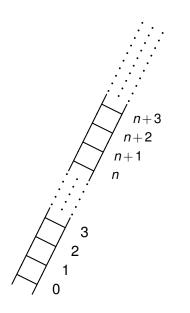
CS70: Lecture 3. Induction!

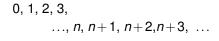
- The natural numbers.
- 2. Seven year old Gauss.
- 3. ...and Induction.
- 4. Simple Proof.
- Two coloring map

(mostly) Next time:

- 1. Strengthening induction.
- 2. Tiling Cory Hall courtyard.
- 3. Horses with one color...

The naturals.





A Story about a 7-year old Gauss.

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's 5050! (that is, $\frac{(100)(101)}{2}$)

Gauss and Induction

Child Gauss:
$$(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate for n = k. $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. $\sum_{i=1}^{1} i = 1 = \frac{(1)(2)}{2}$ Base Case.

Statement is true for n = 0plus inductive step \implies true for n = 1plus inductive step \implies true for n = 2

true for $n = k \implies$ true for n = k + 1

Predicate True for all natural numbers!

Proof by Induction.

Induction

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- ▶ The sum of the first *n* odd integers is a perfect square.

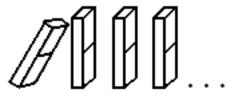
The basic form

- ▶ Prove P(0). "Base Case".
- $P(k) \Longrightarrow P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - ▶ Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!!

Notes visualization

An visualization: an infinite sequence of dominos.

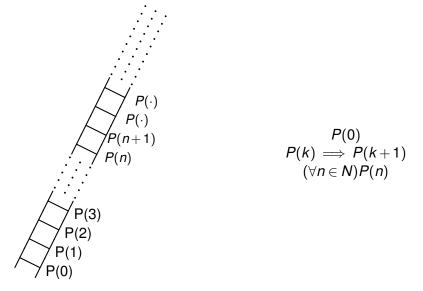


Prove they all fall down;

- ► P(0) = "First domino falls"
- $(\forall k) P(k) \Longrightarrow P(k+1):$

"kth domino falls implies that k+1st domino falls"

Climb an infinite ladder?



Your favorite example of "forever"...or the integers...

Simple induction proof.

Theorem: For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Hypothesis: $1 + \cdots + n = \frac{n(n+1)}{2}$

$$1 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n^2 + n + 2(n+1)}{2}$$

$$= \frac{n^2 + 3n + 2}{2}$$

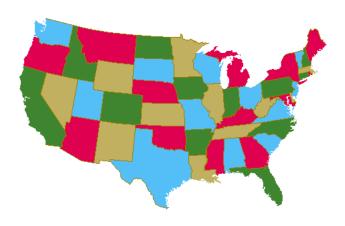
$$= \frac{(n+1)(n+2)}{2}$$

Induction Hypothesis.

$$P(n+1)! \ (\forall n \in N) \ (P(n) \implies P(n+1)).$$

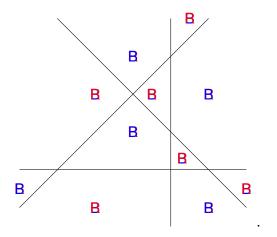
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.



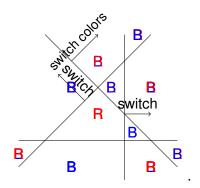
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.



Fact: Swapping red and blue gives another valid coloring.

Two color theorem: proof illustration.



Base Case.

- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)

Algorithm gives $P(k) \implies P(k+1)$.

Summary: principle of induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Variations:
 $(P(0) \land ((\forall n \in N)(P(n) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$
 $(P(1) \land ((\forall n \in N)((n \ge 1) \land P(n)) \Longrightarrow P(n+1))))$
 $\Longrightarrow (\forall n \in N)((n \ge 1) \Longrightarrow P(n))$

Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$.

Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$.

Statement is proven!