > u] = Pr[X > u]Pr[Y > u] = (1 - u)^{2}.$$

Thus
$$F_Z(u) = Pr[Z \le u] = 1 - (1 - u)^2$$
.

Hence,
$$f_Z(u) = \frac{d}{du}F_Z(u) = 2(1-u), u \in [0,1].$$

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

One has

$$Pr[Z > u] = Pr[X > u]Pr[Y > u] = (1 - u)^{2}.$$

Thus
$$F_Z(u) = Pr[Z \le u] = 1 - (1 - u)^2$$
.

Hence,
$$f_Z(u) = \frac{d}{du}F_Z(u) = 2(1-u), u \in [0,1]$$
. In particular, $E[Z] =$

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X, Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

One has

$$Pr[Z > u] = Pr[X > u]Pr[Y > u] = (1 - u)^{2}.$$

Thus
$$F_Z(u) = Pr[Z \le u] = 1 - (1 - u)^2$$
.

Hence, $f_Z(u) = \frac{d}{du}F_Z(u) = 2(1-u), u \in [0,1]$. In particular, $E[Z] = \int_0^1 u f_Z(u) du =$

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X,Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

One has

$$Pr[Z > u] = Pr[X > u]Pr[Y > u] = (1 - u)^{2}.$$

Thus
$$F_Z(u) = Pr[Z \le u] = 1 - (1 - u)^2$$
.

Hence, $f_Z(u) = \frac{d}{du}F_Z(u) = 2(1-u), u \in [0,1]$. In particular, $E[Z] = \int_0^1 u f_Z(u) du = \int_0^1 2u (1-u) du =$

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X,Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

One has

$$Pr[Z > u] = Pr[X > u]Pr[Y > u] = (1 - u)^{2}.$$

Thus
$$F_Z(u) = Pr[Z \le u] = 1 - (1 - u)^2$$
.

Hence, $f_Z(u) = \frac{d}{du}F_Z(u) = 2(1-u), u \in [0,1]$. In particular, $E[Z] = \int_0^1 u f_Z(u) du = \int_0^1 2u(1-u) du = 2\frac{1}{2} - 2\frac{1}{3} =$

1. Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X,Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$

= $e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}$.

This shows that $min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

2. Minimum of Independent U[0,1]**.** Let X, Y = [0,1] be independent RVs. Let also $Z = \min\{X, Y\}$. What is f_Z ?

One has

$$Pr[Z > u] = Pr[X > u]Pr[Y > u] = (1 - u)^{2}.$$

Thus
$$F_Z(u) = Pr[Z \le u] = 1 - (1 - u)^2$$
.

Hence, $f_Z(u) = \frac{d}{du}F_Z(u) = 2(1-u), u \in [0,1]$. In particular, $E[Z] = \int_0^1 u f_Z(u) du = \int_0^1 2u(1-u) du = 2\frac{1}{2} - 2\frac{1}{2} = \frac{1}{2}$.

Definitions:

Definitions: (a) The expectation of a function of a random variable is *defined* as

Definitions: (a) The expectation of a function of a random variable is *defined* as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

Definitions: (a) The expectation of a function of a random variable is *defined* as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

(b) The expectation of a function of multiple random variables is defined as

Definitions: (a) The expectation of a function of a random variable is *defined* as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

(b) The expectation of a function of multiple random variables is defined as

$$E[h(\mathbf{X})] = \int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n.$$

Definitions: (a) The expectation of a function of a random variable is *defined* as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

(b) The expectation of a function of multiple random variables is defined as

$$E[h(\mathbf{X})] = \int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$.

Definitions: (a) The expectation of a function of a random variable is *defined* as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

(b) The expectation of a function of multiple random variables is defined as

$$E[h(\mathbf{X})] = \int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$. Then,

$$E[h(X)] = \sum_{n} h(n\delta) Pr[X = n\delta]$$

Definitions: (a) The expectation of a function of a random variable is *defined* as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

(b) The expectation of a function of multiple random variables is defined as

$$E[h(\mathbf{X})] = \int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$. Then,

$$E[h(X)] = \sum_{n} h(n\delta) Pr[X = n\delta] = \sum_{n} h(n\delta) f_X(n\delta) \delta$$

Definitions: (a) The expectation of a function of a random variable is *defined* as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

(b) The expectation of a function of multiple random variables is defined as

$$E[h(\mathbf{X})] = \int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$. Then,

$$E[h(X)] = \sum_{n} h(n\delta) Pr[X = n\delta] = \sum_{n} h(n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

Definitions: (a) The expectation of a function of a random variable is *defined* as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

(b) The expectation of a function of multiple random variables is defined as

$$E[h(\mathbf{X})] = \int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$. Then,

$$E[h(X)] = \sum_{n} h(n\delta) Pr[X = n\delta] = \sum_{n} h(n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$.

Definitions: (a) The expectation of a function of a random variable is *defined* as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

(b) The expectation of a function of multiple random variables is defined as

$$E[h(\mathbf{X})] = \int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$. Then,

$$E[h(X)] = \sum_{n} h(n\delta) Pr[X = n\delta] = \sum_{n} h(n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$. Choose $g(x) = h(x)f_X(x)$.

Definitions: (a) The expectation of a function of a random variable is *defined* as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

(b) The expectation of a function of multiple random variables is defined as

$$E[h(\mathbf{X})] = \int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$. Then,

$$E[h(X)] = \sum_{n} h(n\delta) Pr[X = n\delta] = \sum_{n} h(n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$. Choose $g(x) = h(x)f_X(x)$.

The case of multiple RVs is similar.

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

$$E[X^n] =$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

$$E[X^n] = \int_0^1 x^n dx =$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 =$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0,1] and $\theta > 0$. Then

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0,1] and $\theta > 0$. Then

$$E[\cos(\theta X)] =$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0,1] and $\theta > 0$. Then

$$E[\cos(\theta X)] = \int_0^1 \cos(\theta x) dx =$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0, 1] and $\theta > 0$. Then

$$E[\cos(\theta X)] = \int_0^1 \cos(\theta x) dx = \left[\frac{1}{\theta} \sin(\theta x)\right]_0^1 =$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0, 1] and $\theta > 0$. Then

$$E[\cos(\theta X)] = \int_0^1 \cos(\theta x) dx = \left[\frac{1}{\theta} \sin(\theta x)\right]_0^1 = \frac{\sin(\theta)}{\theta}.$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0,1] and $\theta > 0$. Then

$$E[\cos(\theta X)] = \int_0^1 \cos(\theta x) dx = \left[\frac{1}{\theta} \sin(\theta x)\right]_0^1 = \frac{\sin(\theta)}{\theta}.$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0, 1] and $\theta > 0$. Then

$$E[\cos(\theta X)] = \int_0^1 \cos(\theta x) dx = \left[\frac{1}{\theta} \sin(\theta x)\right]_0^1 = \frac{\sin(\theta)}{\theta}.$$

$$E[X^n] =$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0, 1] and $\theta > 0$. Then

$$E[\cos(\theta X)] = \int_0^1 \cos(\theta x) dx = \left[\frac{1}{\theta} \sin(\theta x)\right]_0^1 = \frac{\sin(\theta)}{\theta}.$$

$$E[X^n] = \int_0^\infty x^n \lambda e^{-\lambda x} dx =$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0, 1] and $\theta > 0$. Then

$$E[\cos(\theta X)] = \int_0^1 \cos(\theta x) dx = \left[\frac{1}{\theta} \sin(\theta x)\right]_0^1 = \frac{\sin(\theta)}{\theta}.$$

$$E[X^n] = \int_0^\infty x^n \lambda e^{-\lambda x} dx = -\int_0^\infty x^n de^{-\lambda x}$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0, 1] and $\theta > 0$. Then

$$E[\cos(\theta X)] = \int_0^1 \cos(\theta x) dx = \left[\frac{1}{\theta} \sin(\theta x)\right]_0^1 = \frac{\sin(\theta)}{\theta}.$$

$$E[X^n] = \int_0^\infty x^n \lambda e^{-\lambda x} dx = -\int_0^\infty x^n de^{-\lambda x}$$
$$= -[x^n e^{-\lambda x}]_0^\infty + \int_0^\infty e^{-\lambda x} dx^n$$

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0, 1] and $\theta > 0$. Then

$$E[\cos(\theta X)] = \int_0^1 \cos(\theta x) dx = \left[\frac{1}{\theta} \sin(\theta x)\right]_0^1 = \frac{\sin(\theta)}{\theta}.$$

$$E[X^{n}] = \int_{0}^{\infty} x^{n} \lambda e^{-\lambda x} dx = -\int_{0}^{\infty} x^{n} de^{-\lambda x}$$
$$= -[x^{n} e^{-\lambda x}]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda x} dx^{n}$$
$$= \frac{n}{\lambda} \int_{0}^{\infty} x^{n-1} \lambda e^{-\lambda x} dx =$$

Examples of Expectation of Function

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0, 1] and $\theta > 0$. Then

$$E[\cos(\theta X)] = \int_0^1 \cos(\theta x) dx = \left[\frac{1}{\theta} \sin(\theta x)\right]_0^1 = \frac{\sin(\theta)}{\theta}.$$

3. Let $X = Expo(\lambda)$. Then

$$E[X^{n}] = \int_{0}^{\infty} x^{n} \lambda e^{-\lambda x} dx = -\int_{0}^{\infty} x^{n} de^{-\lambda x}$$

$$= -[x^{n} e^{-\lambda x}]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda x} dx^{n}$$

$$= \frac{n}{\lambda} \int_{0}^{\infty} x^{n-1} \lambda e^{-\lambda x} dx = \frac{n}{\lambda} E[X^{n-1}].$$

Examples of Expectation of Function

Recall: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

1. Let X = U[0,1]. Then

$$E[X^n] = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

2. Let X = U[0,1] and $\theta > 0$. Then

$$E[\cos(\theta X)] = \int_0^1 \cos(\theta x) dx = \left[\frac{1}{\theta} \sin(\theta x)\right]_0^1 = \frac{\sin(\theta)}{\theta}.$$

3. Let $X = Expo(\lambda)$. Then

$$E[X^{n}] = \int_{0}^{\infty} x^{n} \lambda e^{-\lambda x} dx = -\int_{0}^{\infty} x^{n} de^{-\lambda x}$$
$$= -\left[x^{n} e^{-\lambda x}\right]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda x} dx^{n}$$
$$= \frac{n}{\lambda} \int_{0}^{\infty} x^{n-1} \lambda e^{-\lambda x} dx = \frac{n}{\lambda} E[X^{n-1}].$$

Since $E[X^0] = 1$, this implies by induction that $E[X^n] = \frac{n!}{\lambda^n}$.

Theorem Expectation is linear.

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1:

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}.$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx =$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} =$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b-a)Y, Y = U[0,1].$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b - a)E[Y] =$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b-a)Y$$
, $Y = U[0,1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} =$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b-a)Y$$
, $Y = U[0,1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a, b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

Example 2:

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a,b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

Example 2: X, Y are U[0,1].

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a, b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

$$E[3X - 2Y + 5] =$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a, b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

$$E[3X-2Y+5] = 3E[X]-2E[Y]+5 =$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a, b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

$$E[3X-2Y+5] = 3E[X]-2E[Y]+5=3\frac{1}{2}-2\frac{1}{2}+5=$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a,b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b-a)Y$$
, $Y = U[0,1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

$$E[3X-2Y+5] = 3E[X]-2E[Y]+5=3\frac{1}{2}-2\frac{1}{2}+5=5.5.$$

Theorem If X, Y, X are mutually independent, then

Theorem If X, Y, X are mutually independent, then E[XYZ] = E[X]E[Y]E[Z].

Theorem If X, Y, X are mutually independent, then

$$E[XYZ] = E[X]E[Y]E[Z].$$

Proof:

Theorem If X, Y, X are mutually independent, then

$$E[XYZ] = E[X]E[Y]E[Z].$$

Proof: Same as discrete case.

Theorem If X, Y, X are mutually independent, then

$$E[XYZ] = E[X]E[Y]E[Z].$$

Proof: Same as discrete case.

Example:

Theorem If X, Y, X are mutually independent, then

$$E[XYZ] = E[X]E[Y]E[Z].$$

Proof: Same as discrete case.

Theorem If X, Y, X are mutually independent, then

$$E[XYZ] = E[X]E[Y]E[Z].$$

Proof: Same as discrete case.

$$E[(X+2Y+3Z)^2] =$$

Theorem If X, Y, X are mutually independent, then

$$E[XYZ] = E[X]E[Y]E[Z].$$

Proof: Same as discrete case.

$$E[(X+2Y+3Z)^2] = E[X^2+4Y^2+9Z^2+4XY+6XZ+12YZ]$$

Theorem If X, Y, X are mutually independent, then

$$E[XYZ] = E[X]E[Y]E[Z].$$

Proof: Same as discrete case.

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+6XZ+12YZ]$$
$$= \frac{1}{3}+4\frac{1}{3}+9\frac{1}{3}+4\frac{1}{2}\frac{1}{2}+6\frac{1}{2}\frac{1}{2}+12\frac{1}{2}\frac{1}{2}$$

Theorem If X, Y, X are mutually independent, then

$$E[XYZ] = E[X]E[Y]E[Z].$$

Proof: Same as discrete case.

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+6XZ+12YZ]$$

$$= \frac{1}{3}+4\frac{1}{3}+9\frac{1}{3}+4\frac{1}{2}\frac{1}{2}+6\frac{1}{2}\frac{1}{2}+12\frac{1}{2}\frac{1}{2}$$

$$= \frac{14}{3}+\frac{22}{4}$$

Theorem If X, Y, X are mutually independent, then

$$E[XYZ] = E[X]E[Y]E[Z].$$

Proof: Same as discrete case.

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+6XZ+12YZ]$$

$$= \frac{1}{3}+4\frac{1}{3}+9\frac{1}{3}+4\frac{1}{2}\frac{1}{2}+6\frac{1}{2}\frac{1}{2}+12\frac{1}{2}\frac{1}{2}$$

$$= \frac{14}{3}+\frac{22}{4}\approx 10.17.$$

Variance

Definition: The **variance** of a continuous random variable \boldsymbol{X} is defined as

Variance

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2)$$

Variance

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1:

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0,1].

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0, 1]. Then

$$var[X] = E[X^2] - E[X]^2 =$$

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0,1]. Then

$$var[X] = E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{4} =$$

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0,1]. Then

$$var[X] = E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0, 1]. Then

$$var[X] = E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Example 2:

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0, 1]. Then

$$var[X] = E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Example 2: $X = Expo(\lambda)$.

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0, 1]. Then

$$var[X] = E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Example 2:
$$X = Expo(\lambda)$$
. Then $E[X] = \lambda^{-1}$

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0, 1]. Then

$$var[X] = E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Example 2: $X = Expo(\lambda)$. Then $E[X] = \lambda^{-1}$ and $E[X^2] = 2/(\lambda^2)$.

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0,1]. Then

$$var[X] = E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Example 2:
$$X = Expo(\lambda)$$
. Then $E[X] = \lambda^{-1}$ and $E[X^2] = 2/(\lambda^2)$. Hence, $var[X] = 1/(\lambda^2)$.

Example 3:

Definition: The **variance** of a continuous random variable *X* is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0,1]. Then

$$var[X] = E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Example 2: $X = Expo(\lambda)$. Then $E[X] = \lambda^{-1}$ and $E[X^2] = 2/(\lambda^2)$. Hence, $var[X] = 1/(\lambda^2)$.

Example 3: Let X, Y, Z be independent. Then

Definition: The **variance** of a continuous random variable X is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0,1]. Then

$$var[X] = E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Example 2: $X = Expo(\lambda)$. Then $E[X] = \lambda^{-1}$ and $E[X^2] = 2/(\lambda^2)$. Hence, $var[X] = 1/(\lambda^2)$.

Example 3: Let X, Y, Z be independent. Then

$$var[X + Y + Z] = var[X] + var[Y] + var[Z],$$

Definition: The **variance** of a continuous random variable *X* is defined as

$$var[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2.$$

Example 1: X = U[0,1]. Then

$$var[X] = E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Example 2: $X = Expo(\lambda)$. Then $E[X] = \lambda^{-1}$ and $E[X^2] = 2/(\lambda^2)$. Hence, $var[X] = 1/(\lambda^2)$.

Example 3: Let X, Y, Z be independent. Then

$$var[X + Y + Z] = var[X] + var[Y] + var[Z],$$

as in the discrete case.

Continuous Probability 2

1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation of function: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation of function: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.
- 6. Variance: $var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation of function: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.
- 6. Variance: $var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$.
- 7. $f_{\mathbf{X}}(\mathbf{x})dx_1 \cdots dx_n = Pr[X_1 \in (x_1, x_1 + dx_1), \dots, X_n \in (x_n, x_n + dx_n)].$

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation of function: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.
- 6. Variance: $var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$.
- 7. $f_{\mathbf{X}}(\mathbf{x})dx_1 \cdots dx_n = Pr[X_1 \in (x_1, x_1 + dx_1), \dots, X_n \in (x_n, x_n + dx_n)].$
- 8. X_1, \dots, X_n are mutually independent iff $f_{\mathbf{X}} = f_{X_1} \times \dots \times f_{X_n}$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation of function: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.
- 6. Variance: $var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$.
- 7. $f_{\mathbf{X}}(\mathbf{x})dx_1 \cdots dx_n = Pr[X_1 \in (x_1, x_1 + dx_1), \dots, X_n \in (x_n, x_n + dx_n)].$
- 8. $X_1, ..., X_n$ are mutually independent iff $f_{\mathbf{X}} = f_{X_1} \times \cdots \times f_{X_n}$.
- 9. **X** mutually independent $\Rightarrow E[X_1 \cdots X_n] = E[X_1] \cdots E[X_n]$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation of function: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.
- 6. Variance: $var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$.
- 7. $f_{\mathbf{X}}(\mathbf{x})dx_1 \cdots dx_n = Pr[X_1 \in (x_1, x_1 + dx_1), \dots, X_n \in (x_n, x_n + dx_n)].$
- 8. $X_1, ..., X_n$ are mutually independent iff $f_{\mathbf{X}} = f_{X_1} \times \cdots \times f_{X_n}$.
- 9. **X** mutually independent $\Rightarrow E[X_1 \cdots X_n] = E[X_1] \cdots E[X_n]$.
- 10. $E[h(\mathbf{X})] = \int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation of function: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.
- 6. Variance: $var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$.
- 7. $f_{\mathbf{X}}(\mathbf{x})dx_1 \cdots dx_n = Pr[X_1 \in (x_1, x_1 + dx_1), \dots, X_n \in (x_n, x_n + dx_n)].$
- 8. $X_1, ..., X_n$ are mutually independent iff $f_{\mathbf{X}} = f_{X_1} \times \cdots \times f_{X_n}$.
- 9. **X** mutually independent $\Rightarrow E[X_1 \cdots X_n] = E[X_1] \cdots E[X_n]$.
- 10. $E[h(\mathbf{X})] = \int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n$.
- 11. Expectation is linear.