CS70: Jean Walrand: Lecture 35.

Continuous Probability 2

1. Review: CDF, PDF
2. Examples
3. Properties
4. Expectation
5. Expectation of Function
6. Variance
7. Independent Continuous RVs

Review: CDF and PDF.

Key idea: For a continuous $\mathrm{RV}, \operatorname{Pr}[X=x]=0$ for all $x \in \mathfrak{R}$.
Examples: Uniform in $[0,1]$; throw a dart in a target.
Thus, one cannot define $\operatorname{Pr}[$ outcome], then $\operatorname{Pr}[$ event].
Instead, one starts by defining $\operatorname{Pr}[$ event].
Thus, one defines $\operatorname{Pr}[X \in(-\infty, x]]=\operatorname{Pr}[X \leq x]=: F_{X}(x), x \in \mathfrak{R}$.
Then, one defines $f_{X}(x):=\frac{d}{d x} F_{X}(x)$.
Hence, $f_{X}(x) \varepsilon \approx \operatorname{Pr}[X \in(x, x+\varepsilon)]$.
$F_{X}(\cdot)$ is the cumulative distribution function (CDF) of X.
$f_{X}(\cdot)$ is the probability density function (PDF) of X.

A Picture

The $\operatorname{pdf} f_{X}(x)$ is a nonnegative function that integrates to 1 .
The cdf $F_{X}(x)$ is the integral of f_{X}.

$$
\begin{aligned}
& \operatorname{Pr}[x<X<x+\delta] \approx f_{X}(x) \delta \\
& \operatorname{Pr}[X \leq x]=F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u
\end{aligned}
$$

Target

$U[a, b]$

Expo($\lambda)$

The exponential distribution with parameter $\lambda>0$ is defined by

$$
\begin{gathered}
f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\} \\
F_{X}(x)= \begin{cases}0, & \text { if } x<0 \\
1-e^{-\lambda x}, & \text { if } x \geq 0\end{cases}
\end{gathered}
$$

Note that $\operatorname{Pr}[X>t]=e^{-\lambda t}$ for $t>0$.

Some Properties

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t] .
\end{aligned}
$$

'Used is a good as new.'
2. Scaling Expo. Let $X=\operatorname{Expo}(\lambda)$ and $Y=a X$ for some $a>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y>t] & =\operatorname{Pr}[a X>t]=\operatorname{Pr}[X>t / a] \\
& =e^{-\lambda(t / a)}=e^{-(\lambda / a) t}=\operatorname{Pr}[Z>t] \text { for } Z=\operatorname{Expo}(\lambda / a)
\end{aligned}
$$

Thus, $a \times \operatorname{Expo}(\lambda)=\operatorname{Expo}(\lambda / a)$.
Also, $\operatorname{Expo}(\lambda)=\frac{1}{\lambda} \operatorname{Expo}(1)$.

More Properties

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$. Then,

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=\frac{1}{b} \delta, \text { for } 0<\frac{y-a}{b}<1 \\
& =\frac{1}{b} \delta, \text { for } a<y<a+b .
\end{aligned}
$$

Thus, $f_{Y}(y)=\frac{1}{b}$ for $a<y<a+b$. Hence, $Y=U[a, a+b]$.

Replacing b by $b-a$ we see that, if $X=U[0,1]$, then $Y=a+(b-a) X$ is $U[a, b]$.

Some More Properties

4. Scaling pdf. Let $f_{X}(x)$ be the pdf of X and $Y=a+b X$ where $b>0$. Then

$$
\begin{aligned}
\operatorname{Pr}[Y \in(y, y+\delta)] & =\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right] \\
& =\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=f_{X}\left(\frac{y-a}{b}\right) \frac{\delta}{b}
\end{aligned}
$$

Now, the left-hand side is $f_{Y}(y) \delta$. Hence,

$$
f_{Y}(y)=\frac{1}{b} f_{X}\left(\frac{y-a}{b}\right) .
$$

Expectation

Definition: The expectation of a random variable X with pdf $f(x)$ is defined as

$$
E[X]=\int_{-\infty}^{\infty} x f_{x}(x) d x .
$$

Justification: Say $X=n \delta$ w.p. $f_{X}(n \delta) \delta$ for $n \in \mathbb{Z}$. Then,

$$
E[X]=\sum_{n}(n \delta) \operatorname{Pr}[X=n \delta]=\sum_{n}(n \delta) f_{X}(n \delta) \delta=\int_{-\infty}^{\infty} x f_{X}(x) d x .
$$

Indeed, for any g, one has $\int g(x) d x \approx \sum_{n} g(n \delta) \delta$. Choose $g(x)=x f_{X}(x)$.

Examples of Expectation

1. $X=U[0,1]$. Then, $f_{X}(x)=1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x \cdot 1 d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2}
$$

2. $X=$ distance to 0 of dart shot uniformly in unit circle. Then $f_{X}(x)=2 \times 1\{0 \leq x \leq 1\}$. Thus,

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x .2 x d x=\left[\frac{2 x^{3}}{3}\right]_{0}^{1}=\frac{2}{3} .
$$

Examples of Expectation

3. $X=\operatorname{Expo}(\lambda)$. Then, $f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}$. Thus,

$$
E[X]=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=-\int_{0}^{\infty} x d e^{-\lambda x}
$$

Recall the integration by parts formula:

$$
\begin{aligned}
\int_{a}^{b} u(x) d v(x) & =[u(x) v(x)]_{a}^{b}-\int_{a}^{b} v(x) d u(x) \\
& =u(b) v(b)-u(a) v(a)-\int_{a}^{b} v(x) d u(x) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{0}^{\infty} x d e^{-\lambda x} & =\left[x e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} e^{-\lambda x} d x \\
& =0-0+\frac{1}{\lambda} \int_{0}^{\infty} d e^{-\lambda x}=-\frac{1}{\lambda} .
\end{aligned}
$$

Hence, $E[X]=\frac{1}{\lambda}$.

Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RV by specifying $f_{X, Y}(x, y)$ for $x, y \in \mathfrak{R}$ where

$$
f_{X, Y}(x, y) d x d y=\operatorname{Pr}[X \in(x, x+d x), Y \in(y+d y)]
$$

The function $f_{X, Y}(x, y)$ is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set $A \subset \mathfrak{R}^{2}$. Then

$$
f_{X, Y}(x, y)=\frac{1}{|A|} 1\{(x, y) \in A\}
$$

where $|A|$ is the area of A.
Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $\operatorname{Pr}[X=m \varepsilon, Y=n \varepsilon]=f_{X, Y}(m \varepsilon, n \varepsilon) \varepsilon^{2}$.
Extension: $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ with $f_{\mathbf{X}}(\mathbf{x})$.

Example of Continuous (X, Y)

Pick a point (X, Y) uniformly in the unit circle.

Thus, $f_{X, Y}(x, y)=\frac{1}{\pi} 1\left\{x^{2}+y^{2} \leq 1\right\}$.
Consequently,

$$
\begin{aligned}
& \operatorname{Pr}[X>0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}[X<0, Y>0]=\frac{1}{4} \\
& \operatorname{Pr}\left[X^{2}+Y^{2} \leq r^{2}\right]=r^{2} \\
& \operatorname{Pr}[X>Y]=\frac{1}{2} .
\end{aligned}
$$

Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B], \forall A, B .
$$

Theorem: The continuous RVs X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Proof: As in the discrete case.
Definition: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if

$$
\operatorname{Pr}\left[X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right]=\operatorname{Pr}\left[X_{1} \in A_{1}\right] \cdots \operatorname{Pr}\left[X_{n} \in A_{n}\right], \forall A_{1}, \ldots, A_{n} .
$$

Theorem: The continuous RVs X_{1}, \ldots, X_{n} are mutually independent if and only if

$$
f_{\mathbf{x}}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right) .
$$

Proof: As in the discrete case.

Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let $X=\operatorname{Expo}(\lambda)$ and $Y=\operatorname{Expo}(\mu)$ be independent RVs.
Recall that $\operatorname{Pr}[X>u]=e^{-\lambda u}$. Then

$$
\begin{aligned}
\operatorname{Pr}[\min \{X, Y\}>u] & =\operatorname{Pr}[X>u, Y>u]=\operatorname{Pr}[X>u] \operatorname{Pr}[Y>u] \\
& =e^{-\lambda u} \times e^{-\mu u}=e^{-(\lambda+\mu) u} .
\end{aligned}
$$

This shows that $\min \{X, Y\}=\operatorname{Expo}(\lambda+\mu)$.
Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.
2. Minimum of Independent $U[0,1]$. Let $X, Y=[0,1]$ be independent RVs. Let also $Z=\min \{X, Y\}$. What is f_{Z} ?
One has

$$
\operatorname{Pr}[Z>u]=\operatorname{Pr}[X>u] \operatorname{Pr}[Y>u]=(1-u)^{2} .
$$

Thus $F_{Z}(u)=\operatorname{Pr}[Z \leq u]=1-(1-u)^{2}$.
Hence, $f_{Z}(u)=\frac{d}{d u} F_{Z}(u)=2(1-u), u \in[0,1]$. In particular,
$E[Z]=\int_{0}^{1} u f_{Z}(u) d u=\int_{0}^{1} 2 u(1-u) d u=2 \frac{1}{2}-2 \frac{1}{3}=\frac{1}{3}$.

Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is defined as

$$
E[h(X)]=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x
$$

(b) The expectation of a function of multiple random variables is defined as

$$
E[h(\mathbf{X})]=\int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d x_{1} \cdots d x_{n}
$$

Justification: Say $X=n \delta$ w.p. $f_{X}(n \delta) \delta$. Then,

$$
E[h(X)]=\sum_{n} h(n \delta) \operatorname{Pr}[X=n \delta]=\sum_{n} h(n \delta) f_{X}(n \delta) \delta=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x
$$

Indeed, for any g, one has $\int g(x) d x \approx \sum_{n} g(n \delta) \delta$. Choose $g(x)=h(x) f_{X}(x)$.
The case of multiple RVs is similar.

Examples of Expectation of Function

Recall: $E[h(X)]=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x$.

1. Let $X=U[0,1]$. Then

$$
E\left[X^{n}\right]==\int_{0}^{1} x^{n} d x=\left[\frac{x^{n+1}}{n+1}\right]_{0}^{1}=\frac{1}{n+1}
$$

2. Let $X=U[0,1]$ and $\theta>0$. Then

$$
E[\cos (\theta X)]=\int_{0}^{1} \cos (\theta x) d x=\left[\frac{1}{\theta} \sin (\theta x)\right]_{0}^{1}=\frac{\sin (\theta)}{\theta}
$$

3. Let $X=\operatorname{Expo}(\lambda)$. Then

$$
\begin{aligned}
E\left[X^{n}\right] & =\int_{0}^{\infty} x^{n} \lambda e^{-\lambda x} d x=-\int_{0}^{\infty} x^{n} d e^{-\lambda x} \\
& =-\left[x^{n} e^{-\lambda x}\right]_{0}^{\infty}+\int_{0}^{\infty} e^{-\lambda x} d x^{n} \\
& =\frac{n}{\lambda} \int_{0}^{\infty} x^{n-1} \lambda e^{-\lambda x} d x=\frac{n}{\lambda} E\left[X^{n-1}\right] .
\end{aligned}
$$

Since $E\left[X^{0}\right]=1$, this implies by induction that $E\left[X^{n}\right]=\frac{n!}{\lambda^{n}}$.

Linearity of Expectation

Theorem Expectation is linear.
Proof: 'As in the discrete case.'
Example 1: $X=U[a, b]$. Then
(a) $f_{X}(x)=\frac{1}{b-a} 1\{a \leq x \leq b\}$. Thus,

$$
E[X]=\int_{a}^{b} x \frac{1}{b-a} d x=\frac{1}{b-a}\left[\frac{x^{2}}{2}\right]_{a}^{b}=\frac{a+b}{2} .
$$

(b) $X=a+(b-a) Y, Y=U[0,1]$. Hence,

$$
E[X]=a+(b-a) E[Y]=a+\frac{b-a}{2}=\frac{a+b}{2} .
$$

Example 2: X, Y are $U[0,1]$. Then

$$
E[3 X-2 Y+5]=3 E[X]-2 E[Y]+5=3 \frac{1}{2}-2 \frac{1}{2}+5=5.5
$$

Expectation of Product of Independent RVs

Theorem If X, Y, X are mutually independent, then

$$
E[X Y Z]=E[X] E[Y] E[Z] .
$$

Proof: Same as discrete case.
Example: Let X, Y, Z be mutually independent and $U[0,1]$. Then

$$
\begin{aligned}
E\left[(X+2 Y+3 Z)^{2}\right] & =E\left[X^{2}+4 Y^{2}+9 Z^{2}+4 X Y+6 X Z+12 Y Z\right] \\
& =\frac{1}{3}+4 \frac{1}{3}+9 \frac{1}{3}+4 \frac{1}{2} \frac{1}{2}+6 \frac{1}{2} \frac{1}{2}+12 \frac{1}{2} \frac{1}{2} \\
& =\frac{14}{3}+\frac{22}{4} \approx 10.17 .
\end{aligned}
$$

Variance

Definition: The variance of a continuous random variable X is defined as

$$
\operatorname{var}[X]=E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-(E(X))^{2}
$$

Example 1: $X=U[0,1]$. Then

$$
\operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}
$$

Example 2: $X=\operatorname{Expo}(\lambda)$. Then $E[X]=\lambda^{-1}$ and $E\left[X^{2}\right]=2 /\left(\lambda^{2}\right)$.
Hence, $\operatorname{var}[X]=1 /\left(\lambda^{2}\right)$.
Example 3: Let X, Y, Z be independent. Then

$$
\operatorname{var}[X+Y+Z]=\operatorname{var}[X]+\operatorname{var}[Y]+\operatorname{var}[Z]
$$

as in the discrete case.

Summary

Continuous Probability 2

1. pdf: $\operatorname{Pr}[X \in(x, x+\delta]]=f_{X}(x) \delta$.
2. $\mathrm{CDF}: \operatorname{Pr}[X \leq x]=F_{X}(x)=\int_{-\infty}^{X} f_{X}(y) d y$.
3. $U[a, b], \operatorname{Expo}(\lambda)$, target.
4. Expectation: $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$.
5. Expectation of function: $E[h(X)]=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x$.
6. Variance: $\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}$.
7. $f_{\mathbf{x}}(\mathbf{x}) d x_{1} \cdots d x_{n}=\operatorname{Pr}\left[X_{1} \in\left(x_{1}, x_{1}+d x_{1}\right), \ldots, x_{n} \in\left(x_{n}, x_{n}+d x_{n}\right)\right]$.
8. X_{1}, \ldots, X_{n} are mutually independent iff $f_{\mathbf{X}}=f_{X_{1}} \times \cdots \times f_{X_{n}}$.
9. \mathbf{X} mutually independent $\Rightarrow E\left[X_{1} \cdots X_{n}\right]=E\left[X_{1}\right] \cdots E\left[X_{n}\right]$.
10. $E[h(\mathbf{X})]=\int \cdots \int h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d x_{1} \cdots d x_{n}$.
11. Expectation is linear.
