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Review: CDF and PDF.

Key idea: For a continuous RV, Pr [X = x ] = 0 for all x ∈ℜ.

Examples: Uniform in [0,1]; throw a dart in a target.

Thus, one cannot define Pr [outcome], then Pr [event].

Instead, one starts by defining Pr [event].

Thus, one defines Pr [X ∈ (−∞,x ]] = Pr [X ≤ x ] =: FX (x),x ∈ℜ.

Then, one defines fX (x) := d
dx FX (x).

Hence, fX (x)ε ≈ Pr [X ∈ (x ,x + ε)].

FX (·) is the cumulative distribution function (CDF) of X .

fX (·) is the probability density function (PDF) of X .

A Picture

The pdf fX (x) is a nonnegative function that integrates to 1.

The cdf FX (x) is the integral of fX .

Pr [x < X < x +δ ]≈ fX (x)δ

Pr [X ≤ x ] = Fx(x) =
∫ x

−∞
fX (u)du

Target U[a,b] Expo(λ )
The exponential distribution with parameter λ > 0 is defined by

fX (x) = λe−λx1{x ≥ 0}

FX (x) =
{

0, if x < 0
1−e−λx , if x ≥ 0.

Note that Pr [X > t ] = e−λ t for t > 0.



Some Properties

1. Expo is memoryless. Let X = Expo(λ ). Then, for s, t > 0,

Pr [X > t +s | X > s] =
Pr [X > t +s]

Pr [X > s]

=
e−λ (t+s)

e−λs = e−λ t

= Pr [X > t ].

‘Used is a good as new.’

2. Scaling Expo. Let X = Expo(λ ) and Y = aX for some a > 0. Then

Pr [Y > t ] = Pr [aX > t ] = Pr [X > t/a]

= e−λ (t/a) = e−(λ/a)t = Pr [Z > t ] for Z = Expo(λ/a).

Thus, a×Expo(λ ) = Expo(λ/a).

Also, Expo(λ ) = 1
λ Expo(1).

More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+bX where b > 0.
Then,

Pr [Y ∈ (y ,y +δ )] = Pr [a+bX ∈ (y ,y +δ )] = Pr [X ∈ (
y −a

b
,
y +δ −a

b
)]

= Pr [X ∈ (
y −a

b
,
y −a

b
+

δ
b
)] =

1
b

δ , for 0 <
y −a

b
< 1

=
1
b

δ , for a < y < a+b.

Thus, fY (y) = 1
b for a < y < a+b. Hence, Y = U[a,a+b].

Replacing b by b−a we see that, if X = U[0,1], then Y = a+(b−a)X
is U[a,b].

Some More Properties

4. Scaling pdf. Let fX (x) be the pdf of X and Y = a+bX where
b > 0. Then

Pr [Y ∈ (y ,y +δ )] = Pr [a+bX ∈ (y ,y +δ )] = Pr [X ∈ (
y −a

b
,
y +δ −a

b
)]

= Pr [X ∈ (
y −a

b
,
y −a

b
+

δ
b
)] = fX (

y −a
b

)
δ
b
.

Now, the left-hand side is fY (y)δ . Hence,

fY (y) =
1
b

fX (
y −a

b
).

Expectation
Definition: The expectation of a random variable X with pdf f (x) is
defined as

E [X ] =
∫ ∞

−∞
xfX (x)dx .

Justification: Say X = nδ w.p. fX (nδ )δ for n ∈ Z. Then,

E [X ] = ∑
n
(nδ )Pr [X = nδ ] = ∑

n
(nδ )fX (nδ )δ =

∫ ∞

−∞
xfX (x)dx .

Indeed, for any g, one has
∫

g(x)dx ≈ ∑n g(nδ )δ . Choose
g(x) = xfX (x).

Examples of Expectation

1. X = U[0,1]. Then, fX (x) = 1{0≤ x ≤ 1}. Thus,

E [X ] =
∫ ∞

−∞
xfX (x)dx =

∫ 1

0
x .1dx =

[x2

2
]1

0 =
1
2
.

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fX (x) = 2x1{0≤ x ≤ 1}. Thus,

E [X ] =
∫ ∞

−∞
xfX (x)dx =

∫ 1

0
x .2xdx =

[2x3

3
]1

0 =
2
3
.

Examples of Expectation
3. X = Expo(λ ). Then, fX (x) = λe−λx1{x ≥ 0}. Thus,

E [X ] =
∫ ∞

0
xλe−λxdx =−

∫ ∞

0
xde−λx .

Recall the integration by parts formula:
∫ b

a
u(x)dv(x) =

[
u(x)v(x)

]b
a−

∫ b

a
v(x)du(x)

= u(b)v(b)−u(a)v(a)−
∫ b

a
v(x)du(x).

Thus,
∫ ∞

0
xde−λx = [xe−λx ]∞0 −

∫ ∞

0
e−λxdx

= 0−0+
1
λ

∫ ∞

0
de−λx = − 1

λ
.

Hence, E [X ] = 1
λ .



Multiple Continuous Random Variables

One defines a pair (X ,Y ) of continuous RVs by specifying fX ,Y (x ,y)
for x ,y ∈ℜ where

fX ,Y (x ,y)dxdy = Pr [X ∈ (x ,x +dx),Y ∈ (y +dy)].

The function fX ,Y (x ,y) is called the joint pdf of X and Y .

Example: Choose a point (X ,Y ) uniformly in the set A⊂ℜ2. Then

fX ,Y (x ,y) =
1
|A|1{(x ,y) ∈ A}

where |A| is the area of A.

Interpretation. Think of (X ,Y ) as being discrete on a grid with mesh
size ε and Pr [X = mε,Y = nε] = fX ,Y (mε,nε)ε2.

Extension: X = (X1, . . . ,Xn) with fX(x).

Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π 1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] = r2

Pr [X > Y ] =
1
2
.

Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

Pr [X ∈ A,Y ∈ B] = Pr [X ∈ A]Pr [Y ∈ B],∀A,B.

Theorem: The continuous RVs X and Y are independent if and only
if

fX ,Y (x ,y) = fX (x)fY (y).

Proof: As in the discrete case.

Definition: The continuous RVs X1, . . . ,Xn are mutually independent
if

Pr [X1 ∈ A1, . . . ,Xn ∈ An] = Pr [X1 ∈ A1] · · ·Pr [Xn ∈ An],∀A1, . . . ,An.

Theorem: The continuous RVs X1, . . . ,Xn are mutually independent if
and only if

fX(x1, . . . ,xn) = fX1(x1) · · · fXn(xn).

Proof: As in the discrete case.

Examples of Independent Continuous RVs
1. Minimum of Independent Expo. Let X = Expo(λ ) and
Y = Expo(µ) be independent RVs.

Recall that Pr [X > u] = e−λu. Then

Pr [min{X ,Y}> u] = Pr [X > u,Y > u] = Pr [X > u]Pr [Y > u]

= e−λu×e−µu = e−(λ+µ)u.

This shows that min{X ,Y}= Expo(λ +µ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X ,Y = [0,1] be
independent RVs. Let also Z = min{X ,Y}. What is fZ ?

One has
Pr [Z > u] = Pr [X > u]Pr [Y > u] = (1−u)2.

Thus FZ (u) = Pr [Z ≤ u] = 1− (1−u)2.

Hence, fZ (u) = d
du FZ (u) = 2(1−u),u ∈ [0,1]. In particular,

E [Z ] =
∫ 1

0 ufZ (u)du =
∫ 1

0 2u(1−u)du = 21
2 −21

3 = 1
3 .

Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E [h(X )] =
∫ ∞

−∞
h(x)fX (x)dx .

(b) The expectation of a function of multiple random variables is
defined as

E [h(X)] =
∫
· · ·
∫

h(x)fX(x)dx1 · · ·dxn.

Justification: Say X = nδ w.p. fX (nδ )δ . Then,

E [h(X )] = ∑
n

h(nδ )Pr [X = nδ ] = ∑
n

h(nδ )fX (nδ )δ =
∫ ∞

−∞
h(x)fX (x)dx .

Indeed, for any g, one has
∫

g(x)dx ≈ ∑n g(nδ )δ . Choose
g(x) = h(x)fX (x).

The case of multiple RVs is similar.

Examples of Expectation of Function
Recall: E [h(X )] =

∫ ∞
−∞ h(x)fX (x)dx .

1. Let X = U[0,1]. Then

E [X n] = =
∫ 1

0
xndx =

[ xn+1

n+1
]1

0 =
1

n+1
.

2. Let X = U[0,1] and θ > 0. Then

E [cos(θX )] =
∫ 1

0
cos(θx)dx =

[1
θ

sin(θx)
]1

0 =
sin(θ)

θ
.

3. Let X = Expo(λ ). Then

E [X n] =
∫ ∞

0
xnλe−λxdx = −

∫ ∞

0
xnde−λx

= −
[
xne−λx]∞

0 +
∫ ∞

0
e−λxdxn

=
n
λ

∫ ∞

0
xn−1λe−λxdx =

n
λ

E [X n−1].

Since E [X 0] = 1, this implies by induction that E [X n] = n!
λ n .



Linearity of Expectation
Theorem Expectation is linear.

Proof: ‘As in the discrete case.’

Example 1: X = U[a,b]. Then

(a) fX (x) = 1
b−a 1{a≤ x ≤ b}. Thus,

E [X ] =
∫ b

a
x

1
b−a

dx =
1

b−a
[x2

2
]b

a =
a+b

2
.

(b) X = a+(b−a)Y ,Y = U[0,1]. Hence,

E [X ] = a+(b−a)E [Y ] = a+
b−a

2
=

a+b
2

.

Example 2: X ,Y are U[0,1]. Then

E [3X −2Y +5] = 3E [X ]−2E [Y ]+5 = 3
1
2
−2

1
2
+5 = 5.5.

Expectation of Product of Independent RVs

Theorem If X ,Y ,X are mutually independent, then

E [XYZ ] = E [X ]E [Y ]E [Z ].

Proof: Same as discrete case.

Example: Let X ,Y ,Z be mutually independent and U[0,1]. Then

E [(X +2Y +3Z )2] = E [X 2 +4Y 2 +9Z 2 +4XY +6XZ +12YZ ]

=
1
3
+4

1
3
+9

1
3
+4

1
2

1
2
+6

1
2

1
2
+12

1
2

1
2

=
14
3

+
22
4
≈ 10.17.

Variance
Definition: The variance of a continuous random variable X is
defined as

var [X ] = E((X −E(X ))2) = E(X 2)− (E(X ))2.

Example 1: X = U[0,1]. Then

var [X ] = E [X 2]−E [X ]2 =
1
3
− 1

4
=

1
12

.

Example 2: X = Expo(λ ). Then E [X ] = λ−1 and E [X 2] = 2/(λ 2).

Hence, var [X ] = 1/(λ 2).

Example 3: Let X ,Y ,Z be independent. Then

var [X +Y +Z ] = var [X ]+var [Y ]+var [Z ],

as in the discrete case.

Summary

Continuous Probability 2

1. pdf: Pr [X ∈ (x ,x +δ ]] = fX (x)δ .

2. CDF: Pr [X ≤ x ] = FX (x) =
∫ x
−∞ fX (y)dy .

3. U[a,b], Expo(λ ), target.

4. Expectation: E [X ] =
∫ ∞
−∞ xfX (x)dx .

5. Expectation of function: E [h(X )] =
∫ ∞
−∞ h(x)fX (x)dx .

6. Variance: var [X ] = E [(X −E [X ])2] = E [X 2]−E [X ]2.

7. fX(x)dx1 · · ·dxn = Pr [X1 ∈ (x1,x1 +dx1), . . . ,Xn ∈ (xn,xn +dxn)].

8. X1, . . . ,Xn are mutually independent iff fX = fX1 ×·· ·× fXn .

9. X mutually independent⇒ E [X1 · · ·Xn] = E [X1] · · ·E [Xn].

10. E [h(X)] =
∫ · · ·∫ h(x)fX(x)dx1 · · ·dxn.

11. Expectation is linear.


