### CS70: Jean Walrand: Lecture 33.

### Markov Chains 2

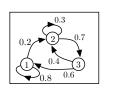
- 1. Review
- 2. Distribution
- 3. Irreducibility
- 4. Convergence

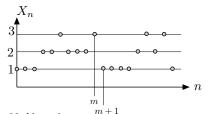
#### Review

- Markov Chain:
  - ► Finite set  $\mathcal{X}$ ;  $\pi_0$ ;  $P = \{P(i,j), i, j \in \mathcal{X}\}$ ;
  - $Pr[X_0 = i] = \pi_0(i), i \in \mathscr{X}$
  - ►  $Pr[X_{n+1} = j \mid X_0, ..., X_n = i] = P(i,j), i,j \in \mathcal{X}, n \ge 0.$
  - Note:

$$Pr[X_0 = i_0, X_1 = i_1, \dots, X_n = i_n] = \pi_0(i_0)P(i_0, i_1)\cdots P(i_{n-1}, i_n).$$

- First Passage Time:
  - $A \cap B = \emptyset$ ;  $\beta(i) = E[T_A | X_0 = i]$ ;  $\alpha(i) = P[T_A < T_B | X_0 = i]$





n

Let 
$$\pi_m(i) = Pr[X_m = i], i \in \mathcal{X}$$
. Note that

$$Pr[X_{m+1} = j] = \sum_{i} Pr[X_{m+1} = j, X_m = i]$$

$$= \sum_{i} Pr[X_m = i] Pr[X_{m+1} = j \mid X_m = i]$$

$$= \sum_{i} \pi_m(i) P(i, j).$$

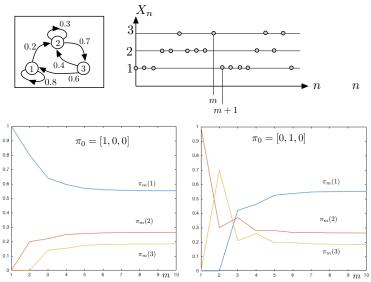
$$\pi_{m+1}(j) = \sum_{i} \pi_m(i) P(i, j), \forall j \in \mathcal{X}.$$

Hence,

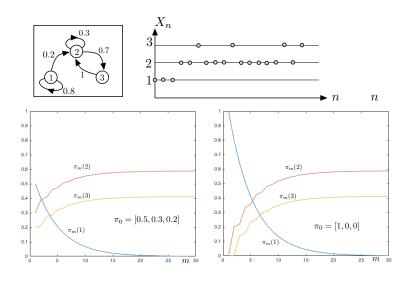
With  $\pi_m, \pi_{m+1}$  as a row vectors, these identities are written as  $\pi_{m+1} = \pi_m P$ .

Thus,  $\pi_1 = \pi_0 P$ ,  $\pi_2 = \pi_1 P = \pi_0 P P = \pi_0 P^2$ ,.... Hence,

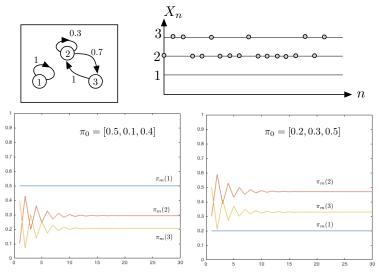
$$\pi_n = \pi_0 P^n, n \ge 0.$$



As *m* increases,  $\pi_m$  converges to a vector that does not depend on  $\pi_0$ .



As m increases,  $\pi_m$  converges to a vector that does not depend on  $\pi_0$ .



As m increases,  $\pi_m$  converges to a vector that depends on  $\pi_0$  (obviously, since  $\pi_m(1) = \pi_0(1), \forall m$ ).

### **Balance Equations**

Question: Is there some  $\pi_0$  such that  $\pi_m = \pi_0, \forall m$ ?

**Definition** A distribution  $\pi_0$  such that  $\pi_m = \pi_0, \forall m$  is said to be an invariant distribution.

**Theorem** A distribution  $\pi_0$  is invariant iff  $\pi_0 P = \pi_0$ . These equations are called the balance equations.

**Proof:** 
$$\pi_n = \pi_0 P^n$$
, so that  $\pi_n = \pi_0, \forall n \text{ iff } \pi_0 P = \pi_0$ .

Thus, if  $\pi_0$  is invariant, the distribution of  $X_n$  is always the same as that of  $X_0$ .

Of course, this does not mean that  $X_n$  does not move. It means that the probability that it leaves a state i is equal to the probability that it enters state i.

The balance equations say that  $\sum_{j} \pi(j) P(j, i) = \pi(i)$ . That is,

$$\sum_{j \neq i} \pi(j) P(j,i) = \pi(i) (1 - P(i,i)) = \pi(i) \sum_{j \neq i} P(i,j).$$

Thus, Pr[enter i] = Pr[leave i].

### **Balance Equations**

**Theorem** A distribution  $\pi_0$  is invariant iff  $\pi_0 P = \pi_0$ . These equations are called the balance equations.

Example 1:  $1-a \qquad 1-b \qquad P = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix}$ 

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} = [\pi(1), \pi(2)]$$

$$\Leftrightarrow \quad \pi(1)(1 - a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1 - b) = \pi(2)$$

$$\Leftrightarrow \quad \pi(1)a = \pi(2)b.$$

These equations are redundant! We have to add an equation:  $\pi(1) + \pi(2) = 1$ . Then we find

$$\pi = \left[\frac{b}{a+b}, \frac{a}{a+b}\right].$$

## **Balance Equations**

**Theorem** A distribution  $\pi_0$  is invariant iff  $\pi_0 P = \pi_0$ . These equations are called the balance equations.

#### Example 2:



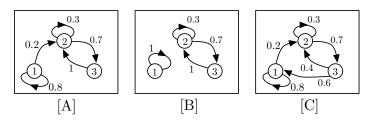
$$\pi P = \pi \Leftrightarrow [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \Leftrightarrow \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2).$$

Every distribution is invariant for this Markov chain. This is obvious, since  $X_n = X_0$  for all n. Hence,  $Pr[X_n = i] = Pr[X_0 = i], \forall (i, n)$ .

## Irreducibility

**Definition** A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

#### **Examples:**



- [A] is not irreducible. It cannot go from (2) to (1).
- [B] is not irreducible. It cannot go from (2) to (1).
- [C] is irreducible. It can go from every *i* to every *j*.

If you consider the graph with arrows when P(i,j) > 0, irreducible means that there is a single connected component.

# Existence and uniqueness of Invariant Distribution

**Theorem** A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector  $\pi = [\pi(1), ..., \pi(K)]$  such that  $\pi P = \pi$  and  $\sum_k \pi(k) = 1$ .

**Proof:** See EE126, or lecture note 24. (We will not expect you to understand this proof.)

**Note:** We know already that some irreducible Markov chains have multiple invariant distributions.

**Fact:** If a Markov chain has two different invariant distributions  $\pi$  and  $\nu$ , then it has infinitely many invariant distributions. Indeed,  $p\pi + (1-p)\nu$  is then invariant since

$$[p\pi + (1-p)v]P = p\pi P + (1-p)vP = p\pi + (1-p)v.$$

## Long Term Fraction of Time in States

**Theorem** Let  $X_n$  be an irreducible Markov chain with invariant distribution  $\pi$ .

Then, for all i,

$$\frac{1}{n}\sum_{m=0}^{n-1}1\{X_m=i\}\to \pi(i), \text{ as } n\to\infty.$$

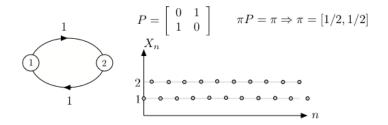
The left-hand side is the fraction of time that  $X_m = i$  during steps 0, 1, ..., n-1. Thus, this fraction of time approaches  $\pi(i)$ .

**Proof:** See EE126. Lecture note 24 gives a plausibility argument.

## Long Term Fraction of Time in States

**Theorem** Let  $X_n$  be an irreducible Markov chain with invariant distribution  $\pi$ . Then, for all i,  $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$ , as  $n \to \infty$ .

#### Example 1:

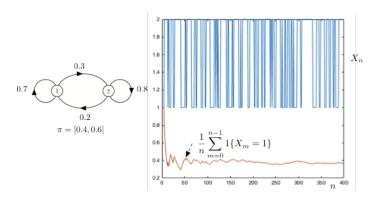


The fraction of time in state 1 converges to 1/2, which is  $\pi(1)$ .

## Long Term Fraction of Time in States

**Theorem** Let  $X_n$  be an irreducible Markov chain with invariant distribution  $\pi$ . Then, for all i,  $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$ , as  $n \to \infty$ .

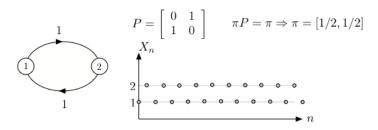
#### Example 2:



## Convergence to Invariant Distribution

**Question:** Assume that the MC is irreducible. Does  $\pi_n$  approach the unique invariant distribution  $\pi$ ?

**Answer:** Not necessarily. Here is an example:



Assume  $X_0 = 1$ . Then  $X_1 = 2, X_2 = 1, X_3 = 2,...$ Thus, if  $\pi_0 = [1,0]$ ,  $\pi_1 = [0,1]$ ,  $\pi_2 = [1,0]$ ,  $\pi_3 = [0,1]$ , etc. Hence,  $\pi_0$  does not converge to  $\pi = [1/2,1/2]$ .

### Periodicity

**Theorem** Assume that the MC is irreducible. Then

$$d(i) := g.c.d.\{n > 0 \mid Pr[X_n = i \mid X_0 = i] > 0\}$$

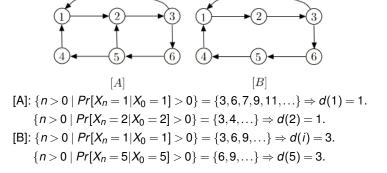
has the same value for all states i.

**Proof:** See Lecture notes 24.

**Definition** If d(i) = 1, the Markov chain is said to be aperiodic.

Otherwise, it is periodic with period d(i).

#### Example



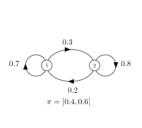
# Convergence of $\pi_n$

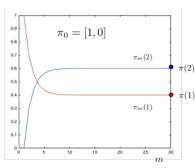
**Theorem** Let  $X_n$  be an irreducible and aperiodic Markov chain with invariant distribution  $\pi$ . Then, for all  $i \in \mathcal{X}$ ,

$$\pi_n(i) \to \pi(i)$$
, as  $n \to \infty$ .

Proof See EE126, or Lecture notes 24.

#### Example



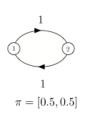


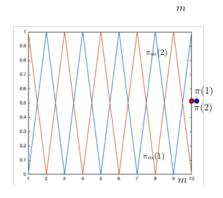
## Convergence of $\pi_n$

**Theorem** Let  $X_n$  be an irreducible and aperiodic Markov chain with invariant distribution  $\pi$ . Then, for all  $i \in \mathcal{X}$ ,

$$\pi_n(i) \to \pi(i)$$
, as  $n \to \infty$ .

**Proof** See EE126, or Lecture notes 24. **Example** 



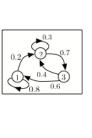


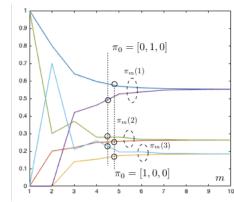
## Convergence of $\pi_n$

**Theorem** Let  $X_n$  be an irreducible and aperiodic Markov chain with invariant distribution  $\pi$ . Then, for all  $i \in \mathcal{X}$ ,

$$\pi_n(i) \to \pi(i)$$
, as  $n \to \infty$ .

**Proof** See EE126, or Lecture notes 24. **Example** 





### Calculating $\pi$

Let *P* be irreducible. How do we find  $\pi$ ?

**Example:** 
$$P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$
.

One has  $\pi P = \pi$ , i.e.,  $\pi [P - I] = \mathbf{0}$  where *I* is the identity matrix:

$$\pi \begin{bmatrix} 0.8-1 & 0.2 & 0 \\ 0 & 0.3-1 & 0.7 \\ 0.6 & 0.4 & 0-1 \end{bmatrix} = [0,0,0].$$

However, the sum of the columns of P-I is  $\mathbf{0}$ . This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by  $\pi\mathbf{1}=1$ , i.e.,  $\sum_j \pi(j)=1$ :

$$\pi \begin{bmatrix} 0.8-1 & 0.2 & 1 \\ 0 & 0.3-1 & 1 \\ 0.6 & 0.4 & 1 \end{bmatrix} = [0,0,1].$$

Hence,

$$\pi = [0,0,1] \begin{vmatrix} 0.8-1 & 0.2 & 1 \\ 0 & 0.3-1 & 1 \\ 0.6 & 0.4 & 1 \end{vmatrix} \approx [0.55, 0.26, 0.19]$$

# Summary

#### Markov Chains

- ► Markov Chain:  $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$
- ► FSE:  $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j)$ ;  $\alpha(i) = \sum_{j} P(i,j)\alpha(j)$ .
- $\pi_n = \pi_0 P^n$
- $\blacktriangleright$   $\pi$  is invariant iff  $\pi P = \pi$
- ▶ Irreducible  $\Rightarrow$  one and only one invariant distribution  $\pi$
- ▶ Irreducible  $\Rightarrow$  fraction of time in state *i* approaches  $\pi(i)$
- ▶ Irreducible + Aperiodic  $\Rightarrow \pi_n \rightarrow \pi$ .
- ▶ Calculating  $\pi$ : One finds  $\pi = [0,0...,1]Q^{-1}$  where  $Q = \cdots$ .