

### **Balance Equations**

Question: Is there some  $\pi_0$  such that  $\pi_m = \pi_0, \forall m$ ?

**Definition** A distribution  $\pi_0$  such that  $\pi_m = \pi_0, \forall m$  is said to be an invariant distribution.

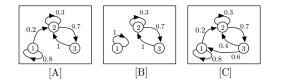
**Theorem** A distribution  $\pi_0$  is invariant iff  $\pi_0 P = \pi_0$ . These equations are called the balance equations.

**Proof:**  $\pi_n = \pi_0 P^n$ , so that  $\pi_n = \pi_0, \forall n$  iff  $\pi_0 P = \pi_0$ .

Thus, if  $\pi_0$  is invariant, the distribution of  $X_n$  is always the same as that of  $X_0$ .

Of course, this does not mean that  $X_n$  does not move. It means that the probability that it leaves a state *i* is equal to the probability that it enters state *i*.

The balance equations say that  $\sum_{j} \pi(j) P(j,i) = \pi(i)$ . That is,


$$\sum_{j \neq i} \pi(j) P(j,i) = \pi(i) (1 - P(i,i)) = \pi(i) \sum_{j \neq i} P(i,j).$$

Thus, Pr[enter i] = Pr[leave i].

### Irreducibility

**Definition** A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

#### Examples:



[A] is not irreducible. It cannot go from (2) to (1).[B] is not irreducible. It cannot go from (2) to (1).

[C] is irreducible. It can go from every *i* to every *j*.

If you consider the graph with arrows when P(i,j) > 0, irreducible means that there is a single connected component.

### **Balance Equations**

**Theorem** A distribution  $\pi_0$  is invariant iff  $\pi_0 P = \pi_0$ . These equations are called the balance equations. **Example 1** 

Example 1.  

$$1-a \quad 1-b \quad P = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix}$$

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]$$

$$\Leftrightarrow \quad \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2)$$

$$\Leftrightarrow \quad \pi(1)a = \pi(2)b.$$

These equations are redundant! We have to add an equation:  $\pi(1) + \pi(2) = 1$ . Then we find

 $\pi = [\frac{b}{a+b}, \frac{a}{a+b}].$ 

### Existence and uniqueness of Invariant Distribution

**Theorem** A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector  $\pi = [\pi(1), ..., \pi(K)]$  such that  $\pi P = \pi$  and  $\sum_k \pi(k) = 1$ .

**Proof:** See EE126, or lecture note 24. (We will not expect you to understand this proof.)

**Note:** We know already that some irreducible Markov chains have multiple invariant distributions.

**Fact:** If a Markov chain has two different invariant distributions  $\pi$  and  $\nu$ , then it has infinitely many invariant distributions. Indeed,  $p\pi + (1-p)\nu$  is then invariant since

 $[p\pi + (1-p)v]P = p\pi P + (1-p)vP = p\pi + (1-p)v.$ 

## **Balance Equations**

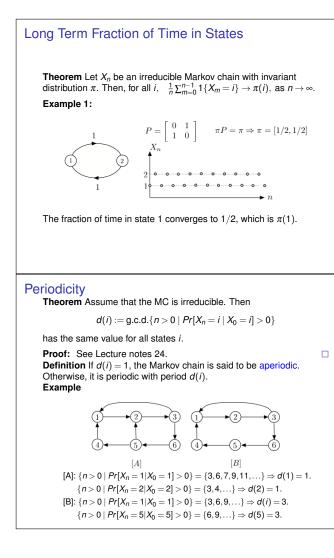
**Theorem** A distribution  $\pi_0$  is invariant iff  $\pi_0 P = \pi_0$ . These equations are called the balance equations. **Example 2:** 

$$1 \underbrace{1}_{2} 1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\pi P = \pi \Leftrightarrow [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \Leftrightarrow \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2).$ 

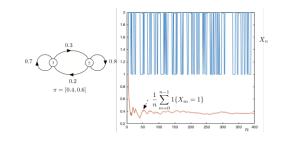
Every distribution is invariant for this Markov chain. This is obvious, since  $X_n = X_0$  for all *n*. Hence,  $Pr[X_n = i] = Pr[X_0 = i], \forall (i, n)$ .

# Long Term Fraction of Time in States


**Theorem** Let  $X_n$  be an irreducible Markov chain with invariant distribution  $\pi$ .

Then, for all *i*,

$$\frac{1}{n}\sum_{m=0}^{n-1} \mathbb{1}\{X_m = i\} \to \pi(i), \text{ as } n \to \infty.$$

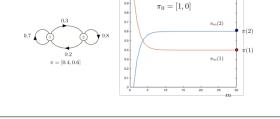

The left-hand side is the fraction of time that  $X_m = i$  during steps 0, 1, ..., n - 1. Thus, this fraction of time approaches  $\pi(i)$ .

**Proof:** See EE126. Lecture note 24 gives a plausibility argument.



## Long Term Fraction of Time in States

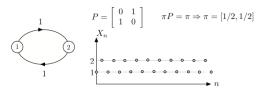
**Theorem** Let  $X_n$  be an irreducible Markov chain with invariant distribution  $\pi$ . Then, for all i,  $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$ , as  $n \to \infty$ . **Example 2:** 




## Convergence of $\pi_n$

**Theorem** Let  $X_n$  be an irreducible and aperiodic Markov chain with invariant distribution  $\pi$ . Then, for all  $i \in \mathcal{X}$ ,

$$\pi_n(i) o \pi(i)$$
, as  $n o \infty$ .






## Convergence to Invariant Distribution

**Question:** Assume that the MC is irreducible. Does  $\pi_n$  approach the unique invariant distribution  $\pi$ ?

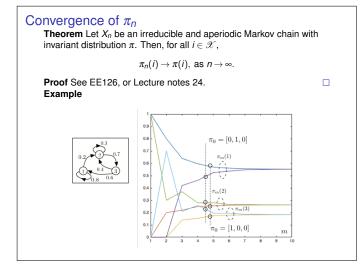
Answer: Not necessarily. Here is an example:



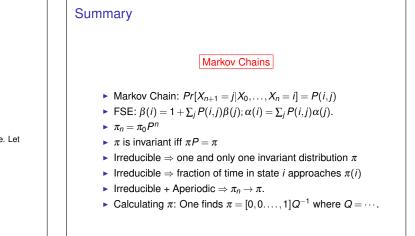
Assume  $X_0 = 1$ . Then  $X_1 = 2, X_2 = 1, X_3 = 2, ...$ Thus, if  $\pi_0 = [1,0], \pi_1 = [0,1], \pi_2 = [1,0], \pi_3 = [0,1]$ , etc. Hence,  $\pi_n$  does not converge to  $\pi = [1/2, 1/2]$ .

### Convergence of $\pi_n$

**Theorem** Let  $X_n$  be an irreducible and aperiodic Markov chain with invariant distribution  $\pi$ . Then, for all  $i \in \mathcal{X}$ ,


 $\pi_n(i) o \pi(i), \text{ as } n o \infty.$ 

Proof See EE126, or Lecture notes 24. Example




m





|                                                                                                                                                                                                                                           | <br> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Calculating $\pi$<br>Let P be irreducible. How do we find $\pi$ ?<br>Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$ .                                                                       | Sum  |
| One has $\pi P = \pi$ , i.e., $\pi [P - I] = 0$ where <i>I</i> is the identity matrix:                                                                                                                                                    |      |
| $\pi \left[ \begin{array}{cccc} 0.8-1 & 0.2 & 0 \\ 0 & 0.3-1 & 0.7 \\ 0.6 & 0.4 & 0-1 \end{array} \right] = [0,0,0].$                                                                                                                     |      |
| However, the sum of the columns of $P - I$ is <b>0</b> . This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi 1 = 1$ , i.e., $\sum_j \pi(j) = 1$ : |      |
| $\pi \left[ \begin{array}{ccc} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{array} \right] = [0, 0, 1].$                                                                                                                    |      |
| Hence,                                                                                                                                                                                                                                    |      |
| $\pi = \begin{bmatrix} 0, 0, 1 \end{bmatrix} \begin{bmatrix} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{bmatrix}^{-1} \approx \begin{bmatrix} 0.55, 0.26, 0.19 \end{bmatrix}$                                             |      |

