CS70: Jean Walrand: Lecture 34.

Continuous Probability 1

CS70: Jean Walrand: Lecture 34.

Continuous Probability 1

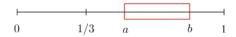
CS70: Jean Walrand: Lecture 34.

Continuous Probability 1

- 1. Examples
- 2. Events
- 3. Continuous Random Variables

Choose a real number X, uniformly at random in

Choose a real number X, uniformly at random in [0, 1].


Choose a real number X, uniformly at random in [0, 1]. What is the probability that X is exactly equal to 1/3?

Choose a real number *X*, uniformly at random in [0, 1]. What is the probability that *X* is exactly equal to 1/3? Well, ...,

Choose a real number *X*, uniformly at random in [0, 1]. What is the probability that *X* is exactly equal to 1/3? Well, ..., 0.

Choose a real number X, uniformly at random in [0, 1].

What is the probability that X is exactly equal to 1/3? Well, ..., 0.

Choose a real number X, uniformly at random in [0, 1]. What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6?

Choose a real number X, uniformly at random in [0, 1].

What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.

Choose a real number X, uniformly at random in [0, 1].

What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0. In fact, for any $x \in [0, 1]$, one has Pr[X = x] =

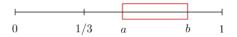
Choose a real number X, uniformly at random in [0, 1]. What is the probability that X is exactly equal to 1/3? Well, ..., 0.

1/3 a b 1

What is the probability that X is exactly equal to 0.6? Again, 0. In fact, for any $x \in [0, 1]$, one has Pr[X = x] = 0.

Choose a real number X, uniformly at random in [0,1].

What is the probability that X is exactly equal to 1/3? Well, ..., 0.

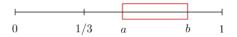

What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any $x \in [0, 1]$, one has Pr[X = x] = 0.

How should we then describe 'choosing uniformly at random in [0,1]'?

Choose a real number X, uniformly at random in [0, 1].

What is the probability that X is exactly equal to 1/3? Well, ..., 0.

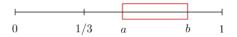

What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any $x \in [0, 1]$, one has Pr[X = x] = 0.

How should we then describe 'choosing uniformly at random in [0,1]'? Here is the way to do it:

Choose a real number X, uniformly at random in [0,1].

What is the probability that X is exactly equal to 1/3? Well, ..., 0.



What is the probability that *X* is exactly equal to 0.6? Again, 0. In fact, for any $x \in [0, 1]$, one has Pr[X = x] = 0. How should we then describe 'choosing uniformly at random in [0, 1]'? Here is the way to do it:

$$Pr[X \in [a,b]] = b - a, \forall 0 \le a \le b \le 1.$$

Choose a real number X, uniformly at random in [0, 1].

What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that *X* is exactly equal to 0.6? Again, 0. In fact, for any $x \in [0, 1]$, one has Pr[X = x] = 0. How should we then describe 'choosing uniformly at random in [0, 1]'? Here is the way to do it:

$$Pr[X \in [a,b]] = b - a, \forall 0 \le a \le b \le 1.$$

Makes sense: b - a is the fraction of [0, 1] that [a, b] covers.

Let [a, b] denote the **event** that the point X is in the interval [a, b].

Let [a, b] denote the **event** that the point X is in the interval [a, b].

Pr[[a,b]] =

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} =$$

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are **events.**

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals.

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$.

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] =$$

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in [0, 1], then

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in [0, 1], then

$$Pr[\cup_n A_n] := \sum_n Pr[A_n].$$

Many subsets of [0,1] are of this form.

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in [0, 1], then

$$Pr[\cup_n A_n] := \sum_n Pr[A_n].$$

Many subsets of [0,1] are of this form. Thus, the probability of those sets is well defined.

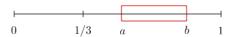
Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

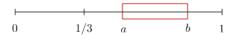
Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus,

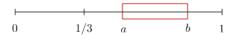
$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

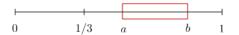
More generally, if A_n are pairwise disjoint intervals in [0, 1], then

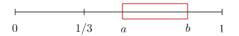

$$Pr[\cup_n A_n] := \sum_n Pr[A_n].$$

Many subsets of [0,1] are of this form. Thus, the probability of those sets is well defined. We call such sets events.

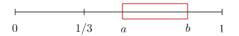

Note: A radical change in approach.


Note: A radical change in approach. For a finite probability space,

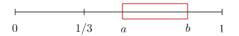

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, \dots, N\}$,


Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$.

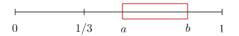
Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$. We then defined $Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$.



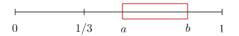
Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$. We then defined $Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$. We used the same approach for countable Ω .


Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$. We then defined $Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$. We used the same approach for countable Ω .

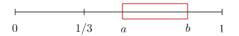
For a continuous space,


Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$. We then defined $Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$. We used the same approach for countable Ω .

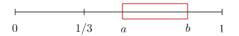
For a continuous space, e.g., $\Omega = [0, 1]$,


Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$. We then defined $Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$. We used the same approach for countable Ω .

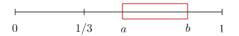
For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $Pr[\omega]$,


Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$. We then defined $Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$. We used the same approach for countable Ω .

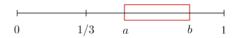
For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $Pr[\omega]$, because this will typically be 0.


Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$. We then defined $Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$. We used the same approach for countable Ω .

For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $Pr[\omega]$, because this will typically be 0. Instead, we start with Pr[A] for some events *A*.


Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$. We then defined $Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$. We used the same approach for countable Ω .

For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $Pr[\omega]$, because this will typically be 0. Instead, we start with Pr[A] for some events *A*. Here, we started with *A* = interval,


Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$. We then defined $Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$. We used the same approach for countable Ω .

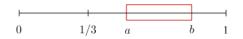
For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $Pr[\omega]$, because this will typically be 0. Instead, we start with Pr[A] for some events *A*. Here, we started with *A* = interval, or union of intervals.

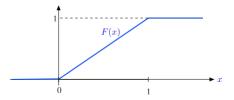

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$. We then defined $Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$. We used the same approach for countable Ω .

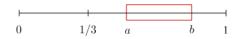
For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $Pr[\omega]$, because this will typically be 0. Instead, we start with Pr[A] for some events *A*. Here, we started with *A* = interval, or union of intervals.

Note:

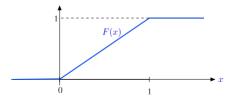
Note: $Pr[X \le x] = x$ for $x \in [0, 1]$.


Note: $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0

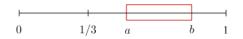

Note: $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0 and $Pr[X \le x] = 1$ for x > 1.

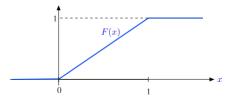


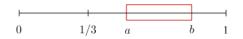
Note: $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0 and $Pr[X \le x] = 1$ for x > 1. Let us define $F(x) = Pr[X \le x]$.

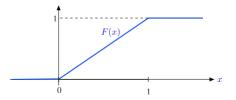


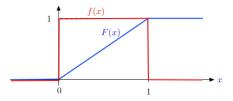
Note: $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0 and $Pr[X \le x] = 1$ for x > 1. Let us define $F(x) = Pr[X \le x]$.

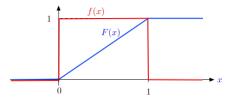


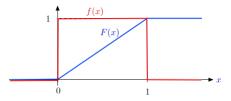

Note: $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0 and $Pr[X \le x] = 1$ for x > 1. Let us define $F(x) = Pr[X \le x]$.


Then we have $Pr[X \in (a, b]] = Pr[X \le b] - Pr[X \le a]$

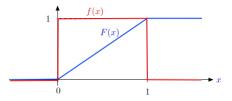

Note: $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0 and $Pr[X \le x] = 1$ for x > 1. Let us define $F(x) = Pr[X \le x]$.


Then we have $Pr[X \in (a, b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a)$.

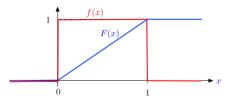

Note: $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0 and $Pr[X \le x] = 1$ for x > 1. Let us define $F(x) = Pr[X \le x]$.


Then we have $Pr[X \in (a, b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a)$. Thus, $F(\cdot)$ specifies the probability of all the events!

 $Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a]$

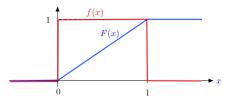


 $\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$


 $\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$

An alternative view is to define $f(x) = \frac{d}{dx}F(x) =$

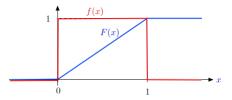
 $\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$


An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0, 1]\}.$

 $\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$

An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

$$F(b)-F(a)=\int_a^b f(x)dx$$

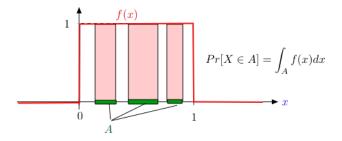


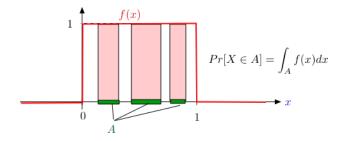
$$\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$$

An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

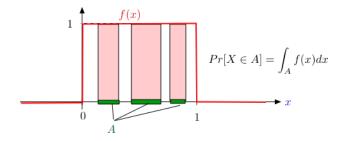
$$F(b)-F(a)=\int_a^b f(x)dx$$

Thus, the probability of an event is the integral of f(x) over the event:

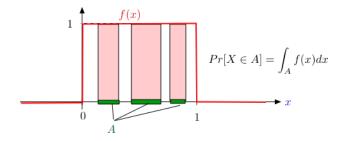

$$\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$$


An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

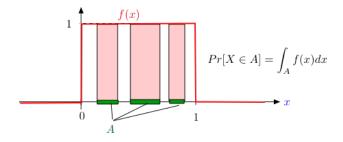
$$F(b)-F(a)=\int_a^b f(x)dx$$


Thus, the probability of an event is the integral of f(x) over the event:

$$Pr[X \in A] = \int_A f(x) dx$$



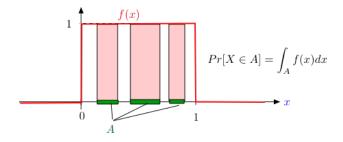
Think of f(x) as describing how one unit of probability is spread over [0,1]:


Think of f(x) as describing how one unit of probability is spread over [0,1]: uniformly!

Think of f(x) as describing how

one unit of probability is spread over [0,1]: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

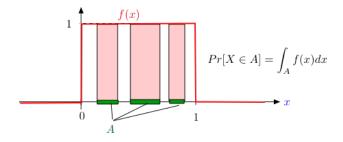


Think of f(x) as describing how

one unit of probability is spread over [0,1]: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

Observe:

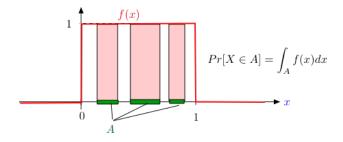

Think of f(x) as describing how

one unit of probability is spread over [0,1]: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

Observe:

This makes the probability automatically additive.

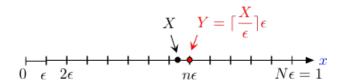

Think of f(x) as describing how

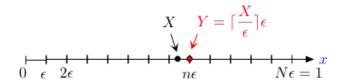
one unit of probability is spread over [0,1]: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

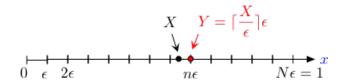
Observe:

- This makes the probability automatically additive.
- ► We need f(x) ≥ 0

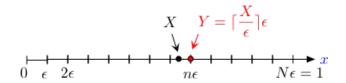

Think of f(x) as describing how

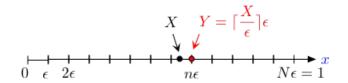

one unit of probability is spread over [0,1]: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

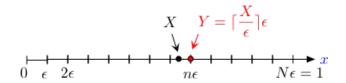

Observe:

- This makes the probability automatically additive.
- We need $f(x) \ge 0$ and $\int_{-\infty}^{\infty} f(x) dx = 1$.



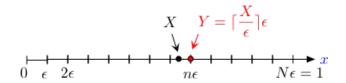

Discrete Approximation:

Discrete Approximation: Fix $N \gg 1$



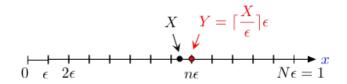
Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.


Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

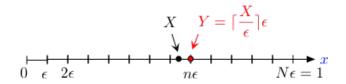
Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

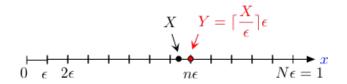

Then $|X - Y| \leq \varepsilon$

Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

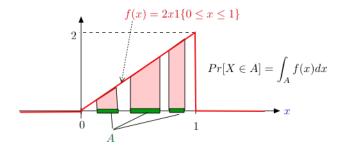

Then $|X - Y| \le \varepsilon$ and Y is discrete:

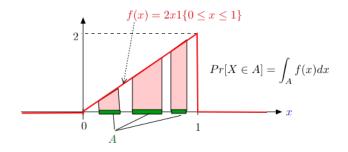
Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.


Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

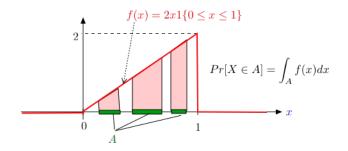
Then $|X - Y| \le \varepsilon$ and *Y* is discrete: $Y \in \{\varepsilon, 2\varepsilon, \dots, N\varepsilon\}$.

Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

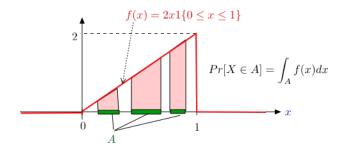

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1,...,N. Then $|X - Y| \le \varepsilon$ and Y is discrete: $Y \in {\varepsilon, 2\varepsilon, ..., N\varepsilon}$. Also, $Pr[Y = n\varepsilon] = \frac{1}{N}$ for n = 1,...,N.

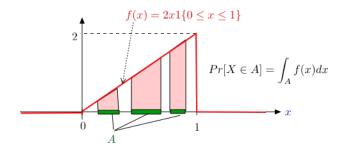


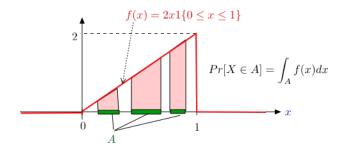
Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

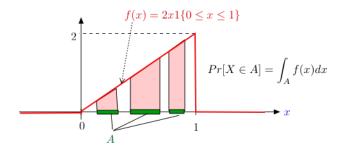

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N. Then $|X - Y| \le \varepsilon$ and Y is discrete: $Y \in {\varepsilon, 2\varepsilon, ..., N\varepsilon}$. Also, $Pr[Y = n\varepsilon] = \frac{1}{N}$ for n = 1, ..., N.

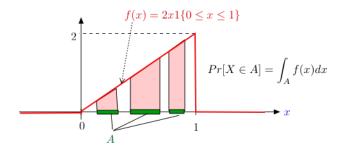
Thus, X is 'almost discrete.'

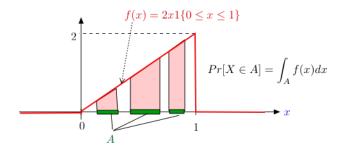


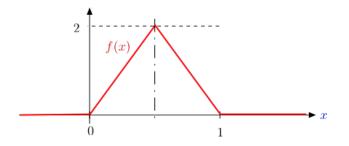

This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

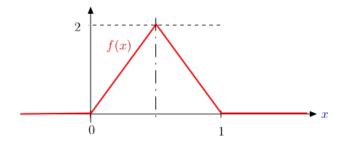

This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0, 1].


This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0,1]. Note that *X* is more likely to be closer to 1 than to 0.

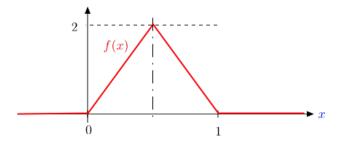

This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0,1]. Note that *X* is more likely to be closer to 1 than to 0. One has


This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0,1]. Note that *X* is more likely to be closer to 1 than to 0. One has $Pr[X \le x] = \int_{-\infty}^{x} f(u) du = x^2$

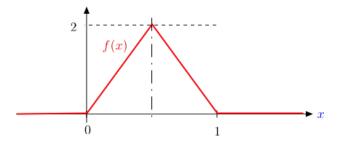

This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0, 1]. Note that *X* is more likely to be closer to 1 than to 0. One has $Pr[X \le x] = \int_{-\infty}^{x} f(u) du = x^2$ for $x \in [0, 1]$.



This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0,1]. Note that *X* is more likely to be closer to 1 than to 0. One has $Pr[X \le x] = \int_{-\infty}^{x} f(u) du = x^2$ for $x \in [0,1]$. Also, $Pr[X \in (x, x + \varepsilon)] = \int_{x}^{x+\varepsilon} f(u) du$

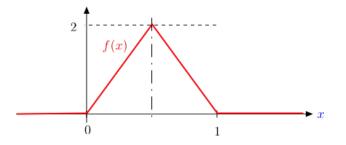


This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0,1]. Note that *X* is more likely to be closer to 1 than to 0. One has $Pr[X \le x] = \int_{-\infty}^{x} f(u) du = x^2$ for $x \in [0,1]$. Also, $Pr[X \in (x, x + \varepsilon)] = \int_{x}^{x+\varepsilon} f(u) du \approx f(x)\varepsilon$.



This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

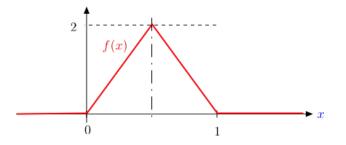
This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.


It defines another way of choosing X at random in [0, 1].

This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

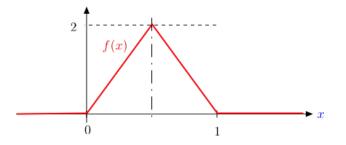


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, $Pr[X \in [0, 1/3]] =$

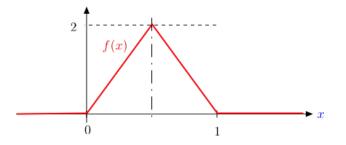


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, $Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx =$

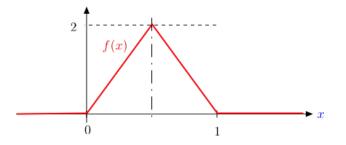


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance,
$$Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$$
.

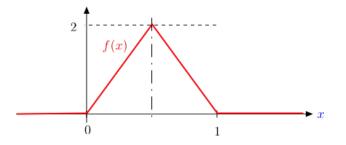


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, $Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$. Thus, $Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$



This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance,
$$Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$$
.
Thus, $Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$ and $Pr[X \in [1/3, 2/3]] =$

This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance,
$$Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$$
.
Thus, $Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$ and $Pr[X \in [1/3, 2/3]] = \frac{5}{9}$.

Let F(x) be a nondecreasing function

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b.

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

 $Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let $f(x) = \frac{d}{dx}F(x)$.

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = rac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] =$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x)$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$

Here, F(x) is called the cumulative distribution function (cdf) of X

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$

Here, F(x) is called the cumulative distribution function (cdf) of X and f(x) is the probability density function (pdf) of X.

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

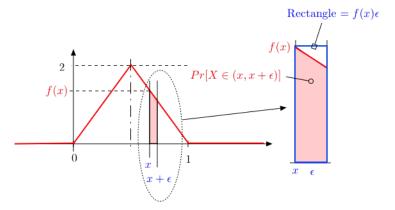
Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$

Here, F(x) is called the cumulative distribution function (cdf) of X and f(x) is the probability density function (pdf) of X.

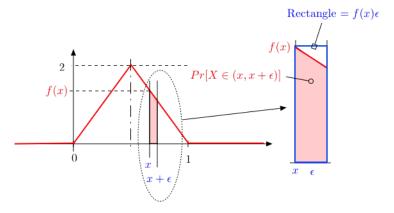
To indicate that F and f correspond to the RV X,

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

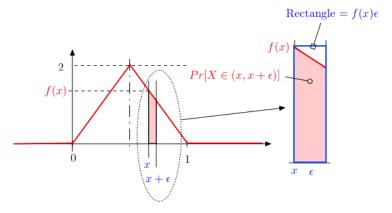

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$

Here, F(x) is called the cumulative distribution function (cdf) of X and f(x) is the probability density function (pdf) of X.


To indicate that *F* and *f* correspond to the RV *X*, we will write them $F_X(x)$ and $f_X(x)$.

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:



An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:

Thus, the pdf is the 'local probability by unit length.'

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:

Thus, the pdf is the 'local probability by unit length.' It is the 'probability density.'

Fix $\varepsilon \ll 1$

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$. Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Fix
$$\varepsilon \ll 1$$
 and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.
Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.
Note that $|X - Y| \le \varepsilon$

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$. Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Note that $|X - Y| \le \varepsilon$ and *Y* is a discrete random variable.

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$. Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$. Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable. Also, if $f_X(x) = \frac{d}{dx}F_X(x)$,

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$. Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$. Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable. Also, if $f_X(x) = \frac{d}{dx}F_X(x)$, then $F_X(x+\varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Fix
$$\varepsilon \ll 1$$
 and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.
Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.
Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.
Also, if $f_X(x) = \frac{d}{dx}F_X(x)$, then $F_X(x+\varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Fix
$$\varepsilon \ll 1$$
 and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.
Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.
Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.
Also, if $f_X(x) = \frac{d}{dx}F_X(x)$, then $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Thus, we can think of *X* of being almost discrete with $Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Fix
$$\varepsilon \ll 1$$
 and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.
Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.
Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.
Also, if $f_X(x) = \frac{d}{dx}F_X(x)$, then $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Thus, we can think of *X* of being almost discrete with $Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Example: CDF

Example: hitting random location on gas tank.

Example: CDF

Example: hitting random location on gas tank. Random location on circle.

Example: CDF

Example: hitting random location on gas tank. Random location on circle.

Random Variable: Y distance from center.

Random Variable: *Y* distance from center. Probability within *y* of center:

Random Variable: *Y* distance from center. Probability within *y* of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$

Random Variable: *Y* distance from center. Probability within *y* of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}} \\ = \frac{\pi y^2}{\pi}$$

Random Variable: *Y* distance from center. Probability within *y* of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$
$$= \frac{\pi y^2}{\pi} = y^2.$$

Hence,

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

Calculation of event with dartboard..

Probability between .5 and .6 of center?

Calculation of event with dartboard..

Probability between .5 and .6 of center? Recall CDF.

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$F_Y(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^2 & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$\begin{aligned} \Pr[0.5 < Y \le 0.6] &= \Pr[Y \le 0.6] - \Pr[Y \le 0.5] \\ &= F_Y(0.6) - F_Y(0.5) \end{aligned}$$

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

= $F_Y(0.6) - F_Y(0.5)$
= $.36 - .25$

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

= F_Y(0.6) - F_Y(0.5)
= .36 - .25
= .11

Example: "Dart" board.

Example: "Dart" board. Recall that

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

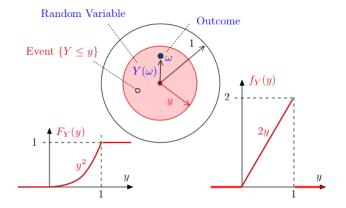
Example: "Dart" board. Recall that

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$
$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} 0 & \text{for } y < 0\\ 2y & \text{for } 0 \le y \le 1\\ 0 & \text{for } y > 1 \end{cases}$$

Example: "Dart" board. Recall that

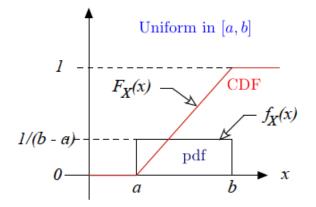
$$F_{Y}(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$
$$f_{Y}(y) = F_{Y}'(y) = \begin{cases} 0 & \text{for } y < 0\\ 2y & \text{for } 0 \le y \le 1\\ 0 & \text{for } y > 1 \end{cases}$$

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information.


Example: "Dart" board. Recall that

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$
$$f_{Y}(y) = F_{Y}'(y) = \begin{cases} 0 & \text{for } y < 0\\ 2y & \text{for } 0 \le y \le 1\\ 0 & \text{for } y > 1 \end{cases}$$

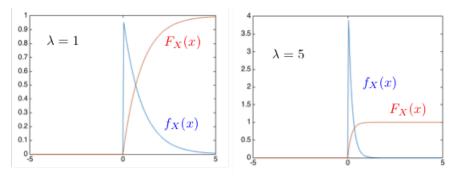
The cumulative distribution function (cdf) and probability distribution function (pdf) give full information. Use whichever is convenient.


Target

Target

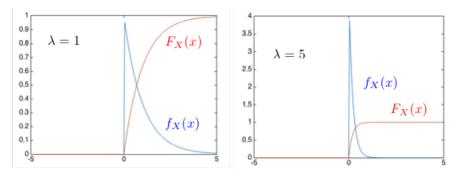
U[*a*,*b*]

U[*a*,*b*]



The exponential distribution with parameter $\lambda > 0$ is defined by

The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$


The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0\\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$$

The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbb{1}\{x \ge 0\}$

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0\\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$$

Note that $Pr[X > t] = e^{-\lambda t}$ for t > 0.

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \le x]$ for all x. Cumulative Distribution Function (cdf).

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \le x]$ for all *x*. **Cumulative Distribution Function (cdf)**. $Pr[a < X \le b] = F_X(b) - F_X(a)$

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \le x]$ for all x. **Cumulative Distribution Function (cdf)**. $Pr[a < X \le b] = F_X(b) - F_X(a)$ 1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \mathfrak{R}$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

2. Or
$$f_X(x)$$
, where $F_X(x) = \int_{-\infty}^{x} f_X(u) du$

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \mathfrak{R}$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

2. Or
$$f_X(x)$$
, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$

Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. **Probability Density Function (pdf).**

Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all *x*.
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.
2. Or f (x), where $F_X(x) = \int_{-\infty}^{\infty} f(x) dx \exp f(x)$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. **Probability Density Function (pdf).** $Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$

Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.
2. Or $f_X(x)$ where $F_X(x) = \int_{-\infty}^{x} f_X(u) du$ or $f_X(x) = \int_{-\infty}^{x} f_X(u) du$

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. **Probability Density Function (pdf).** $Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$ 2.1 $f_X(x) > 0$ for all $x \in \mathfrak{R}$.

Continuous random variable X, specified by

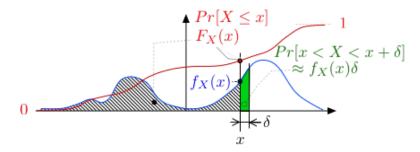
1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

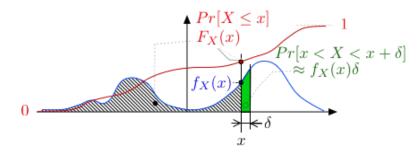
2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. **Probability Density Function (pdf).** $Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$ 2.1 $f_X(x) \ge 0$ for all $x \in \Re$. 2.2 $\int_{-\infty}^{\infty} f_X(x) dx = 1$.

Continuous random variable X, specified by

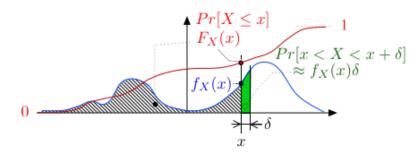
1.
$$F_X(x) = Pr[X \le x]$$
 for all *x*.
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.
2. Or f (x), where $F_X(x) = \int_{-\infty}^{\infty} f(x) dx \exp f(x)$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. **Probability Density Function (pdf).** $Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$ 2.1 $f_X(x) \ge 0$ for all $x \in \mathfrak{R}$. 2.2 $\int_{-\infty}^{\infty} f_X(x) dx = 1$.

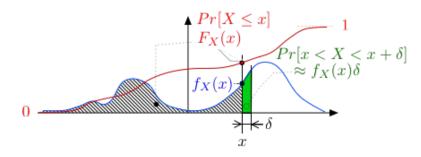

Recall that $Pr[X \in (x, x + \delta)] \approx f_X(x)\delta$.


Continuous random variable X, specified by

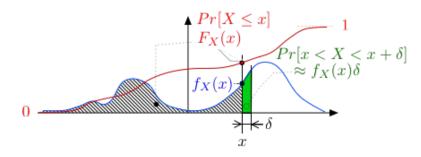
1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.


2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. **Probability Density Function (pdf).** $Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$ 2.1 $f_X(x) \ge 0$ for all $x \in \mathfrak{R}$. 2.2 $\int_{-\infty}^{\infty} f_X(x) dx = 1$.

Recall that $Pr[X \in (x, x + \delta)] \approx f_X(x)\delta$. Think of X taking discrete values $n\delta$ for n = ..., -2, -1, 0, 1, 2, ... with $Pr[X = n\delta] = f_X(n\delta)\delta$.



The pdf $f_X(x)$ is a nonnegative function that integrates to 1.



The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .

The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$

The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$
$$Pr[X \le x] = F_x(x) = \int_{-\infty}^x f_X(u)du$$

Continuous Probability 1

1. pdf:

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.
2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^{x} f_X(y) dy$.

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.
2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^{x} f_X(y) dy$.
3. $U[a, b]$:

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$. 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\};$

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.
2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y)dy$.
3. $U[a,b]$: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$ 4. $Expo(\lambda)$:

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$
- 4. $Expo(\lambda)$: $f_X(x) = \lambda \exp\{-\lambda x\} 1\{x \ge 0\};$

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a}$ for $a \le x \le b$.
- 4. $Expo(\lambda)$: $f_X(x) = \lambda \exp\{-\lambda x\} \mathbb{1}\{x \ge 0\}; F_X(x) = \mathbb{1} - \exp\{-\lambda x\} \text{ for } x \le 0.$

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$
- 4. $Expo(\lambda)$: $f_X(x) = \lambda \exp\{-\lambda x\} \mathbb{1}\{x \ge 0\}; F_X(x) = \mathbb{1} - \exp\{-\lambda x\} \text{ for } x \le 0.$
- 5. Target:

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$
- 4. $Expo(\lambda)$: $f_X(x) = \lambda \exp\{-\lambda x\} \mathbb{1}\{x \ge 0\}; F_X(x) = \mathbb{1} - \exp\{-\lambda x\} \text{ for } x \le 0.$
- 5. Target: $f_X(x) = 2x1\{0 \le x \le 1\};$

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$
- 4. $Expo(\lambda)$: $f_X(x) = \lambda \exp\{-\lambda x\} \mathbb{1}\{x \ge 0\}; F_X(x) = \mathbb{1} - \exp\{-\lambda x\} \text{ for } x \le 0.$
- 5. Target: $f_X(x) = 2x1\{0 \le x \le 1\}; F_X(x) = x^2 \text{ for } 0 \le x \le 1.$