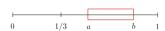
CS70: Jean Walrand: Lecture 34.

Continuous Probability 1

- Examples
- 2. Events
- 3. Continuous Random Variables

Uniformly at Random in [0,1].



Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1,2,\dots,N\}$, we started with $Pr[\omega] = p_\omega$. We then defined $Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$. We used the same approach for countable Ω .

For a continuous space, e.g., $\Omega=[0,1]$, we cannot start with $Pr[\omega]$, because this will typically be 0. Instead, we start with Pr[A] for some events A. Here, we started with A= interval, or union of intervals.

Uniformly at Random in [0,1].

Choose a real number X, uniformly at random in [0,1]. What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any $x \in [0,1]$, one has Pr[X = x] = 0.

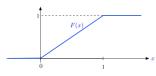
How should we then describe 'choosing uniformly at random in [0,1]'? Here is the way to do it:

$$Pr[X \in [a,b]] = b - a, \forall 0 \le a \le b \le 1.$$

Makes sense: b - a is the fraction of [0, 1] that [a, b] covers.

Uniformly at Random in [0,1].

Note: $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0 and $Pr[X \le x] = 1$ for x > 1. Let us define $F(x) = Pr[X \le x]$.



Then we have $Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a)$. Thus, $F(\cdot)$ specifies the probability of all the events!

Uniformly at Random in [0, 1].

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.**

More generally, events in this space are unions of intervals.

Example: the event A - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus

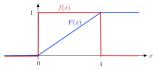
$$Pr[A] = Pr[[0,0.2]] + Pr[[0.8,1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in [0, 1], then

$$Pr[\cup_n A_n] := \sum_n Pr[A_n].$$

Many subsets of [0,1] are of this form. Thus, the probability of those sets is well defined. We call such sets events.

Uniformly at Random in [0,1].



$$Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a).$$

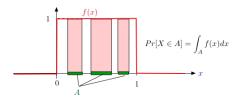
An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

$$F(b) - F(a) = \int_a^b f(x) dx.$$

Thus, the probability of an event is the integral of f(x) over the event:

$$Pr[X \in A] = \int_A f(x) dx.$$

Uniformly at Random in [0,1].

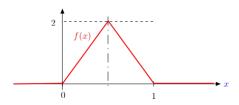


Think of f(x) as describing how one unit of probability is spread over [0,1]: uniformly!

Then $Pr[X \in A]$ is the probability mass over A. Observe:

- ▶ This makes the probability automatically additive.
- ▶ We need $f(x) \ge 0$ and $\int_{-\infty}^{\infty} f(x) dx = 1$.

Another Nonuniform Choice at Random in [0,1].



This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

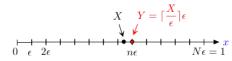
It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance,
$$Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$$
.

Thus,
$$Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$$
 and $Pr[X \in [1/3, 2/3]] = \frac{5}{9}$.

Uniformly at Random in [0,1].



Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

Then $|X - Y| < \varepsilon$ and Y is discrete: $Y \in \{\varepsilon, 2\varepsilon, ..., N\varepsilon\}$.

Also, $Pr[Y = n\varepsilon] = \frac{1}{N}$ for n = 1, ..., N.

Thus, X is 'almost discrete.'

General Random Choice in \Re

Let F(x) be a nondecreasing function with $F(-\infty)=0$ and $F(+\infty)=1$. Define X by $Pr[X \in (a,b]]=F(b)-F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$$

$$= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

$$= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

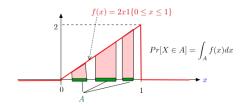
Let $f(x) = \frac{d}{dx}F(x)$. Then,

$$Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$$

Here, F(x) is called the cumulative distribution function (cdf) of X and f(x) is the probability density function (pdf) of X.

To indicate that F and f correspond to the RV X, we will write them $F_X(x)$ and $f_X(x)$.

Nonuniformly at Random in [0,1].



This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0,1].

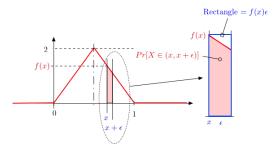
Note that X is more likely to be closer to 1 than to 0.

One has $Pr[X \le x] = \int_{-\infty}^{x} f(u) du = x^2$ for $x \in [0, 1]$.

Also, $Pr[X \in (x, x + \varepsilon)] = \int_{y}^{x+\varepsilon} f(u) du \approx f(x)\varepsilon$.

$Pr[X \in (x, x + \varepsilon)]$

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:



Thus, the pdf is the 'local probability by unit length.' It is the 'probability density.'

Discrete Approximation

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.

Also, if $f_X(x) = \frac{d}{dx} F_X(x)$, then $F_X(x+\varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Thus, we can think of X of being almost discrete with $Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

PDF.

Example: "Dart" board. Recall that

$$F_{Y}(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^{2} & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} 0 & \text{for } y < 0 \\ 2y & \text{for } 0 \le y \le 1 \\ 0 & \text{for } y > 1 \end{cases}$$

$$f_Y(y) = F'_Y(y) = \begin{cases} 0 & \text{for } y < 0 \\ 2y & \text{for } 0 \le y \le 1 \\ 0 & \text{for } y > 1 \end{cases}$$

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information. Use whichever is convenient.

Example: CDF

Example: hitting random location on gas tank. Random location on circle.

Random Variable: Y distance from center. Probability within *y* of center:

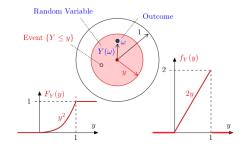
$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$

= $\frac{\pi y^2}{\pi} = y^2$.

Hence.

$$F_Y(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

Target



Calculation of event with dartboard...

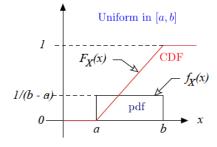
Probability between .5 and .6 of center? Recall CDF.

$$F_Y(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

= $F_Y(0.6) - F_Y(0.5)$
= $.36 - .25$
= $.11$

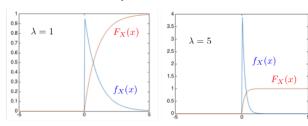
U[a,b]



$Expo(\lambda)$

The exponential distribution with parameter $\lambda>0$ is defined by $f_X(x)=\lambda e^{-\lambda x}\mathbf{1}\{x\geq 0\}$

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$$



Note that $Pr[X > t] = e^{-\lambda t}$ for t > 0.

Summary

Continuous Probability 1

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$; $F_X(x) = \frac{x-a}{b-a}$ for $a \le x \le b$.
- 4. *Expo*(λ):

 $f_X(x) = \lambda \exp\{-\lambda x\} 1\{x \ge 0\}; F_X(x) = 1 - \exp\{-\lambda x\} \text{ for } x \le 0.$

5. Target: $f_X(x) = 2x1\{0 \le x \le 1\}$; $F_X(x) = x^2$ for $0 \le x \le 1$.

Random Variables

Continuous random variable X, specified by

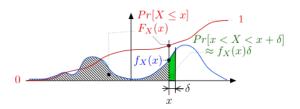
- 1. $F_X(x) = Pr[X \le x]$ for all x. Cumulative Distribution Function (cdf). $Pr[a < X \le b] = F_X(b) - F_X(a)$
- 1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
- 1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

 $2.2 \int_{-\infty}^{\infty} f_X(x) dx = 1.$

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. **Probability Density Function (pdf).** $Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$ 2.1 $f_X(x) \ge 0$ for all $x \in \Re$.

Recall that $Pr[X \in (x, x + \delta)] \approx f_X(x)\delta$. Think of X taking discrete values $n\delta$ for $n = \dots, -2, -1, 0, 1, 2, \dots$ with $Pr[X = n\delta] = f_X(n\delta)\delta$.

A Picture



The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$

$$Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(u) du$$