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1. Examples
2. Events
3. Continuous Random Variables
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Choose a real number X, uniformly at random in [0, 1].
What is the probability that X is exactly equal to 1/3? Well, ..., 0.
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What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any x € [0,1], one has Pr[X = x] =0.

How should we then describe ‘choosing uniformly at random in [0,1]'?
Here is the way to do it:

PriXelabl]=b—aV0<a<b<1.

Makes sense: b— a s the fraction of [0, 1] that [a, b] covers.
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length of [a,b] b—-a
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Intervals like [a,b] C Q =[0,1] are events.

More generally, events in this space are unions of intervals.
Example: the event A - “within 0.2 of 0 or 1" is A=[0,0.2]U[0.8,1].
Thus,

Pr[A] = Pr[[0,0.2]] + Pr[[0.8,1]] = 0.4.

More generally, if A, are pairwise disjoint intervals in [0, 1], then

PriUnAn] := Y Pr[An].

Many subsets of [0,1] are of this form. Thus, the probability of those
sets is well defined. We call such sets events.
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Note: Pr[X < x] = x for x € [0,1]. Also, Pr[X < x] =0 for x < 0 and
PriX <x] =1 for x > 1. Let us define F(x) = Pr[X < x].

Then we have Pr[X € (a,b]] = Pr[X < b]— Pr[X < a] = F(b) — F(a).
Thus, F(-) specifies the probability of all the events!
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A
Think of f(x) as describing how
one unit of probability is spread over [0, 1]: uniformly!
Then Pr[X € A] is the probability mass over A.
Observe:

» This makes the probability automatically additive.
» We need f(x) >0and |7 f(x)dx=1.
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Discrete Approximation: Fix N>>1andlete=1/N.
Define Y=neif (n—1)e< X <neforn=1,...,N.
Then | X — Y| <eand Y is discrete: Y € {¢,2¢,...,Ne}.
Also, Pr[Y = ne] = & forn=1,...,N.

Thus, X is ‘almost discrete’
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This figure shows a different choice of f(x) > 0 with [*_f(x)dx =1.
It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr[X < x] = [*_ f(u)du = x? for x € [0,1].

Also, Pr[X € (x,x+¢€)] = [{ ¥ f(u)du =~ f(x)e.
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This figure shows yet a different choice of f(x) > 0 with
o f(x)dx = 1.

It defines another way of choosing X at random in [0, 1].
Note that X is more likely to be closer to 1/2 than to 0 or 1.
For instance, Pr[X € [0,1/3]] = [o/34xdx =2[x?] /> = 2

=2
Thus, Pr[X € [0,1/3]] = Pr[X € [2/3,1]] = § and
PriX €[1/3,2/3]] = 3.
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Let F(x) be a nondecreasing function with F(—e) =0 and F(+e)=1.
Define X by Pr[X € (a,b]] = F(b) — F(a) for a< b. Also, for
ag<bi<a<b<---<bp,
Pf[X € (31 , b1] U (ag, b2] U (an, bn]]
= Pr[X € (ai,b1]]+---+ Pr[X € (an, bn]]
=F(b1)—F(a1)+---+ F(bn) — F(an).

Let f(x) = & F(x). Then,

Pr[X e (x,x+¢€]] = F(x+¢€)— F(x) =~ f(x)e.

Here, F(x) is called the cumulative distribution function (cdf) of X and
f(x) is the probability density function (pdf) of X.

To indicate that F and f correspond to the RV X, we will write them
Fx(x) and fx(x).
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An illustration of Pr[X € (x,x +¢€)] = fx(x)e:

Rectangle = f(x)e
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Thus, the pdf is the ‘local probability by unit length’
It is the ‘probability density.
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Example: CDF

Example: hitting random location on gas tank.
Random location on circle.

Random Variable: Y distance from center.
Probability within y of center:

area of small circle

< =
Priy <] area of dartboard
_ A
= ==/~

Hence,

0 fory <0

Fy(y)=Prly <y]=g y? for0<y<i
1 fory >1
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Calculation of event with dartboard..

Probability between .5 and .6 of center?

Recall CDF.
0 fory <0
Fy(y)=Prl[Y<y]=< y? for0<y<f
1 fory >1
Prl0.5< Y <0.6] = Pr[Y<0.6]—Pr[Y <0.5]

= Fy(0.8) — Fy(0.5)
~ 36-.25
= 11
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Example: “Dart” board.

Recall that
0 fory <0
Fy(y)=Prly <y]=< y? for0<y<i
1 fory >1
0 fory <0
fy(y)=Fy(y)=< 2y for0<y<f1
0 fory > 1

The cumulative distribution function (cdf) and probability
distribution function (pdf) give full information.
Use whichever is convenient.
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Expo(1)

The exponential distribution with parameter A > 0 is defined by
fx(x) = A e 1{x > 0}

0,

Fx(x) = { 1 e,

0.8} |

oal A=1 Fy(x)
0.7

nak-
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04}

02| fx(z)
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Note that Pr[X > t] = e *!for t > 0.
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Continuous random variable X, specified by

1. Fx(x)= Pr[X < x] for all x.
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Prla< X < b] = Fx(b)— Fx(a)
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Random Variables

Continuous random variable X, specified by

1. Fx(x)= Pr[X < x] for all x.
Cumulative Distribution Function (cdf).
Prla< X < b] = Fx(b)— Fx(a)
1.1 0 < Fx(x) <1 forall x € R.
1.2 Fx(x) < Fx(y)ifx<y.

2. Or fx(x) , where Fx(x) = [*_fx(u)du or fx(x) = w.
Probability Density Function (pdf).
Prla< X < b] = [ fx(x)dx = Fx(b) — Fx(a)
2.1 fx(x)>0forall x € R.
2.2 [Z fx(x)dx=1.

Recall that Pr[X € (x,x+ 8)] = fx(x)8. Think of X taking
discrete values né forn=...,—-2,—1,0,1,2,... with
Pr[X = nd] = fx(nd)4.
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The pdf fx(x) is a nonnegative function that integrates to 1.



A Picture

4 PrlX < 1 1
Fy(x)

_!rjl" T < _1( < T + d-;
= fx(z)d

AR .
. ..-::a\h\'ﬁ‘\i\\\\\\\\\\h

The pdf fx(x) is a nonnegative function that integrates to 1.
The cdf Fx(x) is the integral of fx.



A Picture

4 PrlX < 1 1

AR f
. .r::a\h\'ﬁ‘\i\\\\\\\\\\h

The pdf fx(x) is a nonnegative function that integrates to 1.
The cdf Fx(x) is the integral of fx.

Prix < X < x+ 8] ~ fx(x)8



A Picture

AP X <ux 1
Fx ()

_!rjll- I = _1( =< I+ (5.
= }l'.ll:rl :I ci
S

AN I
: .r::a\'h\'ﬁ“xi\\\\\\\\\\h

The pdf fx(x) is a nonnegative function that integrates to 1.
The cdf Fx(x) is the integral of fx.

Prix < X < x+ 8] ~ fx(x)5
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‘ Continuous Probability 1 ‘

. pdf: PriX e (x,x + 6]] = fx(x)é6.

CDF: Pr[X < x] = Fx(x) = [*_ fx(y)dy.

Ula,b]: fx(x) = gz1{a< x < b}; Fx(x) =2 fora< x < b.
Expo(A):

fx(x) = Aexp{—Ax}1{x > 0}; Fx(x) =1—exp{—Ax} for x <O0.
Target: fy(x) =2x1{0 < x <1}; Fx(x) =x?for0 < x < 1.



