CS70: Jean Walrand: Lecture 33.

Markov Chains 2

CS70: Jean Walrand: Lecture 33.

Markov Chains 2

CS70: Jean Walrand: Lecture 33.

Markov Chains 2

1. Review
2. Distribution
3. Irreducibility
4. Convergence

Review

Review

- Markov Chain:

Review

- Markov Chain:
- Finite set \mathscr{X};

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0}$;

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0} ; P=\{P(i, j), i, j \in \mathscr{X}\} ;$

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0} ; P=\{P(i, j), i, j \in \mathscr{X}\}$;
- $\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X}$

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0} ; P=\{P(i, j), i, j \in \mathscr{X}\} ;$
- $\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X}$
- $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}, n \geq 0$.

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0} ; P=\{P(i, j), i, j \in \mathscr{X}\} ;$
- $\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X}$
- $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}, n \geq 0$.
- Note:

$$
\operatorname{Pr}\left[X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right]=
$$

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0} ; P=\{P(i, j), i, j \in \mathscr{X}\} ;$
- $\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X}$
- $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}, n \geq 0$.
- Note:

$$
\operatorname{Pr}\left[X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right]=\pi_{0}\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \cdots P\left(i_{n-1}, i_{n}\right) .
$$

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0} ; P=\{P(i, j), i, j \in \mathscr{X}\} ;$
- $\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X}$
- $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}, n \geq 0$.
- Note:
$\operatorname{Pr}\left[X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right]=\pi_{0}\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \cdots P\left(i_{n-1}, i_{n}\right)$.
- First Passage Time:

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0} ; P=\{P(i, j), i, j \in \mathscr{X}\} ;$
- $\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X}$
- $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}, n \geq 0$.
- Note:
$\operatorname{Pr}\left[X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right]=\pi_{0}\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \cdots P\left(i_{n-1}, i_{n}\right)$.
- First Passage Time:
- $A \cap B=\emptyset$;

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0} ; P=\{P(i, j), i, j \in \mathscr{X}\} ;$
- $\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X}$
- $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}, n \geq 0$.
- Note:
$\operatorname{Pr}\left[X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right]=\pi_{0}\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \cdots P\left(i_{n-1}, i_{n}\right)$.
- First Passage Time:
- $A \cap B=\emptyset ; \beta(i)=E\left[T_{A} \mid X_{0}=i\right] ;$

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0} ; P=\{P(i, j), i, j \in \mathscr{X}\} ;$
- $\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X}$
- $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}, n \geq 0$.
- Note:

$$
\operatorname{Pr}\left[X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right]=\pi_{0}\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \cdots P\left(i_{n-1}, i_{n}\right) .
$$

- First Passage Time:
- $A \cap B=\emptyset ; \beta(i)=E\left[T_{A} \mid X_{0}=i\right] ; \alpha(i)=P\left[T_{A}<T_{B} \mid X_{0}=i\right]$

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0} ; P=\{P(i, j), i, j \in \mathscr{X}\} ;$
- $\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X}$
- $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}, n \geq 0$.
- Note:

$$
\operatorname{Pr}\left[X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right]=\pi_{0}\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \cdots P\left(i_{n-1}, i_{n}\right) .
$$

- First Passage Time:
- $A \cap B=\emptyset ; \beta(i)=E\left[T_{A} \mid X_{0}=i\right] ; \alpha(i)=P\left[T_{A}<T_{B} \mid X_{0}=i\right]$
- $\beta(i)=1+\sum_{j} P(i, j) \beta(j)$;

Review

- Markov Chain:
- Finite set $\mathscr{X} ; \pi_{0} ; P=\{P(i, j), i, j \in \mathscr{X}\} ;$
- $\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X}$
- $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}, n \geq 0$.
- Note:

$$
\operatorname{Pr}\left[X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right]=\pi_{0}\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \cdots P\left(i_{n-1}, i_{n}\right) .
$$

- First Passage Time:
- $A \cap B=\emptyset ; \beta(i)=E\left[T_{A} \mid X_{0}=i\right] ; \alpha(i)=P\left[T_{A}<T_{B} \mid X_{0}=i\right]$
- $\beta(i)=1+\sum_{j} P(i, j) \beta(j) ; \alpha(i)=\sum_{j} P(i, j) \alpha(j)$.

Distribution of X_{n}

Distribution of X_{n}

Distribution of X_{n}

Let $\pi_{m}(i)=\operatorname{Pr}\left[X_{m}=i\right], i \in \mathscr{X}$.

Distribution of X_{n}

Let $\pi_{m}(i)=\operatorname{Pr}\left[X_{m}=i\right], i \in \mathscr{X}$. Note that

Distribution of X_{n}

Let $\pi_{m}(i)=\operatorname{Pr}\left[X_{m}=i\right], i \in \mathscr{X}$. Note that

$$
\operatorname{Pr}\left[X_{m+1}=j\right]=\sum_{i} \operatorname{Pr}\left[X_{m+1}=j, X_{m}=i\right]
$$

Distribution of X_{n}

Let $\pi_{m}(i)=\operatorname{Pr}\left[X_{m}=i\right], i \in \mathscr{X}$. Note that

$$
\begin{aligned}
\operatorname{Pr}\left[X_{m+1}=j\right] & =\sum_{i} \operatorname{Pr}\left[X_{m+1}=j, X_{m}=i\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{m}=i\right] \operatorname{Pr}\left[X_{m+1}=j \mid X_{m}=i\right]
\end{aligned}
$$

Distribution of X_{n}

Let $\pi_{m}(i)=\operatorname{Pr}\left[X_{m}=i\right], i \in \mathscr{X}$. Note that

$$
\begin{aligned}
\operatorname{Pr}\left[X_{m+1}=j\right] & =\sum_{i} \operatorname{Pr}\left[X_{m+1}=j, X_{m}=i\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{m}=i\right] \operatorname{Pr}\left[X_{m+1}=j \mid X_{m}=i\right] \\
& =\sum_{i} \pi_{m}(i) P(i, j) .
\end{aligned}
$$

Distribution of X_{n}

Let $\pi_{m}(i)=\operatorname{Pr}\left[X_{m}=i\right], i \in \mathscr{X}$. Note that

Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[X_{m+1}=j\right] & =\sum_{i} \operatorname{Pr}\left[X_{m+1}=j, X_{m}=i\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{m}=i\right] \operatorname{Pr}\left[X_{m+1}=j \mid X_{m}=i\right] \\
& =\sum_{i} \pi_{m}(i) P(i, j) .
\end{aligned}
$$

$$
\pi_{m+1}(j)=\sum_{i} \pi_{m}(i) P(i, j), \forall j \in \mathscr{X} .
$$

Distribution of X_{n}

Let $\pi_{m}(i)=\operatorname{Pr}\left[X_{m}=i\right], i \in \mathscr{X}$. Note that

Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[X_{m+1}=j\right] & =\sum_{i} \operatorname{Pr}\left[X_{m+1}=j, X_{m}=i\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{m}=i\right] \operatorname{Pr}\left[X_{m+1}=j \mid X_{m}=i\right] \\
& =\sum_{i} \pi_{m}(i) P(i, j)
\end{aligned}
$$

$$
\pi_{m+1}(j)=\sum_{i} \pi_{m}(i) P(i, j), \forall j \in \mathscr{X} .
$$

With π_{m}, π_{m+1} as a row vectors, these identities are written as $\pi_{m+1}=\pi_{m} P$.

Distribution of X_{n}

Let $\pi_{m}(i)=\operatorname{Pr}\left[X_{m}=i\right], i \in \mathscr{X}$. Note that

Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[X_{m+1}=j\right] & =\sum_{i} \operatorname{Pr}\left[X_{m+1}=j, X_{m}=i\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{m}=i\right] \operatorname{Pr}\left[X_{m+1}=j \mid X_{m}=i\right] \\
& =\sum_{i} \pi_{m}(i) P(i, j) .
\end{aligned}
$$

$$
\pi_{m+1}(j)=\sum_{i} \pi_{m}(i) P(i, j), \forall j \in \mathscr{X} .
$$

With π_{m}, π_{m+1} as a row vectors, these identities are written as $\pi_{m+1}=\pi_{m} P$.
Thus, $\pi_{1}=\pi_{0} P$,

Distribution of X_{n}

Let $\pi_{m}(i)=\operatorname{Pr}\left[X_{m}=i\right], i \in \mathscr{X}$. Note that

Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[X_{m+1}=j\right] & =\sum_{i} \operatorname{Pr}\left[X_{m+1}=j, X_{m}=i\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{m}=i\right] \operatorname{Pr}\left[X_{m+1}=j \mid X_{m}=i\right] \\
& =\sum_{i} \pi_{m}(i) P(i, j) .
\end{aligned}
$$

$$
\pi_{m+1}(j)=\sum_{i} \pi_{m}(i) P(i, j), \forall j \in \mathscr{X} .
$$

With π_{m}, π_{m+1} as a row vectors, these identities are written as $\pi_{m+1}=\pi_{m} P$.
Thus, $\pi_{1}=\pi_{0} P, \pi_{2}=\pi_{1} P$

Distribution of X_{n}

Let $\pi_{m}(i)=\operatorname{Pr}\left[X_{m}=i\right], i \in \mathscr{X}$. Note that

Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[X_{m+1}=j\right] & =\sum_{i} \operatorname{Pr}\left[X_{m+1}=j, X_{m}=i\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{m}=i\right] \operatorname{Pr}\left[X_{m+1}=j \mid X_{m}=i\right] \\
& =\sum_{i} \pi_{m}(i) P(i, j) .
\end{aligned}
$$

$$
\pi_{m+1}(j)=\sum_{i} \pi_{m}(i) P(i, j), \forall j \in \mathscr{X} .
$$

With π_{m}, π_{m+1} as a row vectors, these identities are written as $\pi_{m+1}=\pi_{m} P$.
Thus, $\pi_{1}=\pi_{0} P, \pi_{2}=\pi_{1} P=\pi_{0} P P=\pi_{0} P^{2}, \ldots$

Distribution of X_{n}

Let $\pi_{m}(i)=\operatorname{Pr}\left[X_{m}=i\right], i \in \mathscr{X}$. Note that

Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[X_{m+1}=j\right] & =\sum_{i} \operatorname{Pr}\left[X_{m+1}=j, X_{m}=i\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{m}=i\right] \operatorname{Pr}\left[X_{m+1}=j \mid X_{m}=i\right] \\
& =\sum_{i} \pi_{m}(i) P(i, j) .
\end{aligned}
$$

$$
\pi_{m+1}(j)=\sum_{i} \pi_{m}(i) P(i, j), \forall j \in \mathscr{X} .
$$

With π_{m}, π_{m+1} as a row vectors, these identities are written as $\pi_{m+1}=\pi_{m} P$.
Thus, $\pi_{1}=\pi_{0} P, \pi_{2}=\pi_{1} P=\pi_{0} P P=\pi_{0} P^{2}, \ldots$. Hence,

$$
\pi_{n}=\pi_{0} P^{n}, n \geq 0 .
$$

Distribution of X_{n}

Distribution of X_{n}

$m+1$

Distribution of X_{n}

$m+1$

As m increases, π_{m} converges to a vector that does not depend on π_{0}.

Distribution of X_{n}

Distribution of X_{n}

Distribution of X_{n}

As m increases, π_{m} converges to a vector that does not depend on π_{0}.

Distribution of X_{n}

Distribution of X_{n}

Distribution of X_{n}

As m increases, π_{m} converges to a vector that depends on π_{0}

Distribution of X_{n}

As m increases, π_{m} converges to a vector that depends on π_{0} (obviously, since $\left.\pi_{m}(1)=\pi_{0}(1), \forall m\right)$.

Balance Equations

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?

Definition

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.

Theorem

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$.

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Proof:

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Proof: $\pi_{n}=\pi_{0} P^{n}$,

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Proof: $\pi_{n}=\pi_{0} P^{n}$, so that $\pi_{n}=\pi_{0}, \forall n$ iff $\pi_{0} P=\pi_{0}$.

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Proof: $\pi_{n}=\pi_{0} P^{n}$, so that $\pi_{n}=\pi_{0}, \forall n$ iff $\pi_{0} P=\pi_{0}$.
Thus, if π_{0} is invariant, the distribution of X_{n} is always the same as that of X_{0}.

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Proof: $\pi_{n}=\pi_{0} P^{n}$, so that $\pi_{n}=\pi_{0}, \forall n$ iff $\pi_{0} P=\pi_{0}$.
Thus, if π_{0} is invariant, the distribution of X_{n} is always the same as that of X_{0}.
Of course, this does not mean that X_{n} does not move.

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Proof: $\pi_{n}=\pi_{0} P^{n}$, so that $\pi_{n}=\pi_{0}, \forall n$ iff $\pi_{0} P=\pi_{0}$.
Thus, if π_{0} is invariant, the distribution of X_{n} is always the same as that of X_{0}.
Of course, this does not mean that X_{n} does not move. It means that the probability that it leaves a state i is equal to the probability that it enters state i.

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Proof: $\pi_{n}=\pi_{0} P^{n}$, so that $\pi_{n}=\pi_{0}, \forall n$ iff $\pi_{0} P=\pi_{0}$.
Thus, if π_{0} is invariant, the distribution of X_{n} is always the same as that of X_{0}.
Of course, this does not mean that X_{n} does not move. It means that the probability that it leaves a state i is equal to the probability that it enters state i.
The balance equations say that

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Proof: $\pi_{n}=\pi_{0} P^{n}$, so that $\pi_{n}=\pi_{0}, \forall n$ iff $\pi_{0} P=\pi_{0}$.
Thus, if π_{0} is invariant, the distribution of X_{n} is always the same as that of X_{0}.
Of course, this does not mean that X_{n} does not move. It means that the probability that it leaves a state i is equal to the probability that it enters state i.
The balance equations say that $\sum_{j} \pi(j) P(j, i)=\pi(i)$.

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Proof: $\pi_{n}=\pi_{0} P^{n}$, so that $\pi_{n}=\pi_{0}, \forall n$ iff $\pi_{0} P=\pi_{0}$.
Thus, if π_{0} is invariant, the distribution of X_{n} is always the same as that of X_{0}.
Of course, this does not mean that X_{n} does not move. It means that the probability that it leaves a state i is equal to the probability that it enters state i.
The balance equations say that $\sum_{j} \pi(j) P(j, i)=\pi(i)$. That is,

$$
\sum_{j \neq i} \pi(j) P(j, i)=\pi(i)(1-P(i, i))
$$

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Proof: $\pi_{n}=\pi_{0} P^{n}$, so that $\pi_{n}=\pi_{0}, \forall n$ iff $\pi_{0} P=\pi_{0}$.
Thus, if π_{0} is invariant, the distribution of X_{n} is always the same as that of X_{0}.
Of course, this does not mean that X_{n} does not move. It means that the probability that it leaves a state i is equal to the probability that it enters state i.
The balance equations say that $\sum_{j} \pi(j) P(j, i)=\pi(i)$. That is,

$$
\sum_{j \neq i} \pi(j) P(j, i)=\pi(i)(1-P(i, i))=\pi(i) \sum_{j \neq i} P(i, j) .
$$

Balance Equations

Question: Is there some π_{0} such that $\pi_{m}=\pi_{0}, \forall m$?
Definition A distribution π_{0} such that $\pi_{m}=\pi_{0}, \forall m$ is said to be an invariant distribution.
Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Proof: $\pi_{n}=\pi_{0} P^{n}$, so that $\pi_{n}=\pi_{0}, \forall n$ iff $\pi_{0} P=\pi_{0}$.
Thus, if π_{0} is invariant, the distribution of X_{n} is always the same as that of X_{0}.
Of course, this does not mean that X_{n} does not move. It means that the probability that it leaves a state i is equal to the probability that it enters state i.
The balance equations say that $\sum_{j} \pi(j) P(j, i)=\pi(i)$. That is,

$$
\sum_{j \neq i} \pi(j) P(j, i)=\pi(i)(1-P(i, i))=\pi(i) \sum_{j \neq i} P(i, j) .
$$

Thus, $\operatorname{Pr}[$ enter $i]=\operatorname{Pr}[$ leave $i]$.

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 1:

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 1:

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 1:

$\pi P=\pi$

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 1:

$\pi P=\pi \Leftrightarrow[\pi(1), \pi(2)]\left[\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right]=[\pi(1), \pi(2)]$

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 1:

$$
\begin{aligned}
\pi P=\pi & \Leftrightarrow[\pi(1), \pi(2)]\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]=[\pi(1), \pi(2)] \\
& \Leftrightarrow \pi(1)(1-a)+\pi(2) b=\pi(1) \text { and }
\end{aligned}
$$

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 1:

$$
\begin{aligned}
\pi P=\pi & \Leftrightarrow[\pi(1), \pi(2)]\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]=[\pi(1), \pi(2)] \\
& \Leftrightarrow \pi(1)(1-a)+\pi(2) b=\pi(1) \text { and } \pi(1) a+\pi(2)(1-b)=\pi(2)
\end{aligned}
$$

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 1:

$$
\begin{aligned}
\pi P=\pi & \Leftrightarrow[\pi(1), \pi(2)]\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]=[\pi(1), \pi(2)] \\
& \Leftrightarrow \pi(1)(1-a)+\pi(2) b=\pi(1) \text { and } \pi(1) a+\pi(2)(1-b)=\pi(2) \\
& \Leftrightarrow \pi(1) a=\pi(2) b .
\end{aligned}
$$

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Example 1:
$\pi P=\pi \quad \Leftrightarrow \quad[\pi(1), \pi(2)]\left[\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right]=[\pi(1), \pi(2)]$

$$
\Leftrightarrow \quad \pi(1)(1-a)+\pi(2) b=\pi(1) \text { and } \pi(1) a+\pi(2)(1-b)=\pi(2)
$$

$$
\Leftrightarrow \quad \pi(1) a=\pi(2) b .
$$

These equations are redundant!

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Example 1:

$$
P=\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]
$$

$$
\pi P=\pi \quad \Leftrightarrow \quad[\pi(1), \pi(2)]\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]=[\pi(1), \pi(2)]
$$

$$
\Leftrightarrow \quad \pi(1)(1-a)+\pi(2) b=\pi(1) \text { and } \pi(1) a+\pi(2)(1-b)=\pi(2)
$$

$$
\Leftrightarrow \quad \pi(1) a=\pi(2) b
$$

These equations are redundant! We have to add an equation:

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Example 1:

$$
P=\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]
$$

$$
\pi P=\pi \quad \Leftrightarrow \quad[\pi(1), \pi(2)]\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]=[\pi(1), \pi(2)]
$$

$$
\Leftrightarrow \quad \pi(1)(1-a)+\pi(2) b=\pi(1) \text { and } \pi(1) a+\pi(2)(1-b)=\pi(2)
$$

$$
\Leftrightarrow \quad \pi(1) a=\pi(2) b .
$$

These equations are redundant! We have to add an equation:
$\pi(1)+\pi(2)=1$.

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Example 1:

$$
P=\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]
$$

$$
\pi P=\pi \quad \Leftrightarrow \quad[\pi(1), \pi(2)]\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]=[\pi(1), \pi(2)]
$$

$$
\Leftrightarrow \quad \pi(1)(1-a)+\pi(2) b=\pi(1) \text { and } \pi(1) a+\pi(2)(1-b)=\pi(2)
$$

$$
\Leftrightarrow \quad \pi(1) a=\pi(2) b
$$

These equations are redundant! We have to add an equation: $\pi(1)+\pi(2)=1$. Then we find

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Example 1:

These equations are redundant! We have to add an equation:
$\pi(1)+\pi(2)=1$. Then we find

$$
\pi=\left[\frac{b}{a+b}, \frac{a}{a+b}\right] .
$$

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 2:

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 2:

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 2:

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\pi P=\pi$

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 2:

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\pi P=\pi \Leftrightarrow[\pi(1), \pi(2)]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=[\pi(1), \pi(2)]$

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 2:

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\pi P=\pi \Leftrightarrow[\pi(1), \pi(2)]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=[\pi(1), \pi(2)] \Leftrightarrow \pi(1)=\pi(1)$ and

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.

Example 2:

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\pi P=\pi \Leftrightarrow[\pi(1), \pi(2)]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=[\pi(1), \pi(2)] \Leftrightarrow \pi(1)=\pi(1)$ and $\pi(2)=\pi(2)$.

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Example 2:

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\pi P=\pi \Leftrightarrow[\pi(1), \pi(2)]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=[\pi(1), \pi(2)] \Leftrightarrow \pi(1)=\pi(1)$ and $\pi(2)=\pi(2)$.
Every distribution is invariant for this Markov chain.

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Example 2:

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\pi P=\pi \Leftrightarrow[\pi(1), \pi(2)]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=[\pi(1), \pi(2)] \Leftrightarrow \pi(1)=\pi(1)$ and $\pi(2)=\pi(2)$.
Every distribution is invariant for this Markov chain. This is obvious, since $X_{n}=X_{0}$ for all n.

Balance Equations

Theorem A distribution π_{0} is invariant iff $\pi_{0} P=\pi_{0}$. These equations are called the balance equations.
Example 2:

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\pi P=\pi \Leftrightarrow[\pi(1), \pi(2)]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=[\pi(1), \pi(2)] \Leftrightarrow \pi(1)=\pi(1)$ and $\pi(2)=\pi(2)$.
Every distribution is invariant for this Markov chain. This is obvious, since $X_{n}=X_{0}$ for all n. Hence, $\operatorname{Pr}\left[X_{n}=i\right]=\operatorname{Pr}\left[X_{0}=i\right], \forall(i, n)$.

Irreducibility

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[B]

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[B]

[A] is

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[B]

$[A]$ is not irreducible.

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).
[B] is

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).
$[B]$ is not irreducible.

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).
$[B]$ is not irreducible. It cannot go from (2) to (1).

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).
$[B]$ is not irreducible. It cannot go from (2) to (1).
[C] is

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).
[B] is not irreducible. It cannot go from (2) to (1).
[C] is irreducible.

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).
$[B]$ is not irreducible. It cannot go from (2) to (1).
$[\mathrm{C}]$ is irreducible. It can go from every i to every j.

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).
$[B]$ is not irreducible. It cannot go from (2) to (1).
$[\mathrm{C}]$ is irreducible. It can go from every i to every j.
If you consider the graph with arrows when $P(i, j)>0$,

Irreducibility

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).
$[B]$ is not irreducible. It cannot go from (2) to (1).
$[\mathrm{C}]$ is irreducible. It can go from every i to every j.
If you consider the graph with arrows when $P(i, j)>0$, irreducible means that there is a single connected component.

Existence and uniqueness of Invariant Distribution

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.

Proof:

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.
Proof: See EE126,

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.
Proof: See EE126, or lecture note 24.

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.
Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.
Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)

Note:

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.
Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)
Note: We know already that some irreducible Markov chains have multiple invariant distributions.

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.
Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)
Note: We know already that some irreducible Markov chains have multiple invariant distributions.

Fact:

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.
Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)
Note: We know already that some irreducible Markov chains have multiple invariant distributions.
Fact: If a Markov chain has two different invariant distributions π and v,

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.
Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)
Note: We know already that some irreducible Markov chains have multiple invariant distributions.
Fact: If a Markov chain has two different invariant distributions π and v, then it has infinitely many invariant distributions.

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.
Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)
Note: We know already that some irreducible Markov chains have multiple invariant distributions.
Fact: If a Markov chain has two different invariant distributions π and v, then it has infinitely many invariant distributions. Indeed, $p \pi+(1-p) v$ is then invariant since

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi=[\pi(1), \ldots, \pi(K)]$ such that $\pi P=\pi$ and $\sum_{k} \pi(k)=1$.
Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)
Note: We know already that some irreducible Markov chains have multiple invariant distributions.
Fact: If a Markov chain has two different invariant distributions π and v, then it has infinitely many invariant distributions. Indeed, $p \pi+(1-p) v$ is then invariant since

$$
[p \pi+(1-p) v] P=p \pi P+(1-p) v P=p \pi+(1-p) v .
$$

Long Term Fraction of Time in States

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π.

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π.

Then, for all i,

$$
\frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i), \text { as } n \rightarrow \infty
$$

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π.

Then, for all i,

$$
\frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i), \text { as } n \rightarrow \infty
$$

The left-hand side is the fraction of time that $X_{m}=i$ during steps $0,1, \ldots, n-1$.

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π.

Then, for all i,

$$
\frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i), \text { as } n \rightarrow \infty
$$

The left-hand side is the fraction of time that $X_{m}=i$ during steps $0,1, \ldots, n-1$. Thus, this fraction of time approaches $\pi(i)$.

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π.

Then, for all i,

$$
\frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i), \text { as } n \rightarrow \infty
$$

The left-hand side is the fraction of time that $X_{m}=i$ during steps $0,1, \ldots, n-1$. Thus, this fraction of time approaches $\pi(i)$. Proof: See EE126.

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π.

Then, for all i,

$$
\frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i), \text { as } n \rightarrow \infty
$$

The left-hand side is the fraction of time that $X_{m}=i$ during steps $0,1, \ldots, n-1$. Thus, this fraction of time approaches $\pi(i)$.
Proof: See EE126. Lecture note 24 gives a plausibility argument.

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π. Then, for all $i, \quad \frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i)$, as $n \rightarrow \infty$.

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π. Then, for all $i, \quad \frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i)$, as $n \rightarrow \infty$. Example 1:

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π. Then, for all $i, \quad \frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i)$, as $n \rightarrow \infty$. Example 1:

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π. Then, for all $i, \quad \frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i)$, as $n \rightarrow \infty$.

Example 1:

The fraction of time in state 1

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π. Then, for all $i, \quad \frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i)$, as $n \rightarrow \infty$.

Example 1:

The fraction of time in state 1 converges to $1 / 2$,

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π. Then, for all $i, \quad \frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i)$, as $n \rightarrow \infty$.

Example 1:

The fraction of time in state 1 converges to $1 / 2$, which is $\pi(1)$.

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π. Then, for all $i, \quad \frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i)$, as $n \rightarrow \infty$.

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π. Then, for all $i, \quad \frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i)$, as $n \rightarrow \infty$.
Example 2:

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π. Then, for all $i, \quad \frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i)$, as $n \rightarrow \infty$.
Example 2:

Long Term Fraction of Time in States

Theorem Let X_{n} be an irreducible Markov chain with invariant distribution π. Then, for all $i, \quad \frac{1}{n} \sum_{m=0}^{n-1} 1\left\{X_{m}=i\right\} \rightarrow \pi(i)$, as $n \rightarrow \infty$.
Example 2:

Convergence to Invariant Distribution

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible.

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?
Answer: Not necessarily. Here is an example:

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?
Answer: Not necessarily. Here is an example:

Assume $X_{0}=1$.

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?
Answer: Not necessarily. Here is an example:

Assume $X_{0}=1$. Then $X_{1}=2$,

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?
Answer: Not necessarily. Here is an example:

Assume $X_{0}=1$. Then $X_{1}=2, X_{2}=1$,

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?
Answer: Not necessarily. Here is an example:

Assume $X_{0}=1$. Then $X_{1}=2, X_{2}=1, X_{3}=2, \ldots$

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?
Answer: Not necessarily. Here is an example:

Assume $X_{0}=1$. Then $X_{1}=2, X_{2}=1, X_{3}=2, \ldots$.
Thus, if $\pi_{0}=[1,0]$,

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?
Answer: Not necessarily. Here is an example:

Assume $X_{0}=1$. Then $X_{1}=2, X_{2}=1, X_{3}=2, \ldots$.
Thus, if $\pi_{0}=[1,0], \pi_{1}=[0,1]$,

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?
Answer: Not necessarily. Here is an example:

Assume $X_{0}=1$. Then $X_{1}=2, X_{2}=1, X_{3}=2, \ldots$.
Thus, if $\pi_{0}=[1,0], \pi_{1}=[0,1], \pi_{2}=[1,0]$,

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?
Answer: Not necessarily. Here is an example:

Assume $X_{0}=1$. Then $X_{1}=2, X_{2}=1, X_{3}=2, \ldots$.
Thus, if $\pi_{0}=[1,0], \pi_{1}=[0,1], \pi_{2}=[1,0], \pi_{3}=[0,1]$, etc.

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_{n} approach the unique invariant distribution π ?
Answer: Not necessarily. Here is an example:

Assume $X_{0}=1$. Then $X_{1}=2, X_{2}=1, X_{3}=2, \ldots$.
Thus, if $\pi_{0}=[1,0], \pi_{1}=[0,1], \pi_{2}=[1,0], \pi_{3}=[0,1]$, etc.
Hence, π_{n} does not converge to $\pi=[1 / 2,1 / 2]$.

Periodicity

Periodicity

Theorem

Periodicity

Theorem Assume that the MC is irreducible.

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period $d(i)$.

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.
Example

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period $d(i)$.

Example

[A]

[B]

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period $d(i)$.

Example

[A]

[B]
[A]:

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period $d(i)$.

Example

$$
[\mathrm{A}]:\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}
$$

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic. Otherwise, it is periodic with period $d(i)$.

Example

$$
[\mathrm{A}]:\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,7,9,11, \ldots\}
$$

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.

Example

$$
[\mathrm{A}]:\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,7,9,11, \ldots\} \Rightarrow d(1)=1
$$

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.

Example

$$
\begin{aligned}
& {[\mathrm{A}]:} \\
& \quad\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,7,9,11, \ldots\} \Rightarrow d(1)=1 .
\end{aligned}
$$

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.

Example

$$
\begin{aligned}
& {[\mathrm{A}]:} \\
& \quad\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,7,9,11, \ldots\} \Rightarrow d(1)=1 .
\end{aligned}
$$

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.

Example

$$
\begin{gathered}
{[\mathrm{A}]:} \\
\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,7,9,11, \ldots\} \Rightarrow d(1)=1 . \\
\quad\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=2 \mid X_{0}=2\right]>0\right\}=\{3,4, \ldots\} \Rightarrow d(2)=1
\end{gathered}
$$

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.

Example

$$
\begin{gathered}
{[\mathrm{A}]:} \\
\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,7,9,11, \ldots\} \Rightarrow d(1)=1 . \\
\quad\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=2 \mid X_{0}=2\right]>0\right\}=\{3,4, \ldots\} \Rightarrow d(2)=1
\end{gathered}
$$

[B]:

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.

Example

$$
\begin{aligned}
& {[\mathrm{A}]:\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,7,9,11, \ldots\} \Rightarrow d(1)=1 .} \\
& \quad\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=2 \mid X_{0}=2\right]>0\right\}=\{3,4, \ldots\} \Rightarrow d(2)=1 . \\
& {[\mathrm{B}]:\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}}
\end{aligned}
$$

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.

Example

$$
\begin{aligned}
& {[\mathrm{A}]:\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}} \\
& \quad\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=2 \mid X_{0}=2\right]>0\right\}=\{3,4, \ldots\} \Rightarrow d(2)=1 . \\
& {[\mathrm{B}]:\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,9, \ldots\}}
\end{aligned}
$$

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.

Example

$$
\begin{aligned}
& {[\mathrm{A}]:\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,7,9,11, \ldots\} \Rightarrow d(1)=1 .} \\
& \quad\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=2 \mid X_{0}=2\right]>0\right\}=\{3,4, \ldots\} \Rightarrow d(2)=1 . \\
& {[\mathrm{B}]:\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,9, \ldots\} \Rightarrow d(i)=3 .}
\end{aligned}
$$

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.

Example

$$
\begin{aligned}
& \text { [A]: }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,7,9,11, \ldots\} \Rightarrow d(1)=1 \text {. } \\
& \left\{n>0 \mid \operatorname{Pr}\left[X_{n}=2 \mid X_{0}=2\right]>0\right\}=\{3,4, \ldots\} \Rightarrow d(2)=1 \text {. } \\
& \text { [B]: }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,9, \ldots\} \Rightarrow d(i)=3 \text {. } \\
& \left\{n>0 \mid \operatorname{Pr}\left[X_{n}=5 \mid X_{0}=5\right]>0\right\}
\end{aligned}
$$

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.

Example

$$
\begin{aligned}
& {[\mathrm{A}]:\left\{\begin{array}{l}
\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\} \\
\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=2 \mid X_{0}=2\right]>0\right\}
\end{array}=\{3,4, \ldots\} \Rightarrow d(2)=1 .\right.} \\
& {[\mathrm{B}]:\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\}=\{3,6,9, \ldots\} \Rightarrow d(i)=3 .} \\
& \left\{n>0 \mid \operatorname{Pr}\left[X_{n}=5 \mid X_{0}=5\right]>0\right\}=\{6,9, \ldots\}
\end{aligned}
$$

Periodicity

Theorem Assume that the MC is irreducible. Then

$$
d(i):=\text { g.c.d. }\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}
$$

has the same value for all states i.
Proof: See Lecture notes 24.
Definition If $d(i)=1$, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period $d(i)$.

Example

$$
\begin{gathered}
{[\mathrm{A}]: \begin{aligned}
\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\} & =\{3,6,7,9,11, \ldots\} \Rightarrow d(1)=1 . \\
{\left[n>0 \mid \operatorname{Pr}\left[X_{n}=2 \mid X_{0}=2\right]>0\right\} } & =\{3,4, \ldots\} \Rightarrow d(2)=1 . \\
{[\mathrm{B}]:\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=1 \mid X_{0}=1\right]>0\right\} } & =\{3,6,9, \ldots\} \Rightarrow d(i)=3 . \\
\left\{n>0 \mid \operatorname{Pr}\left[X_{n}=5 \mid X_{0}=5\right]>0\right\} & =\{6,9, \ldots\} \Rightarrow d(5)=3 .
\end{aligned} .}
\end{gathered}
$$

Convergence of π_{n}

Convergence of π_{n}

Theorem Let X_{n} be an irreducible and aperiodic Markov chain with invariant distribution π.

Convergence of π_{n}

Theorem Let X_{n} be an irreducible and aperiodic Markov chain with invariant distribution π. Then, for all $i \in \mathscr{X}$,

$$
\pi_{n}(i) \rightarrow \pi(i), \text { as } n \rightarrow \infty .
$$

Convergence of π_{n}

Theorem Let X_{n} be an irreducible and aperiodic Markov chain with invariant distribution π. Then, for all $i \in \mathscr{X}$,

$$
\pi_{n}(i) \rightarrow \pi(i), \text { as } n \rightarrow \infty .
$$

Proof

Convergence of π_{n}

Theorem Let X_{n} be an irreducible and aperiodic Markov chain with invariant distribution π. Then, for all $i \in \mathscr{X}$,

$$
\pi_{n}(i) \rightarrow \pi(i), \text { as } n \rightarrow \infty .
$$

Proof See EE126, or Lecture notes 24.

Convergence of π_{n}

Theorem Let X_{n} be an irreducible and aperiodic Markov chain with invariant distribution π. Then, for all $i \in \mathscr{X}$,

$$
\pi_{n}(i) \rightarrow \pi(i), \text { as } n \rightarrow \infty .
$$

Proof See EE126, or Lecture notes 24.

Example

Convergence of π_{n}

Theorem Let X_{n} be an irreducible and aperiodic Markov chain with invariant distribution π.

Convergence of π_{n}

Theorem Let X_{n} be an irreducible and aperiodic Markov chain with invariant distribution π. Then, for all $i \in \mathscr{X}$,

$$
\pi_{n}(i) \rightarrow \pi(i), \text { as } n \rightarrow \infty .
$$

Proof See EE126, or Lecture notes 24. Example

Convergence of π_{n}

Theorem Let X_{n} be an irreducible and aperiodic Markov chain with invariant distribution π.

Convergence of π_{n}

Theorem Let X_{n} be an irreducible and aperiodic Markov chain with invariant distribution π. Then, for all $i \in \mathscr{X}$,

$$
\pi_{n}(i) \rightarrow \pi(i), \text { as } n \rightarrow \infty .
$$

Proof See EE126, or Lecture notes 24.

Example

Calculating π

Calculating π

Let P be irreducible. How do we find π ?

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e.,

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e., $\pi[P-I]=0$

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e., $\pi[P-I]=0$ where I is the identity matrix:

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e., $\pi[P-I]=0$ where I is the identity matrix:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 0 \\
0 & 0.3-1 & 0.7 \\
0.6 & 0.4 & 0-1
\end{array}\right]=[0,0,0]
$$

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e., $\pi[P-I]=0$ where I is the identity matrix:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 0 \\
0 & 0.3-1 & 0.7 \\
0.6 & 0.4 & 0-1
\end{array}\right]=[0,0,0]
$$

However, the sum of the columns of $P-I$ is 0 .

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e., $\pi[P-I]=0$ where I is the identity matrix:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 0 \\
0 & 0.3-1 & 0.7 \\
0.6 & 0.4 & 0-1
\end{array}\right]=[0,0,0]
$$

However, the sum of the columns of $P-I$ is 0 . This shows that these equations are redundant:

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e., $\pi[P-I]=0$ where I is the identity matrix:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 0 \\
0 & 0.3-1 & 0.7 \\
0.6 & 0.4 & 0-1
\end{array}\right]=[0,0,0]
$$

However, the sum of the columns of $P-I$ is 0 . This shows that these equations are redundant: If all but the last one hold, so does the last one.

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e., $\pi[P-I]=0$ where I is the identity matrix:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 0 \\
0 & 0.3-1 & 0.7 \\
0.6 & 0.4 & 0-1
\end{array}\right]=[0,0,0]
$$

However, the sum of the columns of $P-I$ is 0 . This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi 1=1$, i.e.,

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e., $\pi[P-I]=0$ where I is the identity matrix:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 0 \\
0 & 0.3-1 & 0.7 \\
0.6 & 0.4 & 0-1
\end{array}\right]=[0,0,0]
$$

However, the sum of the columns of $P-I$ is 0 . This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi 1=1$, i.e., $\sum_{j} \pi(j)=1$:

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e., $\pi[P-I]=0$ where I is the identity matrix:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 0 \\
0 & 0.3-1 & 0.7 \\
0.6 & 0.4 & 0-1
\end{array}\right]=[0,0,0]
$$

However, the sum of the columns of $P-I$ is 0 . This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi 1=1$, i.e., $\sum_{j} \pi(j)=1$:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 1 \\
0 & 0.3-1 & 1 \\
0.6 & 0.4 & 1
\end{array}\right]=[0,0,1]
$$

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e., $\pi[P-I]=0$ where I is the identity matrix:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 0 \\
0 & 0.3-1 & 0.7 \\
0.6 & 0.4 & 0-1
\end{array}\right]=[0,0,0]
$$

However, the sum of the columns of $P-I$ is 0 . This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi 1=1$, i.e., $\sum_{j} \pi(j)=1$:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 1 \\
0 & 0.3-1 & 1 \\
0.6 & 0.4 & 1
\end{array}\right]=[0,0,1]
$$

Hence,

$$
\pi=[0,0,1]\left[\begin{array}{ccc}
0.8-1 & 0.2 & 1 \\
0 & 0.3-1 & 1 \\
0.6 & 0.4 & 1
\end{array}\right]^{-1}
$$

Calculating π

Let P be irreducible. How do we find π ?
Example: $P=\left[\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0\end{array}\right]$.
One has $\pi P=\pi$, i.e., $\pi[P-I]=0$ where I is the identity matrix:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 0 \\
0 & 0.3-1 & 0.7 \\
0.6 & 0.4 & 0-1
\end{array}\right]=[0,0,0]
$$

However, the sum of the columns of $P-I$ is 0 . This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi 1=1$, i.e., $\sum_{j} \pi(j)=1$:

$$
\pi\left[\begin{array}{ccc}
0.8-1 & 0.2 & 1 \\
0 & 0.3-1 & 1 \\
0.6 & 0.4 & 1
\end{array}\right]=[0,0,1]
$$

Hence,

$$
\pi=[0,0,1]\left[\begin{array}{ccc}
0.8-1 & 0.2 & 1 \\
0 & 0.3-1 & 1 \\
0.6 & 0.4 & 1
\end{array}\right]^{-1} \approx[0.55,0.26,0.19]
$$

Summary

Markov Chains

Summary

Markov Chains

Summary

Markov Chains

- Markov Chain:

Summary

Markov Chains

- Markov Chain: $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j)$

Summary

Markov Chains

- Markov Chain: $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j)$
- FSE: $\beta(i)=1+\sum_{j} P(i, j) \beta(j)$;

Summary

Markov Chains

- Markov Chain: $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j)$
- FSE: $\beta(i)=1+\sum_{j} P(i, j) \beta(j) ; \alpha(i)=\sum_{j} P(i, j) \alpha(j)$.

Summary

Markov Chains

- Markov Chain: $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j)$
- FSE: $\beta(i)=1+\sum_{j} P(i, j) \beta(j) ; \alpha(i)=\sum_{j} P(i, j) \alpha(j)$.
- $\pi_{n}=\pi_{0} P^{n}$

Summary

Markov Chains

- Markov Chain: $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j)$
- FSE: $\beta(i)=1+\sum_{j} P(i, j) \beta(j) ; \alpha(i)=\sum_{j} P(i, j) \alpha(j)$.
- $\pi_{n}=\pi_{0} P^{n}$
- π is invariant iff $\pi P=\pi$

Summary

Markov Chains

- Markov Chain: $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j)$
- FSE: $\beta(i)=1+\sum_{j} P(i, j) \beta(j) ; \alpha(i)=\sum_{j} P(i, j) \alpha(j)$.
- $\pi_{n}=\pi_{0} P^{n}$
- π is invariant iff $\pi P=\pi$
- Irreducible \Rightarrow one and only one invariant distribution π

Summary

Markov Chains

- Markov Chain: $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j)$
- FSE: $\beta(i)=1+\sum_{j} P(i, j) \beta(j) ; \alpha(i)=\sum_{j} P(i, j) \alpha(j)$.
- $\pi_{n}=\pi_{0} P^{n}$
- π is invariant iff $\pi P=\pi$
- Irreducible \Rightarrow one and only one invariant distribution π
- Irreducible \Rightarrow fraction of time in state i approaches $\pi(i)$

Summary

Markov Chains

- Markov Chain: $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j)$
- FSE: $\beta(i)=1+\sum_{j} P(i, j) \beta(j) ; \alpha(i)=\sum_{j} P(i, j) \alpha(j)$.
- $\pi_{n}=\pi_{0} P^{n}$
- π is invariant iff $\pi P=\pi$
- Irreducible \Rightarrow one and only one invariant distribution π
- Irreducible \Rightarrow fraction of time in state i approaches $\pi(i)$
- Irreducible + Aperiodic $\Rightarrow \pi_{n} \rightarrow \pi$.

Summary

Markov Chains

- Markov Chain: $\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j)$
- FSE: $\beta(i)=1+\sum_{j} P(i, j) \beta(j) ; \alpha(i)=\sum_{j} P(i, j) \alpha(j)$.
- $\pi_{n}=\pi_{0} P^{n}$
- π is invariant iff $\pi P=\pi$
- Irreducible \Rightarrow one and only one invariant distribution π
- Irreducible \Rightarrow fraction of time in state i approaches $\pi(i)$
- Irreducible + Aperiodic $\Rightarrow \pi_{n} \rightarrow \pi$.
- Calculating π : One finds $\pi=[0,0 \ldots, 1] Q^{-1}$ where $Q=\cdots$.

