

Balance Equations

Question: Is there some π_0 such that $\pi_m = \pi_0, \forall m$?

Definition A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution.

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

Proof: $\pi_n = \pi_0 P^n$, so that $\pi_n = \pi_0, \forall n$ iff $\pi_0 P = \pi_0$.

Thus, if π_0 is invariant, the distribution of X_n is always the same as that of X_0 .

Of course, this does not mean that X_n does not move. It means that the probability that it leaves a state *i* is equal to the probability that it enters state *i*.

The balance equations say that $\sum_{j} \pi(j) P(j,i) = \pi(i)$. That is,

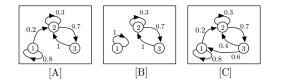
$$\sum_{j \neq i} \pi(j) P(j,i) = \pi(i) (1 - P(i,i)) = \pi(i) \sum_{j \neq i} P(i,j).$$

Thus, Pr[enter i] = Pr[leave i].

Irreducibility

Definition A Markov chain is irreducible if it can go from every state *i* to every state *j* (possibly in multiple steps).

Examples:



[A] is not irreducible. It cannot go from (2) to (1).[B] is not irreducible. It cannot go from (2) to (1).

[C] is irreducible. It can go from every *i* to every *j*.

If you consider the graph with arrows when P(i,j) > 0, irreducible means that there is a single connected component.

Balance Equations

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations. **Example 1**

Example 1.

$$1-a \quad 1-b \quad P = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix}$$

$$\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]$$

$$\Leftrightarrow \quad \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2)$$

$$\Leftrightarrow \quad \pi(1)a = \pi(2)b.$$

These equations are redundant! We have to add an equation: $\pi(1) + \pi(2) = 1$. Then we find

 $\pi = [\frac{b}{a+b}, \frac{a}{a+b}].$

Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), ..., \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Proof: See EE126, or lecture note 24. (We will not expect you to understand this proof.)

Note: We know already that some irreducible Markov chains have multiple invariant distributions.

Fact: If a Markov chain has two different invariant distributions π and ν , then it has infinitely many invariant distributions. Indeed, $p\pi + (1-p)\nu$ is then invariant since

 $[p\pi + (1-p)v]P = p\pi P + (1-p)vP = p\pi + (1-p)v.$

Balance Equations

Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations. **Example 2:**

$$1 \underbrace{1}_{2} 1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\pi P = \pi \Leftrightarrow [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \Leftrightarrow \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2).$

Every distribution is invariant for this Markov chain. This is obvious, since $X_n = X_0$ for all *n*. Hence, $Pr[X_n = i] = Pr[X_0 = i], \forall (i, n)$.

Long Term Fraction of Time in States

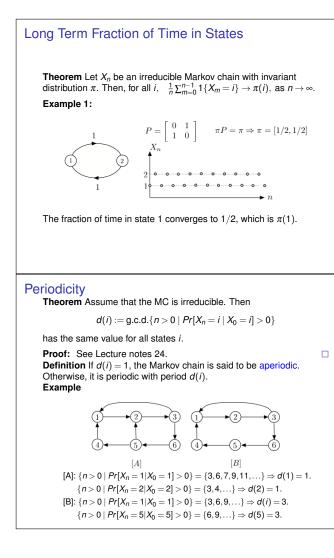
Theorem Let X_n be an irreducible Markov chain with invariant distribution π .

Then, for all *i*,

$$\frac{1}{n}\sum_{m=0}^{n-1} \mathbb{1}\{X_m = i\} \to \pi(i), \text{ as } n \to \infty.$$

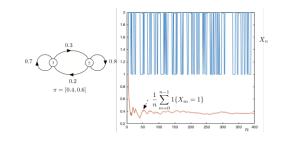
The left-hand side is the fraction of time that $X_m = i$ during steps 0, 1, ..., n - 1. Thus, this fraction of time approaches $\pi(i)$.

Proof: See EE126. Lecture note 24 gives a plausibility argument.



Long Term Fraction of Time in States

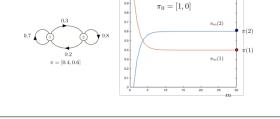
Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$. **Example 2:**



Convergence of π_n

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,

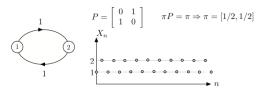
$$\pi_n(i) o \pi(i)$$
, as $n o \infty$.



Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:



Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, ...$ Thus, if $\pi_0 = [1,0], \pi_1 = [0,1], \pi_2 = [1,0], \pi_3 = [0,1]$, etc. Hence, π_n does not converge to $\pi = [1/2, 1/2]$.

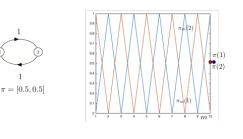
Convergence of π_n

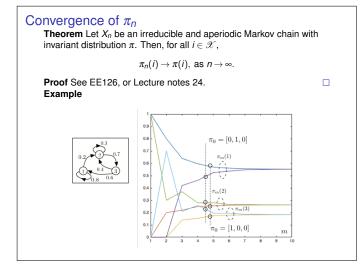
Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,

 $\pi_n(i) o \pi(i), \text{ as } n o \infty.$

Proof See EE126, or Lecture notes 24. Example

m





Calculating π Let P be irreducible. How do we find π ? Example: $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$.	Sum
One has $\pi P = \pi$, i.e., $\pi [P - I] = 0$ where <i>I</i> is the identity matrix:	
$\pi \left[\begin{array}{cccc} 0.8-1 & 0.2 & 0 \\ 0 & 0.3-1 & 0.7 \\ 0.6 & 0.4 & 0-1 \end{array} \right] = [0,0,0].$	
However, the sum of the columns of $P - I$ is 0 . This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi 1 = 1$, i.e., $\sum_j \pi(j) = 1$:	
$\pi \left[\begin{array}{ccc} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{array} \right] = [0, 0, 1].$	
Hence,	
$\pi = \begin{bmatrix} 0, 0, 1 \end{bmatrix} \begin{bmatrix} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{bmatrix}^{-1} \approx \begin{bmatrix} 0.55, 0.26, 0.19 \end{bmatrix}$	

