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Linear Regression: Preamble

The best guess about Y , if we know only the distribution of Y , is E [Y ].

More precisely, the value of a that minimizes E [(Y −a)2] is a = E [Y ].

Proof:

Let Ŷ := Y −E [Y ]. Then, E [Ŷ ] = 0. So, E [Ŷ c] = 0,∀c. Now,

E [(Y −a)2] = E [(Y −E [Y ]+E [Y ]−a)2]

= E [(Ŷ +c)2] with c = E [Y ]−a

= E [Ŷ 2 +2Ŷ c+c2] = E [Ŷ 2]+2E [Ŷ c]+c2

= E [Ŷ 2]+0+c2 ≥ E [Ŷ 2].

Hence, E [(Y −a)2]≥ E [(Y −E [Y ])2],∀a.

Linear Regression: Preamble

Thus, if we want to guess the value of Y , we choose E [Y ].

Now assume we make some observation X related to Y .

How do we use that observation to improve our guess about Y ?

The idea is to use a function g(X ) of the observation to
estimate Y .

The simplest function g(X ) is a constant that does not depend
of X .

The next simplest function is linear: g(X ) = a+bX .

What is the best linear function? That is our next topic.

A bit later, we will consider a general function g(X ).

Linear Regression: Motivation
Example 1: 100 people.

Let (Xn,Yn) = (height, weight) of person n, for n = 1, . . . ,100:

E[Y ]

Y

X

The blue line is Y =−114.3+106.5X . (X in meters, Y in kg.)

Best linear fit: Linear Regression.

Motivation

Example 2: 15 people.

We look at two attributes: (Xn,Yn) of person n, for n = 1, . . . ,15:

The line Y = a+bX is the linear regression.

Covariance

Definition The covariance of X and Y is

cov(X ,Y ) := E [(X −E [X ])(Y −E [Y ])].

Fact
cov(X ,Y ) = E [XY ]−E [X ]E [Y ].

Proof:

E [(X −E [X ])(Y −E [Y ])] = E [XY −E [X ]Y −XE [Y ]+E [X ]E [Y ]]

= E [XY ]−E [X ]E [Y ]−E [X ]E [Y ]+E [X ]E [Y ]

= E [XY ]−E [X ]E [Y ].



Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y )> 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y )< 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.

Examples of Covariance

E [X ] = 1×0.15+2×0.4+3×0.45 = 1.9
E [X 2] = 12×0.15+22×0.4+32×0.45 = 5.8
E [Y ] = 1×0.2+2×0.6+3×0.2 = 2
E [XY ] = 1×0.05+1×2×0.1+ · · ·+3×3×0.2 = 4.85
cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = 1.05
var [X ] = E [X 2]−E [X ]2 = 2.19.

Properties of Covariance

cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] = E [XY ]−E [X ]E [Y ].

Fact
(a) var [X ] = cov(X ,X )
(b) X ,Y independent⇒ cov(X ,Y ) = 0
(c) cov(a+X ,b+Y ) = cov(X ,Y )
(d) cov(aX +bY ,cU +dV ) = ac.cov(X ,U)+ad .cov(X ,V )

+bc.cov(Y ,U)+bd .cov(Y ,V ).
Proof:
(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the
RVs are zero-mean. Then,

cov(aX +bY ,cU +dV ) = E [(aX +bY )(cU +dV )]

= ac.E [XU]+ad .E [XV ]+bc.E [YU]+bd .E [YV ]

= ac.cov(X ,U)+ad .cov(X ,V )+bc.cov(Y ,U)+bd .cov(Y ,V ).

Linear Regression: Non-Bayesian
Definition
Given the samples {(Xn,Yn),n = 1, . . . ,N}, the Linear
Regression of Y over X is

Ŷ = a+bX

where (a,b) minimize

N

∑
n=1

(Yn−a−bXn)
2.

Thus, Ŷn = a+bXn is our guess about Yn given Xn. The
squared error is (Yn− Ŷn)

2. The LR minimizes the sum of the
squared errors.

Why the squares and not the absolute values? Main
justification: much easier!

Note: This is a non-Bayesian formulation: there is no prior.

Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution
Pr [X = x ,Y = y ], the Linear Least Squares Estimate of Y given
X is

Ŷ = a+bX =: L[Y |X ]

where (a,b) minimize

g(a,b) := E [(Y −a−bX )2].

Thus, Ŷ = a+bX is our guess about Y given X . The squared
error is (Y − Ŷ )2. The LLSE minimizes the expected value of
the squared error.

Why the squares and not the absolute values? Main
justification: much easier!

Note: This is a Bayesian formulation: there is a prior.

LR: Non-Bayesian or Uniform?

Observe that

1
N

N

∑
n=1

(Yn−a−bXn)
2 = E [(Y −a−bX )2]

where one assumes that

(X ,Y ) = (Xn,Yn), w.p.
1
N

for n = 1, . . . ,N.

That is, the non-Bayesian LR is equivalent to the Bayesian
LLSE that assumes that (X ,Y ) is uniform on the set of
observed samples.

Thus, we can study the two cases LR and LLSE in one shot.

However, the interpretations are different!



LLSE

Theorem
Consider two RVs X ,Y with a given distribution
Pr [X = x ,Y = y ]. Then,

L[Y |X ] = Ŷ = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ]).

Proof 1:
Y − Ŷ = (Y −E [Y ])− cov(X ,Y )

var [X ] (X −E [X ]). Hence, E [Y − Ŷ ] = 0.

Also, E [(Y − Ŷ )X ] = 0, after a bit of algebra. (See next slide.)

Hence, by combining the two brown equalities,
E [(Y − Ŷ )(c+dX )] = 0. Then, E [(Y − Ŷ )(Ŷ −a−bX )] = 0,∀a,b.
Indeed: Ŷ = α +βX for some α,β , so that Ŷ −a−bX = c+dX for
some c,d . Now,

E [(Y −a−bX )2] = E [(Y − Ŷ + Ŷ −a−bX )2]

= E [(Y − Ŷ )2]+E [(Ŷ −a−bX )2]+0≥ E [(Y − Ŷ )2].

This shows that E [(Y − Ŷ )2]≤ E [(Y −a−bX )2], for all (a,b).
Thus Ŷ is the LLSE.

A Bit of Algebra

Y − Ŷ = (Y −E [Y ])− cov(X ,Y )
var [X ] (X −E [X ]).

Hence, E [Y − Ŷ ] = 0. We want to show that E [(Y − Ŷ )X ] = 0.

Note that
E [(Y − Ŷ )X ] = E [(Y − Ŷ )(X −E [X ])],

because E [(Y − Ŷ )E [X ]] = 0.

Now,

E [(Y − Ŷ )(X −E [X ])]

= E [(Y −E [Y ])(X −E [X ])]− cov(X ,Y )

var [X ]
E [(X −E [X ])(X −E [X ])]

=(∗) cov(X ,Y )− cov(X ,Y )

var [X ]
var [X ] = 0.

(∗) Recall that cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] and
var [X ] = E [(X −E [X ])2].

Estimation Error

We saw that the LLSE of Y given X is

L[Y |X ] = Ŷ = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ]).

How good is this estimator? That is, what is the mean squared
estimation error?

We find

E [|Y −L[Y |X ]|2] = E [(Y −E [Y ]− (cov(X ,Y )/var(X ))(X −E [X ]))2]

= E [(Y −E [Y ])2]−2(cov(X ,Y )/var(X ))E [(Y −E [Y ])(X −E [X ])]

+(cov(X ,Y )/var(X ))2E [(X −E [X ])2]

= var(Y )− cov(X ,Y )2

var(X )
.

Without observations, the estimate is E [Y ] = 0. The error is var(Y ).
Observing X reduces the error.

Estimation Error: A Picture
We saw that

L[Y |X ] = Ŷ = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ])

and

E [|Y −L[Y |X ]|2] = var(Y )− cov(X ,Y )2

var(X )
.

Here is a picture when E [X ] = 0,E [Y ] = 0:

Linear Regression Examples

Example 1:

Linear Regression Examples

Example 2:

We find:

E [X ] = 0;E [Y ] = 0;E [X 2] = 1/2;E [XY ] = 1/2;
var [X ] = E [X 2]−E [X ]2 = 1/2;cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = 1/2;

LR: Ŷ = E [Y ]+
cov(X ,Y )

var [X ]
(X −E [X ]) = X .



Linear Regression Examples

Example 3:

We find:

E [X ] = 0;E [Y ] = 0;E [X2] = 1/2;E [XY ] = −1/2;

var [X ] = E [X2]−E [X ]2 = 1/2;cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = −1/2;

LR: Ŷ = E [Y ]+
cov(X ,Y )

var [X ]
(X −E [X ]) =−X .

Linear Regression Examples
Example 4:

We find:

E [X ] = 3;E [Y ] = 2.5;E [X 2] = (3/15)(1+22 +32 +42 +52) = 11;
E [XY ] = (1/15)(1×1+1×2+ · · ·+5×4) = 8.4;
var [X ] = 11−9 = 2;cov(X ,Y ) = 8.4−3×2.5 = 0.9;

LR: Ŷ = 2.5+
0.9
2

(X −3) = 1.15+0.45X .

LR: Another Figure

Note that

I the LR line goes through (E [X ],E [Y ])

I its slope is cov(X ,Y )
var(X) .

Summary

Linear Regression

1. Linear Regression: L[Y |X ] = E [Y ]+ cov(X ,Y )
var(X) (X −E [X ])

2. Non-Bayesian: minimize ∑n(Yn−a−bXn)
2

3. Bayesian: minimize E [(Y −a−bX )2]


