CS70: Jean Walrand: Lecture 32.

Markov Chains 1

- Examples
- 2. Definition
- 3. First Passage Time

Finite Markov Chain: Definition

- ▶ A finite set of states: $\mathcal{X} = \{1, 2, ..., K\}$
- ▶ A probability distribution π_0 on \mathscr{X} : $\pi_0(i) \ge 0, \sum_i \pi_0(i) = 1$
- ▶ Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

$$P(i,j) \ge 0, \forall i,j; \sum_{i} P(i,j) = 1, \forall i$$

▶ $\{X_n, n \ge 0\}$ is defined so that

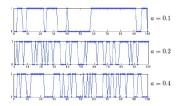
$$Pr[X_0 = i] = \pi_0(i), i \in \mathscr{X}$$
 (initial distribution)

$$Pr[X_{n+1} = j \mid X_0, ..., X_n = i] = P(i,j), i,j \in \mathscr{X}.$$

Two-State Markov Chain

Here is a symmetric two-state Markov chain. It describes a random motion in $\{0,1\}$. Here, a is the probability that the state changes in the next step.

Let's simulate the Markov chain:

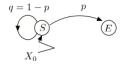


First Passage Time - Example 1

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let's define a Markov chain:

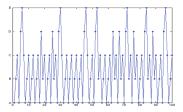
- $X_0 = S \text{ (start)}$
- \rightarrow $X_n = S$ for $n \ge 1$, if last flip was T and no H yet
- ▶ $X_n = E$ for $n \ge 1$, if we already got H (end)



Five-State Markov Chain

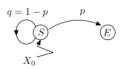
At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.

Let's simulate the Markov chain:



First Passage Time - Example 1

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E, starting from S.

Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

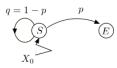
(See next slide.) Hence,

$$p\beta(S) = 1$$
, so that $\beta(S) = 1/p$.

Note: Time until E is G(p). We have rediscovered that the mean of G(p) is 1/p.

First Passage Time - Example 1

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until E. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

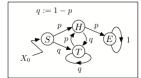
Justification: Let N be the random number of steps until E, starting from S. Let also N' be the number of steps until E, after the second visit to S. Finally, let $Z = 1\{$ first flip $= H\}$. Then,

$$N = 1 + (1 - Z) \times N' + Z \times 0.$$

Now, Z and N' are independent. Also, $E[N'] = E[N] = \beta(S)$. Hence, taking expectation,

$$\beta(S) = E[N] = 1 + (1 - p)E[N'] + p0 = 1 + q\beta(S) + p0.$$

First Passage Time - Example 2



S: Start

H: Last flip = H

II. Last mp — II

T: Last flip = T

E: Done

Let us justify the first step equation for $\beta(T)$. The others are similar.

Let N(T) be the random number of steps, starting from T until the MC hits E. Let also N(H) be defined similarly. Finally, let N'(T) be the number of steps after the second visit to T until the MC hits E. Then,

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where Z = 1 {first flip in T is H}. Since Z and N(H) are independent, and Z and N'(T) are independent, taking expectations, we get

$$E[N(T)] = 1 + pE[N(H)] + qE[N'(T)],$$

i.e.,

$$\beta(T) = 1 + p\beta(H) + q\beta(T).$$

First Passage Time - Example 2

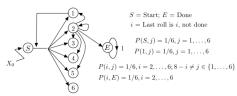
Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average?

Let's define a Markov chain:

- ➤ X₀ = S (start)
- $ightharpoonup X_n = E$, if we already got two consecutive Hs (end)
- \triangleright $X_n = T$, if last flip was T and we are not done
- $ightharpoonup X_n = H$, if last flip was H and we are not done

First Passage Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?



The arrows out of $3, \ldots, 6$ (not shown) are similar to those out of 2.

$$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\dots,6; j \neq 8-i} \beta(j), i = 2,\dots,6.$$

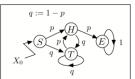
Symmetry: $\beta(2) = \cdots = \beta(6) =: \gamma$. Also, $\beta(1) = \beta(S)$. Thus,

$$\beta(S) = 1 + (5/6)\gamma + \beta(S)/6; \quad \gamma = 1 + (4/6)\gamma + (1/6)\beta(S).$$

 $\Rightarrow \cdots \beta(S) = 8.4.$

First Passage Time - Example 2

Let's flip a coin with Pr[H] = p until we get two consecutive Hs. How many flips, on average? Here is a picture:



S: Start

H: Last flip = H

T: Last flip = T

E: Done

Let $\beta(i)$ be the average time from state *i* until the MC hits state *E*.

We claim that (these are called the first step equations)

$$\beta(S) = 1 + p\beta(H) + q\beta(T)$$

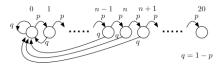
$$\beta(H) = 1 + p0 + q\beta(T)$$

$$\beta(T) = 1 + p\beta(H) + q\beta(T).$$

Solving, we find $\beta(S) = 2 + 3qp^{-1} + q^2p^{-2}$. (E.g., $\beta(S) = 6$ if p = 1/2.)

First Passage Time - Example 4

You try to go up a ladder that has 20 rungs. At each time step, you succeed in going up by one rung with probability p=0.9. Otherwise, you fall back to the ground. How many time steps does it take you to reach the top of the ladder, on average?



$$\beta(n) = 1 + p\beta(n+1) + q\beta(0), 0 \le n < 19$$

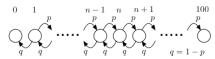
 $\beta(19) = 1 + p0 + q\beta(0)$

$$\Rightarrow \beta(0) = \frac{p^{-20} - 1}{1 - p} \approx 72.$$

See Lecture Note 24 for algebra.

First Passage Time - Example 5

You play a game of "heads or tails" using a biased coin that yields 'heads' with probability p < 0.5. You start with \$10. At each step, if the flip yields 'heads', you earn \$1. Otherwise, you lose \$1. What is the probability that you reach \$100 before \$0?



Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \dots, 100$.

$$\alpha(0) = 0$$
; $\alpha(100) = 1$.
 $\alpha(n) = p\alpha(n+1) + q\alpha(n-1), 0 < n < 100$.

$$\Rightarrow lpha(\emph{n}) = rac{1-
ho^\emph{n}}{1-
ho^\emph{100}}$$
 with $ho = \emph{q}\emph{p}^\emph{-1}$. (See LN 24)

Accumulating Rewards

Let X_n be a Markov chain on $\mathscr X$ with P. Let $A \subset \mathscr X$

Let also $g: \mathscr{X} \to \Re$ be some function.

Define

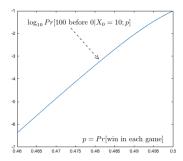
$$\gamma(i) = E[\sum_{n=0}^{T_A} g(X_n) | X_0 = i], i \in \mathscr{X}.$$

Then

$$\gamma(i) = \left\{ egin{array}{ll} g(i), & ext{if } i \in A \ g(i) + \sum_{j} P(i,j) \gamma(j), & ext{otherwise}. \end{array}
ight.$$

First Passage Time - Example 5

You play a game of "heads or tails" using a biased coin that yields 'heads' with probability 0.48. You start with \$10. At each step, if the flip yields 'heads', you earn \$1. Otherwise, you lose \$1. What is the probability that you reach \$100 before \$0?



Morale of example: Be careful!

Example

Flip a fair coin until you get two consecutive Hs.

What is the expected number of Ts that you see?

$$0.5 \longrightarrow 0.5 \longrightarrow 0.5$$

FSE:

$$\begin{split} \gamma(S) &= 0 + 0.5 \gamma(H) + 0.5 \gamma(T) \\ \gamma(H) &= 0 + 0.5 \gamma(HH) + 0.5 \gamma(T) \\ \gamma(T) &= 1 + 0.5 \gamma(H) + 0.5 \gamma(T) \\ \gamma(HH) &= 0. \end{split}$$

Solving, we find $\gamma(S) = 2.5$.

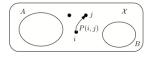
First Step Equations

Let X_n be a MC on $\mathscr X$ and $A, B \subset \mathscr X$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \ge 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \ge 0 \mid X_n \in B\}.$$

Let

$$\beta(i) = E[T_A \mid X_0 = i]$$
 and $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathcal{X}$.



The FSE are

$$\beta(i) = 0, i \in A$$

$$\beta(i) = 1 + \sum_{j} P(i,j)\beta(j), i \notin A$$

$$\alpha(i) = 1, i \in A$$

$$\alpha(i) = 0, i \in B$$

$$\alpha(i) = \sum_{i} P(i,j)\alpha(j), i \notin A \cup B.$$

Summary

Markov Chains

- 1. $Pr[X_{n+1} = j \mid X_0, ..., X_n = i] = P(i,j), i,j \in \mathscr{X}$
- 2. $T_A = \min\{n \ge 0 \mid X_n \in A\}$
- 3. $\alpha(i) = Pr[T_A < T_B | X_0 = i] \Rightarrow FSE$
- 4. $\beta(i) = E[T_A|X_0 = i] \Rightarrow FSE$
- 5. $\gamma(i) = E[\sum_{n=0}^{T_A} g(X_n) | X_0 = i] \Rightarrow FSE$