CS70: Jean Walrand: Lecture 31.
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Nonlinear Regression

Review: joint distribution, LLSE
Quadratic Regression

Definition of Conditional expectation
Properties of CE

Applications: Diluting, Mixing, Rumors
CE = MMSE



Review

Definitions Let X and Y be RVs on Q.
» Joint Distribution: Pr(X =x,Y =y]|
» Marginal Distribution: PriX =x] =Y, PriX=x,Y = y]

» Conditional Distribution: Pr[Y = y|X = x] = %

» LLSE: L[Y|X] = a+ bX where a,b minimize E[(Y —a— bX)?].

We saw that

cov(X,Y)

LIY|X]=E[Y]+ ——+—" var[X]

(X —E[X]).

Recall the non-Bayesian and Bayesian viewpoints.



Nonlinear Regression: Motivation

There are many situations where a good guess about Y given X is
not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level,
cancer risk).
. Y Bettey estimate

LY |X] v
v

Our goal: explore estimates ¥ = g(X) for nonlinear functions g(.).



Quadratic Regression

Let X, Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable
Q[Y|X] = a+bX+cX?

where a, b, ¢ are chosen to minimize E[(Y —a— bX — cX?)?].
Derivation: We set to zero the derivatives w.r.t. a,b,c. We get

0 = E[Y-a-bX—-cX?q
0 = E[(Y-a-bX—-cX?)X]
0 = E[(Y-—a-bX—-cX?)X?

We solve these three equations in the three unknowns (a, b, c).

Note: These equations imply that E[(Y — Q[Y|X])h(X)] = 0O for any
h(X) = d+eX + fX?. That is, the estimation error is orthogonal to all
the quadratic functions of X. Hence, Q[Y|X] is the projection of Y
onto the space of quadratic functions of X.



Conditional Expectation

Definition Let X and Y be RVs on Q. The conditional
expectation of Y given X is defined as

E[Y|X]=g(X)
where
g(x):=E[Y|X=x]:=) yPr[Y = y|X = x].
y

Fact
E[Y|X=x]=Y Y(0)Prlw|X = x].

Proof: E[Y|X = x] = E[Y|A] with A= {0 : X(®) = x}.



Deja vu, all over again?

Have we seen this before? Yes.
Is anything new? Yes.

The idea of defining g(x) = E[Y|X = x] and then
E[Y[X] = 9(X).

Big deal? Quite! Simple but most convenient.
Recall that L[Y|X] = a+ bX is a function of X.
This is similar: E[Y|X] = g(X) for some function g(-).

In general, g(X) is not linear, i.e., not a+ bX. It could be that
9(X) = a-+bX +cX?. Orthat g(X) = 2sin(4X) +exp{—-3X}. Or
something else.



Properties of CE
E[Y|X=x]=Y yPr[Y =y|X =X]
y

Theorem
(@) X,Y independent = E[Y|X] = E[Y];
(

b) E[aY + bZ|X] = aE[Y|X]+ bE[Z|X];

(c) E[Yh(X)|X] = h(X)E[Y|X],Vh(-);

(d) E[A(X)E[Y|X]] = E[h(X) Y], Vh();

(e) EIE[Y|X]] = E[Y].

Proof:

(a),(b) Obvious

(c) E[Yh(X)|X =x]= ZY o)Pr[o|X = x]

—ZY X)Pr[o|X = x] = h(x)E[Y|X = X]



Properties of CE

E[Y|X=x]=Y yPr[Y =y|X =X]
y

Theorem

(@) X, Y independent = E[Y|X] = E[Y];
(b) E[aY +bZ|X] = aE[Y|X]+ bE[Z|X];
(c) E[Yh(X)|X] = h(X)E[Y|X],Vh(");

(d) E[A(X)E[Y|X]] = E[h(X) Y],Vh(-);
(e) E[E[Y[X]] = E[Y].

Proof: (continued)
d) E[h(X)E[Y|X]] = Zh X)E[Y|X = x]Pr[X = x]

_th)ZyPr[Y y|X = X]Pr[X = x]
_Zh ZyPr[X X,y =Y]

Z yPr[X x,y =yl = E[h(X)Y].
Xy



Properties of CE

E[Y|X=x]=Y yPr[Y =y|X =X]
y

Theorem
(a) X, Y independent = E[Y|X] = E[Y];
(b) E[aY +bZ|X] = aE[Y|X] + bE[Z|X];
(c) E[Yh(X)|X] = h(X)E[Y|X],vh(.);

(d) E[A(X)E[Y|X]] = E[h(X) Y],Vh(-);
(e) E[E[Y|X]] = E[Y].

Proof: (continued)
(e) Let h(X)=1in(d).



Properties of CE

Theorem
(@) X, Y independent = E[Y|X] = E[Y];
(b) E[aY +bZ|X] = aE[Y|X]+ bE[Z|X];
(c) E[Yh(X)|X] = h(X)E[Y|X],Vh(");

(d) E[A(X)E[Y|X]] = E[h(X) Y],Vh(");
(e) E[E[YIX]] = E[Y].

Note that (d) says that
E[(Y — E[Y|X]))h(X)] = 0.

We say that the estimation error Y — E[Y|X] is orthogonal to
every function h(X) of X.

We call this the projection property. More about this later.



Application: Calculating E[Y|X]

Let X, Y,Z be i.i.d. with mean 0 and variance 1. We want to
calculate

E[2+5X+7XY +11X2 +13X322|X].

We find

E[24+5X+7XY +11X% +13X322|X]
=24+ 5X +7XE[Y|X]+11X? +13X3E[Z%| X]
=24+ 5X+7XE[Y]+11X2 +13X3E[Z?]
=24+ 5X+11X2+13X3(var[Z] + E[Z)?)
=245X+11X24+13X3,



Application: Diluting

3N S 1
ey

X, =N Xo=N-1 X;=N-2 X,=N-2

red balls

At each step, pick a ball from a well-mixed urn. Replace it with a blue
ball. Let X, be the number of red balls in the urn at step n. What is
E[Xn]?
Given X, =m, X,,.1 = m—1w.p. m/N (if you pick a red ball) and
Xny1 = motherwise. Hence,
E[Xp1|Xn=ml=m—(m/N)=m(N—-1)/N = X,p,
with p := (N—1)/N. Consequently,
E[Xn11] = E[EXn: 1| X0l = pE[Xal.n > 1.

N-1

N

— E[Xp] =p™ TE[Xq] = N( =1 n>1.



Diluting
Here is a plot:
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Diluting

By analyzing E[X,11|Xn], we found that
E[Xn] = N(NG)1 n>1.

Here is another argument for that result.

Consider one particular red ball, say ball k. At each step, it
remains red w.p. (N—1)/N, when another ball is picked. Thus,
the probability that it is still red at step nis [(N—1)/N]"'. Let

Yn(k) = 1{ball k is red at step n}.
Then, X, = Ys(1)+---+ Ya(N). Hence,

E[Xn] = E[Yn(1)+---+ Ya(N)] = NE[Yn(1)]
= NPr[Y,(1)=1]=N[(N—1)/N]".



Application: Mixing

red balls

@ | ® | ® |
S E S

At each step, pick a ball from each well-mixed urn. We transfer them
to the other urn. Let X, be the number of red balls in the bottom urn
at step n. Whatis E[X;]?

Given Xp=m, Xpp1 =m+1wp. pand X, =m—1w.p. q

where p = (1 —m/N)? (B goes up, R down) and g = (m/N)? (R goes
up, B down).

Thus,



Mixing

We saw that E[X,.1|Xn] =1+ pXn, p:=(1—-2/N). Hence,

Hence,

E[Xn 1] =1+ pE[Xp]

E[Xe] =14pN;E[Xs] =1+p(1+pN)=1+p+p°N
EXs)=1+p(1+p+p°N)=1+p+p2+p°N
E[Xp]=1+p+---+p " 2+p"'N.

1 _pn—1

E[X,] = +p"'N,n>1.



Application: Mixing
Here is the plot.
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Application: Going Viral
Consider a social network (e.g., Twitter).
You start a rumor (e.g., Walrand is really weird).
You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

X1:1

[0 0 s o] [op e o]
/ VAR

‘ooooHooooHoooo

Xy=5H

In this example, d = 4.



Application: Going Viral

[0 02 o] [0 p &0ofx=s
/ VAR

‘O ® O OHO o @ OH. o @ .‘X~1=5

Fact: Let X =Y, _; X,. Then, E[X] < iff pd < 1.

Proof:
Given X, = k, Xp.1 = B(kd, p). Hence, E[X,,.1|Xn = k] = kpd.

Thus, E[X.1|Xn] = pdX,. Consequently, E[X,] = (pd)"",n>1.
If pd <1, then E[X; 4+ Xp] < (1 —pd) ' = E[X] < (1-pd)~".

If pd > 1, then for all C one can find n s.t.
E[X]>E[Xi+---+Xs] > C.

In fact, one can show that pd > 1 = Pr[X =] > 0.



Application: Going Viral

[0 0@ of [0 & ofx=s
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An easy extension: Assume that everyone has an independent
number D; of friends with E[D;] = d. Then, the same fact holds.

To see this, note that given X, = k, and given the numbers of friends
Dy =di,...,Dx = di of these X, people, one has
Xny1 = B(dy +---+dk, p). Hence,

E[Xn+1|Xn:k,D1 =d1,...,Dk=dk] Zp(d1 +—|—dk)
Thus, E[Xn+1 |Xn: k,D1,...,Dk] :,D(D1 —|—+Dk)
Consequently, E[ X, 1|Xn = k] = E[p(D1 +- - - + Dx)] = pdk.
Finally, E[Xp1|Xn] = pdXn, and E[Xp,1] = pdE[Xj].

We conclude as before.



Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.
Theorem Wald’s Identity

Assume that Xy, X5, ... and Z are independent, where
Z takes values in {0,1,2,...}

and E[X,]=u foralln>1.

Then,
E[Xi+ -+ Xz] =uE[Z].

Proof:

E[Xi 4+ Xz|Z = K] = uk.

Thus, E[Xy +--- 4+ Xz|Z] = nZ.

Hence, E[Xi +---+ Xz| = E[uZ] = pE[Z].



CE = MMSE

Theorem
E[Y|X] is the ‘best’ guess about Y based on X.

Specifically, it is the function g(X) of X that

minimizes E[(Y — g(X))?].

- .HY
. . EY[X]
. . n oo 3,
: e E . E Linear Regression
: : - X




CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes
E[(Y - g(X))7.

Proof:

Let h(X) be any function of X. Then

EI(Y —g(X)+9(X) —h(X))?]
EI(Y = 9(X))?1+ El(g(X) — h(X))?]
+2E[(Y = g(X))(g(X) = h(X))].

EI(Y —h(X))?]

But,
E[(Y —g(X))(g(X) — h(X))] = 0 by the projection property.
Thus, E[(Y - h(X))?] = E[(Y —g(X))?].



E[Y|X] and L[Y|X] as projections

%

{e+dX, e, d € R}

h(X)
E[Y|X]

- Ly|x] {9(X),g0): R R}

L[Y|X] is the projection of Y on {a+ bX,a,b e R}: LLSE
E[Y|X] is the projection of Y on {g(X),g(:) : ® — R}: MMSE.



Summary

‘ Conditional Expectation ‘

v

Definition: E[Y[X]: =Y, yPr[Y = y|X = X]
Properties: Linearity,

Y —E[Y|X] L h(X); E[E[Y|X]] = E[Y]
Some Applications:

Calculating E[Y|X]

Diluting

Mixing

Rumors

Wald

MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)

v

v
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