CS70: Jean Walrand: Lecture 33.

CS70: Jean Walrand: Lecture 33.

CS70: Jean Walrand: Lecture 33.

- 1. Review
- 2. Distribution
- 3. Irreducibility
- 4. Convergence

Markov Chain:

► Finite set X;

Markov Chain:

• Finite set \mathscr{X} ; π_0 ;

Markov Chain:

Finite set \mathscr{X} ; π_0 ; $P = \{P(i,j), i, j \in \mathscr{X}\}$;

- Finite set \mathscr{X} ; π_0 ; $P = \{P(i,j), i, j \in \mathscr{X}\}$;
- $Pr[X_0 = i] = \pi_0(i), i \in \mathscr{X}$

- Finite set \mathscr{X} ; π_0 ; $P = \{P(i,j), i, j \in \mathscr{X}\}$;
- $Pr[X_0 = i] = \pi_0(i), i \in \mathscr{X}$

•
$$Pr[X_{n+1} = j \mid X_0, ..., X_n = i] = P(i,j), i, j \in \mathcal{X}, n \ge 0.$$

Finite set
$$\mathscr{X}$$
; π_0 ; $P = \{P(i,j), i, j \in \mathscr{X}\}$;

• Note:
$$Pr[X_0 = i_0, X_1 = i_1, ..., X_n = i_n] =$$

Finite set
$$\mathscr{X}$$
; π_0 ; $P = \{P(i,j), i, j \in \mathscr{X}\}$;

• Note:

$$Pr[X_0 = i_0, X_1 = i_1, \dots, X_n = i_n] = \pi_0(i_0)P(i_0, i_1)\cdots P(i_{n-1}, i_n).$$

Markov Chain:

Finite set
$$\mathscr{X}$$
; π_0 ; $P = \{P(i,j), i, j \in \mathscr{X}\}$;

• Note:

$$Pr[X_0 = i_0, X_1 = i_1, \dots, X_n = i_n] = \pi_0(i_0)P(i_0, i_1)\cdots P(i_{n-1}, i_n).$$

First Passage Time:

Markov Chain:

Finite set
$$\mathscr{X}$$
; π_0 ; $P = \{P(i,j), i, j \in \mathscr{X}\}$;

• Note:

$$Pr[X_0 = i_0, X_1 = i_1, \dots, X_n = i_n] = \pi_0(i_0)P(i_0, i_1)\cdots P(i_{n-1}, i_n).$$

First Passage Time:

• $A \cap B = \emptyset$;

- Finite set \mathscr{X} ; π_0 ; $P = \{P(i,j), i, j \in \mathscr{X}\}$;
- *Pr*[X₀ = *i*] = π₀(*i*), *i* ∈ *X Pr*[X_{n+1} = *j* | X₀,..., X_n = *i*] = *P*(*i*, *j*), *i*, *j* ∈ *X*, *n* ≥ 0.
- ► Note: $Pr[X_0 = i_0, X_1 = i_1, ..., X_n = i_n] = \pi_0(i_0)P(i_0, i_1) \cdots P(i_{n-1}, i_n).$
- First Passage Time:

•
$$A \cap B = \emptyset; \beta(i) = E[T_A | X_0 = i];$$

- Finite set \mathscr{X} ; π_0 ; $P = \{P(i,j), i, j \in \mathscr{X}\}$;
- *Pr*[X₀ = *i*] = π₀(*i*), *i* ∈ *X Pr*[X_{n+1} = *j* | X₀,..., X_n = *i*] = *P*(*i*, *j*), *i*, *j* ∈ *X*, *n* ≥ 0.
- ► Note: $Pr[X_0 = i_0, X_1 = i_1, ..., X_n = i_n] = \pi_0(i_0)P(i_0, i_1) \cdots P(i_{n-1}, i_n).$
- First Passage Time:

•
$$A \cap B = \emptyset; \beta(i) = E[T_A | X_0 = i]; \alpha(i) = P[T_A < T_B | X_0 = i]$$

- Finite set \mathscr{X} ; π_0 ; $P = \{P(i,j), i, j \in \mathscr{X}\}$;
- ► $Pr[X_0 = i] = \pi_0(i), i \in \mathscr{X}$
- ► $Pr[X_{n+1} = j \mid X_0, \dots, X_n = i] = P(i,j), i, j \in \mathcal{X}, n \ge 0.$
- Note: $Pr[X_0 = i_0, X_1 = i_1, \dots, X_n = i_n] = \pi_0(i_0)P(i_0, i_1)\cdots P(i_{n-1}, i_n).$
- First Passage Time:
 - $A \cap B = \emptyset; \beta(i) = E[T_A | X_0 = i]; \alpha(i) = P[T_A < T_B | X_0 = i]$
 - $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j);$

- Finite set \mathscr{X} ; π_0 ; $P = \{P(i,j), i, j \in \mathscr{X}\}$;
- ► $Pr[X_0 = i] = \pi_0(i), i \in \mathscr{X}$
- $\mathsf{Pr}[X_{n+1}=j \mid X_0,\ldots,X_n=i]=\mathsf{P}(i,j), i,j\in\mathscr{X},n\geq 0.$
- Note: $Pr[X_0 = i_0, X_1 = i_1, \dots, X_n = i_n] = \pi_0(i_0)P(i_0, i_1)\cdots P(i_{n-1}, i_n).$
- First Passage Time:
 - $A \cap B = \emptyset; \beta(i) = E[T_A | X_0 = i]; \alpha(i) = P[T_A < T_B | X_0 = i]$
 - $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j); \alpha(i) = \sum_{j} P(i,j)\alpha(j).$

Let $\pi_m(i) = \Pr[X_m = i], i \in \mathscr{X}.$

Let $\pi_m(i) = \Pr[X_m = i], i \in \mathscr{X}$. Note that

$$Pr[X_{m+1} = j] = \sum_{i} Pr[X_{m+1} = j, X_m = i]$$

$$Pr[X_{m+1} = j] = \sum_{i} Pr[X_{m+1} = j, X_m = i]$$

=
$$\sum_{i} Pr[X_m = i] Pr[X_{m+1} = j \mid X_m = i]$$

$$Pr[X_{m+1} = j] = \sum_{i} Pr[X_{m+1} = j, X_m = i]$$

=
$$\sum_{i} Pr[X_m = i] Pr[X_{m+1} = j | X_m = i]$$

=
$$\sum_{i} \pi_m(i) P(i, j).$$

Hence,

$$\begin{aligned}
& = \sum_{i} Pr[X_{m+1} = j, X_{m} = i] \\
& = \sum_{i} Pr[X_{m} = i] Pr[X_{m+1} = j \mid X_{m} = i] \\
& = \sum_{i} \pi_{m}(i)P(i,j). \\
& \pi_{m+1}(j) = \sum_{i} \pi_{m}(i)P(i,j), \forall j \in \mathscr{X}.
\end{aligned}$$

With π_m, π_{m+1} as a row vectors, these identities are written as $\pi_{m+1} = \pi_m P$.

Distribution of X_n

Hence.

$$\pi_{m+1}(j) = \sum_{i}^{\overline{i}} \pi_m(i) P(i,j), \forall j \in \mathscr{X}.$$

With π_m, π_{m+1} as a row vectors, these identities are written as $\pi_{m+1} = \pi_m P$. Thus, $\pi_1 = \pi_0 P$,

Hence,

$$\pi_{m+1}(j) = \sum_{i}^{i} \pi_m(i) \mathcal{P}(i,j), \forall j \in \mathscr{X}.$$

With π_m, π_{m+1} as a row vectors, these identities are written as $\pi_{m+1} = \pi_m P$. Thus, $\pi_1 = \pi_0 P, \pi_2 = \pi_1 P$

Hence,

$$\pi_{m+1}(j) = \sum_{i}^{i} \pi_m(i) \mathcal{P}(i,j), \forall j \in \mathscr{X}.$$

With π_m, π_{m+1} as a row vectors, these identities are written as $\pi_{m+1} = \pi_m P$. Thus, $\pi_1 = \pi_0 P$, $\pi_2 = \pi_1 P = \pi_0 P P = \pi_0 P^2, \dots$

Hence,

 $= \sum_{i} \pi_m(i) P(i,j).$ $\pi_{m+1}(j) = \sum_{i} \pi_m(i) P(i,j), \forall j \in \mathscr{X}.$

With π_m, π_{m+1} as a row vectors, these identities are written as $\pi_{m+1} = \pi_m P$. Thus, $\pi_1 = \pi_0 P, \pi_2 = \pi_1 P = \pi_0 P P = \pi_0 P^2, \dots$ Hence, $\pi_n = \pi_0 P^n, n \ge 0.$

As *m* increases, π_m converges to a vector that does not depend on π_0 .

As *m* increases, π_m converges to a vector that depends on π_0 (obviously, since $\pi_m(1) = \pi_0(1), \forall m$).

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$.

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof:

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof: $\pi_n = \pi_0 P^n$,

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof: $\pi_n = \pi_0 P^n$, so that $\pi_n = \pi_0$, $\forall n$ iff $\pi_0 P = \pi_0$.

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof: $\pi_n = \pi_0 P^n$, so that $\pi_n = \pi_0$, $\forall n$ iff $\pi_0 P = \pi_0$.

Thus, if π_0 is invariant, the distribution of X_n is always the same as that of X_0 .

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof: $\pi_n = \pi_0 P^n$, so that $\pi_n = \pi_0$, $\forall n$ iff $\pi_0 P = \pi_0$.

Thus, if π_0 is invariant, the distribution of X_n is always the same as that of X_0 .

Of course, this does not mean that X_n does not move.

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof: $\pi_n = \pi_0 P^n$, so that $\pi_n = \pi_0$, $\forall n$ iff $\pi_0 P = \pi_0$.

Thus, if π_0 is invariant, the distribution of X_n is always the same as that of X_0 .

Of course, this does not mean that X_n does not move. It means that the probability that it leaves a state *i* is equal to the probability that it enters state *i*.

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof: $\pi_n = \pi_0 P^n$, so that $\pi_n = \pi_0$, $\forall n$ iff $\pi_0 P = \pi_0$.

Thus, if π_0 is invariant, the distribution of X_n is always the same as that of X_0 .

Of course, this does not mean that X_n does not move. It means that the probability that it leaves a state *i* is equal to the probability that it enters state *i*.

The balance equations say that

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof: $\pi_n = \pi_0 P^n$, so that $\pi_n = \pi_0$, $\forall n$ iff $\pi_0 P = \pi_0$.

Thus, if π_0 is invariant, the distribution of X_n is always the same as that of X_0 .

Of course, this does not mean that X_n does not move. It means that the probability that it leaves a state *i* is equal to the probability that it enters state *i*.

The balance equations say that $\sum_{i} \pi(j) P(j, i) = \pi(i)$.

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof: $\pi_n = \pi_0 P^n$, so that $\pi_n = \pi_0$, $\forall n$ iff $\pi_0 P = \pi_0$.

Thus, if π_0 is invariant, the distribution of X_n is always the same as that of X_0 .

Of course, this does not mean that X_n does not move. It means that the probability that it leaves a state *i* is equal to the probability that it enters state *i*.

The balance equations say that $\sum_{j} \pi(j) P(j, i) = \pi(i)$. That is,

$$\sum_{j\neq i}\pi(j)P(j,i)=\pi(i)(1-P(i,i))$$

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof: $\pi_n = \pi_0 P^n$, so that $\pi_n = \pi_0$, $\forall n$ iff $\pi_0 P = \pi_0$.

Thus, if π_0 is invariant, the distribution of X_n is always the same as that of X_0 .

Of course, this does not mean that X_n does not move. It means that the probability that it leaves a state *i* is equal to the probability that it enters state *i*.

The balance equations say that $\sum_{j} \pi(j) P(j, i) = \pi(i)$. That is,

$$\sum_{j\neq i} \pi(j) P(j,i) = \pi(i) (1 - P(i,i)) = \pi(i) \sum_{j\neq i} P(i,j).$$

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof: $\pi_n = \pi_0 P^n$, so that $\pi_n = \pi_0$, $\forall n$ iff $\pi_0 P = \pi_0$.

Thus, if π_0 is invariant, the distribution of X_n is always the same as that of X_0 .

Of course, this does not mean that X_n does not move. It means that the probability that it leaves a state *i* is equal to the probability that it enters state *i*.

The balance equations say that $\sum_{j} \pi(j) P(j, i) = \pi(i)$. That is,

$$\sum_{j\neq i} \pi(j) P(j,i) = \pi(i) (1 - P(i,i)) = \pi(i) \sum_{j\neq i} P(i,j).$$

Thus, Pr[enter i] = Pr[leave i].

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

 $\pi P = \pi$

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \left[\begin{array}{cc} 1-a & a \\ b & 1-b \end{array} \right] = [\pi(1), \pi(2)]$$

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]$$
$$\Leftrightarrow \quad \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and}$$

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]$$
$$\Leftrightarrow \quad \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2)$$

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]$$
$$\Leftrightarrow \quad \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2)$$
$$\Leftrightarrow \quad \pi(1)a = \pi(2)b.$$

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]$$
$$\Leftrightarrow \quad \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2)$$
$$\Leftrightarrow \quad \pi(1)a = \pi(2)b.$$

These equations are redundant!

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]$$
$$\Leftrightarrow \quad \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2)$$
$$\Leftrightarrow \quad \pi(1)a = \pi(2)b.$$

These equations are redundant! We have to add an equation:

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]$$
$$\Leftrightarrow \quad \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2)$$
$$\Leftrightarrow \quad \pi(1)a = \pi(2)b.$$

These equations are redundant! We have to add an equation: $\pi(1) + \pi(2) = 1$.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]$$
$$\Leftrightarrow \quad \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2)$$
$$\Leftrightarrow \quad \pi(1)a = \pi(2)b.$$

These equations are redundant! We have to add an equation: $\pi(1) + \pi(2) = 1$. Then we find

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]$$
$$\Leftrightarrow \quad \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2)$$
$$\Leftrightarrow \quad \pi(1)a = \pi(2)b.$$

These equations are redundant! We have to add an equation: $\pi(1) + \pi(2) = 1$. Then we find

$$\pi = [\frac{b}{a+b}, \frac{a}{a+b}].$$
$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations. **Example 2:**

$$1 \qquad \qquad 2 \qquad 1 \qquad \qquad P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\pi P = \pi$

$$1 \qquad \qquad 2 \qquad 1 \qquad \qquad P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\pi P = \pi \Leftrightarrow [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)]$$

$$1 \qquad \qquad 1 \qquad \qquad 2 \qquad 1 \qquad \qquad P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\pi P = \pi \Leftrightarrow [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \Leftrightarrow \pi(1) = \pi(1) \text{ and}$$

$$1 \qquad \qquad 2 \qquad 1 \qquad \qquad P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\pi P = \pi \Leftrightarrow [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \Leftrightarrow \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2).$$

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations. **Example 2:**

$$\pi P = \pi \Leftrightarrow [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \Leftrightarrow \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2).$$

Every distribution is invariant for this Markov chain.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations. **Example 2:**

$$1 \qquad \qquad 2 \qquad 1 \qquad \qquad P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\pi P = \pi \Leftrightarrow [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \Leftrightarrow \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2).$$

Every distribution is invariant for this Markov chain. This is obvious, since $X_n = X_0$ for all *n*.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations. **Example 2:**

$$\pi P = \pi \Leftrightarrow [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \Leftrightarrow \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2).$$

Every distribution is invariant for this Markov chain. This is obvious, since $X_n = X_0$ for all *n*. Hence, $Pr[X_n = i] = Pr[X_0 = i], \forall (i, n)$.

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j*

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

[A] is

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

[A] is not irreducible.

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).[B] is

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).[B] is not irreducible.

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).[B] is not irreducible. It cannot go from (2) to (1).

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).[B] is not irreducible. It cannot go from (2) to (1).[C] is

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).[B] is not irreducible. It cannot go from (2) to (1).[C] is irreducible.

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).[B] is not irreducible. It cannot go from (2) to (1).[C] is irreducible. It can go from every *i* to every *j*.

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).[B] is not irreducible. It cannot go from (2) to (1).[C] is irreducible. It can go from every *i* to every *j*.

If you consider the graph with arrows when P(i,j) > 0,

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).[B] is not irreducible. It cannot go from (2) to (1).[C] is irreducible. It can go from every *i* to every *j*.

If you consider the graph with arrows when P(i,j) > 0, irreducible means that there is a single connected component.

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof:

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof: See EE126,

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof: See EE126, or lecture note 24.

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.) **Note:**

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)

Note: We know already that some irreducible Markov chains have multiple invariant distributions.

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)

Note: We know already that some irreducible Markov chains have multiple invariant distributions.

Fact:

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)

Note: We know already that some irreducible Markov chains have multiple invariant distributions.

Fact: If a Markov chain has two different invariant distributions π and v,

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)

Note: We know already that some irreducible Markov chains have multiple invariant distributions.

Fact: If a Markov chain has two different invariant distributions π and v, then it has infinitely many invariant distributions.
Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)

Note: We know already that some irreducible Markov chains have multiple invariant distributions.

Fact: If a Markov chain has two different invariant distributions π and v, then it has infinitely many invariant distributions. Indeed, $p\pi + (1-p)v$ is then invariant since

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)

Note: We know already that some irreducible Markov chains have multiple invariant distributions.

Fact: If a Markov chain has two different invariant distributions π and v, then it has infinitely many invariant distributions. Indeed, $p\pi + (1-p)v$ is then invariant since

$$[p\pi + (1-p)v]P = p\pi P + (1-p)vP = p\pi + (1-p)v.$$

Theorem Let X_n be an irreducible Markov chain with invariant distribution π .

Theorem Let X_n be an irreducible Markov chain with invariant distribution π .

Then, for all *i*,

$$\frac{1}{n}\sum_{m=0}^{n-1}\mathbf{1}\{X_m=i\}\to \pi(i), \text{ as } n\to\infty.$$

Theorem Let X_n be an irreducible Markov chain with invariant distribution π .

Then, for all *i*,

$$\frac{1}{n}\sum_{m=0}^{n-1}\mathbf{1}\{X_m=i\}\to \pi(i), \text{ as } n\to\infty.$$

The left-hand side is the fraction of time that $X_m = i$ during steps 0, 1, ..., n-1.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π .

Then, for all *i*,

$$\frac{1}{n}\sum_{m=0}^{n-1} \mathbb{1}\{X_m = i\} \to \pi(i), \text{ as } n \to \infty.$$

The left-hand side is the fraction of time that $X_m = i$ during steps 0, 1, ..., n-1. Thus, this fraction of time approaches $\pi(i)$.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π .

Then, for all *i*,

$$\frac{1}{n}\sum_{m=0}^{n-1} \mathbb{1}\{X_m = i\} \to \pi(i), \text{ as } n \to \infty.$$

The left-hand side is the fraction of time that $X_m = i$ during steps 0, 1, ..., n-1. Thus, this fraction of time approaches $\pi(i)$. **Proof:** See EE126.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π .

Then, for all *i*,

$$\frac{1}{n}\sum_{m=0}^{n-1}\mathbf{1}\{X_m=i\}\to \pi(i), \text{ as } n\to\infty.$$

The left-hand side is the fraction of time that $X_m = i$ during steps 0, 1, ..., n-1. Thus, this fraction of time approaches $\pi(i)$.

Proof: See EE126. Lecture note 24 gives a plausibility argument.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$. **Example 1:**

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$. **Example 1:**

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$. **Example 1:**

The fraction of time in state 1

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$. **Example 1:**

The fraction of time in state 1 converges to 1/2,

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$. **Example 1:**

The fraction of time in state 1 converges to 1/2, which is $\pi(1)$.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$. **Example 2:**

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$. **Example 2:**

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$. **Example 2:**

Question: Assume that the MC is irreducible.

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Assume $X_0 = 1$.

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Assume $X_0 = 1$. Then $X_1 = 2$,

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1$,

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, ...$

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, ...$ Thus, if $\pi_0 = [1, 0]$,

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, ...$ Thus, if $\pi_0 = [1,0], \pi_1 = [0,1],$

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, ...$ Thus, if $\pi_0 = [1,0], \pi_1 = [0,1], \pi_2 = [1,0],$

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, ...$ Thus, if $\pi_0 = [1,0], \pi_1 = [0,1], \pi_2 = [1,0], \pi_3 = [0,1]$, etc.

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, ...$ Thus, if $\pi_0 = [1,0], \pi_1 = [0,1], \pi_2 = [1,0], \pi_3 = [0,1]$, etc. Hence, π_n does not converge to $\pi = [1/2, 1/2]$.

Periodicity

Periodicity

Theorem Assume that the MC is irreducible.
Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24. **Definition**

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Definition If d(i) = 1, the Markov chain is said to be aperiodic.

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24. **Definition** If d(i) = 1, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period d(i).

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24. **Definition** If d(i) = 1, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period d(i). **Example**

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid \Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Definition If d(i) = 1, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period d(i). **Example**

[A]:

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Definition If d(i) = 1, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period d(i). **Example**

[A]: $\{n > 0 \mid Pr[X_n = 1 | X_0 = 1] > 0\} = \{3, 6, 7, 9, 11, \ldots\} \Rightarrow d(1) = 1.$

Theorem Assume that the MC is irreducible. Then

[A]

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Definition If d(i) = 1, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period d(i). **Example**

[A]: $\{n > 0 \mid Pr[X_n = 1 \mid X_0 = 1] > 0\} = \{3, 6, 7, 9, 11, ...\} \Rightarrow d(1) = 1.$ $\{n > 0 \mid Pr[X_n = 2 \mid X_0 = 2] > 0\}$

[B]

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states i.

Proof: See Lecture notes 24.

Definition If d(i) = 1, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period d(i). Example

[A] $[A]: \{n > 0 \mid \Pr[X_n = 1 \mid X_0 = 1] > 0\} = \{3, 6, 7, 9, 11, \ldots\} \Rightarrow d(1) = 1.$ $\{n > 0 \mid Pr[X_n = 2 \mid X_0 = 2] > 0\} = \{3, 4, \ldots\}$

[B]

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Definition If d(i) = 1, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period d(i). **Example**

[A] [B] [A]: $\{n > 0 \mid Pr[X_n = 1 \mid X_0 = 1] > 0\} = \{3, 6, 7, 9, 11, ...\} \Rightarrow d(1) = 1.$ $\{n > 0 \mid Pr[X_n = 2 \mid X_0 = 2] > 0\} = \{3, 4, ...\} \Rightarrow d(2) = 1.$

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Definition If d(i) = 1, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period d(i). **Example**

[A]: $\{n > 0 \mid Pr[X_n = 1 \mid X_0 = 1] > 0\} = \{3, 6, 7, 9, 11, ...\} \Rightarrow d(1) = 1.$ $\{n > 0 \mid Pr[X_n = 2 \mid X_0 = 2] > 0\} = \{3, 4, ...\} \Rightarrow d(2) = 1.$

[B]:

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Theorem Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

has the same value for all states *i*.

Proof: See Lecture notes 24.

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π .

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,

 $\pi_n(i) \to \pi(i)$, as $n \to \infty$.

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,

 $\pi_n(i) \to \pi(i)$, as $n \to \infty$.

Proof

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,

 $\pi_n(i) \to \pi(i)$, as $n \to \infty$.

Proof See EE126, or Lecture notes 24.

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,

 $\pi_n(i) \to \pi(i)$, as $n \to \infty$.

Proof See EE126, or Lecture notes 24.

Example

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π .

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,

 $\pi_n(i) \to \pi(i)$, as $n \to \infty$.

Proof See EE126, or Lecture notes 24. **Example**

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π .

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,

$$\pi_n(i) o \pi(i), ext{ as } n o \infty.$$

Proof See EE126, or Lecture notes 24. **Example**

Let *P* be irreducible. How do we find π ?

Let *P* be irreducible. How do we find π ?

Example:
$$P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$
.

Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.

One has $\pi P = \pi$, i.e.,

Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$. One has $\pi P = \pi$, i.e., $\pi [P - I] = \mathbf{0}$
Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.

One has $\pi P = \pi$, i.e., $\pi [P - I] = \mathbf{0}$ where *I* is the identity matrix:

Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.

One has $\pi P = \pi$, i.e., $\pi [P - I] = \mathbf{0}$ where *I* is the identity matrix:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 0 \\ 0 & 0.3 - 1 & 0.7 \\ 0.6 & 0.4 & 0 - 1 \end{bmatrix} = [0, 0, 0].$$

Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.

One has $\pi P = \pi$, i.e., $\pi [P - I] = \mathbf{0}$ where *I* is the identity matrix:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 0 \\ 0 & 0.3 - 1 & 0.7 \\ 0.6 & 0.4 & 0 - 1 \end{bmatrix} = [0, 0, 0].$$

However, the sum of the columns of P - I is **0**.

Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.

One has $\pi P = \pi$, i.e., $\pi [P - I] = \mathbf{0}$ where *I* is the identity matrix:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 0 \\ 0 & 0.3 - 1 & 0.7 \\ 0.6 & 0.4 & 0 - 1 \end{bmatrix} = [0, 0, 0].$$

However, the sum of the columns of P - I is **0**. This shows that these equations are redundant:

Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.

One has $\pi P = \pi$, i.e., $\pi [P - I] = \mathbf{0}$ where *I* is the identity matrix:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 0 \\ 0 & 0.3 - 1 & 0.7 \\ 0.6 & 0.4 & 0 - 1 \end{bmatrix} = [0, 0, 0].$$

However, the sum of the columns of P - I is **0**. This shows that these equations are redundant: If all but the last one hold, so does the last one.

Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.

One has $\pi P = \pi$, i.e., $\pi [P - I] = \mathbf{0}$ where *I* is the identity matrix:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 0 \\ 0 & 0.3 - 1 & 0.7 \\ 0.6 & 0.4 & 0 - 1 \end{bmatrix} = [0, 0, 0].$$

However, the sum of the columns of P - I is **0**. This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi \mathbf{1} = 1$, i.e.,

Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.

One has $\pi P = \pi$, i.e., $\pi [P - I] = \mathbf{0}$ where *I* is the identity matrix:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 0 \\ 0 & 0.3 - 1 & 0.7 \\ 0.6 & 0.4 & 0 - 1 \end{bmatrix} = [0, 0, 0].$$

However, the sum of the columns of P - I is **0**. This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi \mathbf{1} = 1$, i.e., $\sum_{i} \pi(j) = 1$:

Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.

One has $\pi P = \pi$, i.e., $\pi [P - I] = \mathbf{0}$ where *I* is the identity matrix:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 0 \\ 0 & 0.3 - 1 & 0.7 \\ 0.6 & 0.4 & 0 - 1 \end{bmatrix} = [0, 0, 0].$$

However, the sum of the columns of P - I is **0**. This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi \mathbf{1} = 1$, i.e., $\sum_{i} \pi(j) = 1$:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{bmatrix} = [0, 0, 1].$$

Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.

One has $\pi P = \pi$, i.e., $\pi [P - I] = \mathbf{0}$ where *I* is the identity matrix:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 0 \\ 0 & 0.3 - 1 & 0.7 \\ 0.6 & 0.4 & 0 - 1 \end{bmatrix} = [0, 0, 0].$$

However, the sum of the columns of P - I is **0**. This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi \mathbf{1} = 1$, i.e., $\sum_{i} \pi(j) = 1$:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{bmatrix} = [0, 0, 1].$$

Hence,

$$\pi = \begin{bmatrix} 0, 0, 1 \end{bmatrix} \begin{bmatrix} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{bmatrix}^{-1}$$

Let *P* be irreducible. How do we find π ?

Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.

One has $\pi P = \pi$, i.e., $\pi [P - I] = \mathbf{0}$ where *I* is the identity matrix:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 0 \\ 0 & 0.3 - 1 & 0.7 \\ 0.6 & 0.4 & 0 - 1 \end{bmatrix} = [0, 0, 0].$$

However, the sum of the columns of P - I is **0**. This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi \mathbf{1} = 1$, i.e., $\sum_{i} \pi(j) = 1$:

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{bmatrix} = [0, 0, 1].$$

Hence,

$$\pi = \begin{bmatrix} 0, 0, 1 \end{bmatrix} \begin{bmatrix} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{bmatrix}^{-1} \approx \begin{bmatrix} 0.55, 0.26, 0.19 \end{bmatrix}$$

• Markov Chain: $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$

- Markov Chain: $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$
- FSE: $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j);$

- Markov Chain: $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$
- ► FSE: $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j); \alpha(i) = \sum_{j} P(i,j)\alpha(j).$

- Markov Chain: $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$
- ► FSE: $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j); \alpha(i) = \sum_{j} P(i,j)\alpha(j).$

$$\blacktriangleright \pi_n = \pi_0 P^n$$

- Markov Chain: $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$
- ► FSE: $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j); \alpha(i) = \sum_{j} P(i,j)\alpha(j).$
- $\pi_n = \pi_0 P^n$
- π is invariant iff $\pi P = \pi$

- Markov Chain: $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$
- ► FSE: $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j); \alpha(i) = \sum_{j} P(i,j)\alpha(j).$
- $\blacktriangleright \pi_n = \pi_0 P^n$
- π is invariant iff $\pi P = \pi$
- Irreducible \Rightarrow one and only one invariant distribution π

- Markov Chain: $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$
- ► FSE: $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j); \alpha(i) = \sum_{j} P(i,j)\alpha(j).$
- $\blacktriangleright \pi_n = \pi_0 P^n$
- π is invariant iff $\pi P = \pi$
- Irreducible \Rightarrow one and only one invariant distribution π
- ► Irreducible \Rightarrow fraction of time in state *i* approaches $\pi(i)$

- Markov Chain: $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$
- ► FSE: $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j); \alpha(i) = \sum_{j} P(i,j)\alpha(j).$
- $\blacktriangleright \pi_n = \pi_0 P^n$
- π is invariant iff $\pi P = \pi$
- Irreducible \Rightarrow one and only one invariant distribution π
- ► Irreducible \Rightarrow fraction of time in state *i* approaches $\pi(i)$
- Irreducible + Aperiodic $\Rightarrow \pi_n \rightarrow \pi$.

- Markov Chain: $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$
- ► FSE: $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j); \alpha(i) = \sum_{j} P(i,j)\alpha(j).$
- $\blacktriangleright \pi_n = \pi_0 P^n$
- π is invariant iff $\pi P = \pi$
- Irreducible \Rightarrow one and only one invariant distribution π
- ► Irreducible \Rightarrow fraction of time in state *i* approaches $\pi(i)$
- Irreducible + Aperiodic $\Rightarrow \pi_n \rightarrow \pi$.
- Calculating π : One finds $\pi = [0, 0, ..., 1]Q^{-1}$ where $Q = \cdots$.