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Review

I Markov Chain:

I Finite set X ; π0; P = {P(i , j), i , j ∈X };
I Pr [X0 = i] = π0(i), i ∈X
I Pr [Xn+1 = j | X0, . . . ,Xn = i] = P(i , j), i , j ∈X ,n ≥ 0.
I Note:

Pr [X0 = i0,X1 = i1, . . . ,Xn = in] = π0(i0)P(i0, i1) · · ·P(in−1, in).

I First Passage Time:

I A∩B = /0;β (i) = E [TA|X0 = i];α(i) = P[TA < TB|X0 = i]
I β (i) = 1+∑j P(i , j)β (j);α(i) = ∑j P(i , j)α(j).
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Let πm(i) = Pr [Xm = i], i ∈X . Note that

Pr [Xm+1 = j] = ∑
i

Pr [Xm+1 = j ,Xm = i]

= ∑
i

Pr [Xm = i]Pr [Xm+1 = j | Xm = i]

= ∑
i

πm(i)P(i , j).
Hence,

πm+1(j) = ∑
i

πm(i)P(i , j),∀j ∈X .

With πm,πm+1 as a row vectors, these identities are written as πm+1 = πmP.

Thus, π1 = π0P, π2 = π1P = π0PP = π0P2, . . . . Hence,

πn = π0Pn,n ≥ 0.
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Balance Equations

Question: Is there some π0 such that πm = π0,∀m?

Definition A distribution π0 such that πm = π0,∀m is said to be an
invariant distribution.

Theorem A distribution π0 is invariant iff π0P = π0. These equations
are called the balance equations.

Proof: πn = π0Pn, so that πn = π0,∀n iff π0P = π0.

Thus, if π0 is invariant, the distribution of Xn is always the same as
that of X0.

Of course, this does not mean that Xn does not move. It means that
the probability that it leaves a state i is equal to the probability that it
enters state i .

The balance equations say that ∑j π(j)P(j , i) = π(i).
That is,

∑
j 6=i

π(j)P(j , i) = π(i)(1−P(i , i)) = π(i)∑
j 6=i

P(i , j).

Thus, Pr [enter i] = Pr [leave i].
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Balance Equations

Theorem A distribution π0 is invariant iff π0P = π0. These equations
are called the balance equations.
Example 1:

πP = π ⇔ [π(1),π(2)]
[

1−a a
b 1−b

]
= [π(1),π(2)]

⇔ π(1)(1−a)+π(2)b = π(1) and π(1)a+π(2)(1−b) = π(2)
⇔ π(1)a = π(2)b.

These equations are redundant! We have to add an equation:
π(1)+π(2) = 1. Then we find

π = [
b

a+b
,

a
a+b

].
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Irreducibility

Definition A Markov chain is irreducible if it can go from every state i
to every state j (possibly in multiple steps).
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[B] is not irreducible. It cannot go from (2) to (1).

[C] is irreducible. It can go from every i to every j .

If you consider the graph with arrows when P(i , j)> 0, irreducible
means that there is a single connected component.
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Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only
one invariant distribution.

That is, there is a unique positive vector π = [π(1), . . . ,π(K )]
such that πP = π and ∑k π(k) = 1.

Proof: See EE126, or lecture note 24. (We will not expect you
to understand this proof.)
Note: We know already that some irreducible Markov chains
have multiple invariant distributions.

Fact: If a Markov chain has two different invariant distributions
π and ν , then it has infinitely many invariant distributions.
Indeed, pπ +(1−p)ν is then invariant since

[pπ +(1−p)ν]P = pπP +(1−p)νP = pπ +(1−p)ν .
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Long Term Fraction of Time in States

Theorem Let Xn be an irreducible Markov chain with invariant
distribution π.

Then, for all i ,

1
n

n−1

∑
m=0

1{Xm = i}→ π(i), as n→ ∞.

The left-hand side is the fraction of time that Xm = i during
steps 0,1, . . . ,n−1. Thus, this fraction of time approaches π(i).

Proof: See EE126. Lecture note 24 gives a plausibility
argument.
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Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does πn
approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

Assume X0 = 1. Then X1 = 2,X2 = 1,X3 = 2, . . ..

Thus, if π0 = [1,0], π1 = [0,1],π2 = [1,0],π3 = [0,1], etc.

Hence, πn does not converge to π = [1/2,1/2].
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Periodicity

Theorem Assume that the MC is irreducible. Then

d(i) := g.c.d.{n > 0 | Pr [Xn = i | X0 = i]> 0}

has the same value for all states i .

Proof: See Lecture notes 24.
Definition If d(i) = 1, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period d(i).
Example

[A]: {n > 0 | Pr [Xn = 1|X0 = 1]> 0}= {3,6,7,9,11, . . .}⇒ d(1) = 1.

{n > 0 | Pr [Xn = 2|X0 = 2]> 0}= {3,4, . . .}⇒ d(2) = 1.

[B]: {n > 0 | Pr [Xn = 1|X0 = 1]> 0}= {3,6,9, . . .}⇒ d(i) = 3.

{n > 0 | Pr [Xn = 5|X0 = 5]> 0}= {6,9, . . .}⇒ d(5) = 3.
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Convergence of πn

Theorem Let Xn be an irreducible and aperiodic Markov chain with
invariant distribution π. Then, for all i ∈X ,

πn(i)→ π(i), as n→ ∞.

Proof See EE126, or Lecture notes 24.
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Calculating π

Let P be irreducible. How do we find π?

Example: P =

 0.8 0.2 0
0 0.3 0.7

0.6 0.4 0

 .
One has πP = π, i.e., π[P− I] = 0 where I is the identity matrix:

π

 0.8−1 0.2 0
0 0.3−1 0.7

0.6 0.4 0−1

= [0,0,0].

However, the sum of the columns of P− I is 0. This shows that these
equations are redundant: If all but the last one hold, so does the last one. Let
us replace the last equation by π1 = 1, i.e., ∑j π(j) = 1:

π

 0.8−1 0.2 1
0 0.3−1 1

0.6 0.4 1

= [0,0,1].

Hence,

π = [0,0,1]

 0.8−1 0.2 1
0 0.3−1 1

0.6 0.4 1

−1

≈ [0.55,0.26,0.19]
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Summary

Markov Chains

I Markov Chain: Pr [Xn+1 = j |X0, . . . ,Xn = i] = P(i , j)
I FSE: β (i) = 1+∑j P(i , j)β (j);α(i) = ∑j P(i , j)α(j).
I πn = π0Pn

I π is invariant iff πP = π

I Irreducible⇒ one and only one invariant distribution π

I Irreducible⇒ fraction of time in state i approaches π(i)
I Irreducible + Aperiodic⇒ πn→ π.
I Calculating π: One finds π = [0,0. . . . ,1]Q−1 where Q = · · · .
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