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Definitions Let X and Y be RVs on Q.
» Joint Distribution: Pr(X =x,Y =y]|
» Marginal Distribution: PriX =x] =Y, PriX=x,Y = y]

» Conditional Distribution: Pr[Y = y|X = x] = %

» LLSE: L[Y|X] = a+ bX where a,b minimize E[(Y —a— bX)?].

We saw that

cov(X,Y)

LIY|X]=E[Y]+ ——+—" var[X]

(X —E[X]).

Recall the non-Bayesian and Bayesian viewpoints.
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Nonlinear Regression: Motivation

There are many situations where a good guess about Y given X is
not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level,
cancer risk).
. Y Bettey estimate

LY |X] v
v

Our goal: explore estimates ¥ = g(X) for nonlinear functions g(.).
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Quadratic Regression

Let X, Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable
Q[Y|X] = a+bX+cX?

where a, b, ¢ are chosen to minimize E[(Y —a— bX — cX?)?].
Derivation: We set to zero the derivatives w.r.t. a,b,c. We get

0 = E[Y-a-bX—-cX?q
0 = E[(Y-a-bX—-cX?)X]
0 = E[(Y-—a-bX—-cX?)X?

We solve these three equations in the three unknowns (a, b, c).

Note: These equations imply that E[(Y — Q[Y|X])h(X)] = 0O for any
h(X) = d+eX + fX?. That is, the estimation error is orthogonal to all
the quadratic functions of X. Hence, Q[Y|X] is the projection of Y
onto the space of quadratic functions of X.
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Conditional Expectation

Definition Let X and Y be RVs on Q. The conditional
expectation of Y given X is defined as

E[Y|X]=g(X)
where
g(x):=E[Y|X=x]:=) yPr[Y = y|X = x].
y

Fact
E[Y|X=x]=Y Y(0)Prlw|X = x].

Proof: E[Y|X = x] = E[Y|A] with A= {0 : X(®) = x}.
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Deja vu, all over again?

Have we seen this before? Yes.
Is anything new? Yes.

The idea of defining g(x) = E[Y|X = x] and then
E[Y[X] = 9(X).

Big deal? Quite! Simple but most convenient.
Recall that L[Y|X] = a+ bX is a function of X.
This is similar: E[Y|X] = g(X) for some function g(-).

In general, g(X) is not linear, i.e., not a+ bX. It could be that
9(X) = a-+bX +cX?. Orthat g(X) = 2sin(4X) +exp{—-3X}. Or
something else.
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Proof: (continued)
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Hence,

E[Xn 1] =1+ pE[Xp]

E[Xe] =14pN;E[Xs] =1+p(1+pN)=1+p+p°N
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1 _pn—1

E[X,] = +p"'N,n>1.
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In this example, d = 4.
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Fact: Let X =Y, _; X,. Then, E[X] < iff pd < 1.

Proof:
Given X, = k, Xp.1 = B(kd, p). Hence, E[X,,.1|Xn = k] = kpd.

Thus, E[X.1|Xn] = pdX,. Consequently, E[X,] = (pd)"",n>1.
If pd <1, then E[X; 4+ Xp] < (1 —pd) ' = E[X] < (1-pd)~".

If pd > 1, then for all C one can find n s.t.
E[X]>E[Xi+---+Xs] > C.

In fact, one can show that pd > 1 = Pr[X =] > 0.
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An easy extension: Assume that everyone has an independent
number D; of friends with E[D;] = d. Then, the same fact holds.

To see this, note that given X, = k, and given the numbers of friends
Dy =di,...,Dx = di of these X, people, one has
Xny1 = B(dy +---+dk, p). Hence,

E[Xn+1|Xn:k,D1 =d1,...,Dk=dk] Zp(d1 +—|—dk)
Thus, E[Xn+1 |Xn: k,D1,...,Dk] :,D(D1 —|—+Dk)
Consequently, E[ X, 1|Xn = k] = E[p(D1 +- - - + Dx)] = pdk.
Finally, E[Xp1|Xn] = pdXn, and E[Xp,1] = pdE[Xj].

We conclude as before.
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Here is an extension of an identity we used in the last slide.
Theorem Wald’s Identity

Assume that Xy, X5, ... and Z are independent, where
Z takes values in {0,1,2,...}

and E[X,]=u foralln>1.

Then,
E[Xi+ -+ Xz] =uE[Z].

Proof:

E[Xi 4+ Xz|Z = K] = uk.

Thus, E[Xy +--- 4+ Xz|Z] = nZ.

Hence, E[Xi +---+ Xz| = E[uZ] = pE[Z].
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Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes
E[(Y - g(X))7.

Proof:

Let h(X) be any function of X. Then

EI(Y —g(X)+9(X) —h(X))?]
EI(Y = 9(X))?1+ El(g(X) — h(X))?]
+2E[(Y = g(X))(g(X) = h(X))].

EI(Y —h(X))?]

But,
E[(Y —g(X))(g(X) — h(X))] = 0 by the projection property.
Thus, E[(Y - h(X))?] = E[(Y —g(X))?].
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h(X)
E[Y|X]

- Ly|x] {9(X),g0): R R}

L[Y|X] is the projection of Y on {a+ bX,a,b e R}: LLSE
E[Y|X] is the projection of Y on {g(X),g(:) : ® — R}: MMSE.
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Summary

‘ Conditional Expectation ‘

v

Definition: E[Y[X]: =Y, yPr[Y = y|X = X]
Properties: Linearity,

Y —E[Y|X] L h(X); E[E[Y|X]] = E[Y]
Some Applications:

Calculating E[Y|X]

Diluting

Mixing

Rumors

Wald

MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)

v
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