CS70: Jean Walrand: Lecture 29.

Confidence Intervals

CS70: Jean Walrand: Lecture 29.

Confidence Intervals

- 1. Confidence?
- 2. Example
- 3. Review of Chebyshev
- 4. Confidence Interval with Chebyshev
- 5. More examples

▶ You flip a coin once and get *H*.

You flip a coin once and get *H*.
 Do think that *Pr*[*H*] = 1?

You flip a coin once and get H. Do think that Pr[H] = 1?

> You flip a coin 10 times and get 5 Hs.

You flip a coin once and get *H*.
 Do think that *Pr*[*H*] = 1?

You flip a coin 10 times and get 5 Hs. Are you sure that Pr[H] = 0.5?

- You flip a coin once and get *H*.
 Do think that Pr[H] = 1?
- You flip a coin 10 times and get 5 Hs. Are you sure that Pr[H] = 0.5?
- You flip a coin 10⁶ times and get 35% of Hs.

- You flip a coin once and get H. Do think that Pr[H] = 1?
- You flip a coin 10 times and get 5 Hs. Are you sure that Pr[H] = 0.5?
- You flip a coin 10⁶ times and get 35% of Hs. How much are you willing to bet that Pr[H] is exactly 0.35?

- You flip a coin once and get H. Do think that Pr[H] = 1?
- You flip a coin 10 times and get 5 Hs. Are you sure that Pr[H] = 0.5?
- You flip a coin 10⁶ times and get 35% of *Hs*. How much are you willing to bet that *Pr*[*H*] is exactly 0.35? How much are you willing to bet that *Pr*[*H*] ∈ [0.3, 0.4]?

- You flip a coin once and get H. Do think that Pr[H] = 1?
- You flip a coin 10 times and get 5 Hs. Are you sure that Pr[H] = 0.5?
- You flip a coin 10⁶ times and get 35% of *H*s.
 How much are you willing to bet that *Pr*[*H*] is exactly 0.35?
 How much are you willing to bet that *Pr*[*H*] ∈ [0.3, 0.4]?

More generally, you estimate an unknown quantity θ .

- You flip a coin once and get H. Do think that Pr[H] = 1?
- You flip a coin 10 times and get 5 Hs. Are you sure that Pr[H] = 0.5?
- You flip a coin 10⁶ times and get 35% of *H*s.
 How much are you willing to bet that *Pr*[*H*] is exactly 0.35?
 How much are you willing to bet that *Pr*[*H*] ∈ [0.3, 0.4]?

More generally, you estimate an unknown quantity θ . Your estimate is $\hat{\theta}$.

You flip a coin once and get H. Do think that Pr[H] = 1?

- You flip a coin 10 times and get 5 Hs. Are you sure that Pr[H] = 0.5?
- You flip a coin 10⁶ times and get 35% of *H*s.
 How much are you willing to bet that *Pr*[*H*] is exactly 0.35?
 How much are you willing to bet that *Pr*[*H*] ∈ [0.3, 0.4]?

More generally, you estimate an unknown quantity θ . Your estimate is $\hat{\theta}$.

How much confidence do you have in your estimate?

Confidence is essential is many applications:

How effective is a medication?

- How effective is a medication?
- Are we sure of the milage of a car?

- How effective is a medication?
- Are we sure of the milage of a car?
- Can we guarantee the lifespan of a device?

- How effective is a medication?
- Are we sure of the milage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?

- How effective is a medication?
- Are we sure of the milage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
- Is an algorithm guaranteed to be fast?

- How effective is a medication?
- Are we sure of the milage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
- Is an algorithm guaranteed to be fast?
- Do we know that a program has no bug?

Confidence is essential is many applications:

- How effective is a medication?
- Are we sure of the milage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
- Is an algorithm guaranteed to be fast?
- Do we know that a program has no bug?

As scientists and engineers, you should become convinced of this fact:

Confidence is essential is many applications:

- How effective is a medication?
- Are we sure of the milage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
- Is an algorithm guaranteed to be fast?
- Do we know that a program has no bug?

As scientists and engineers, you should become convinced of this fact:

An estimate without confidence level is useless!

The following definition captures precisely the notion of confidence.

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

 $Pr[\theta \in [a, b]] \ge 95\%.$

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

 $Pr[\theta \in [a, b]] \ge 95\%.$

The interval [a, b] is calculated on the basis of observations.

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

```
Pr[\theta \in [a, b]] \ge 95\%.
```

The interval [a, b] is calculated on the basis of observations.

Here is a typical framework.

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

```
Pr[\theta \in [a, b]] \ge 95\%.
```

The interval [a, b] is calculated on the basis of observations.

Here is a typical framework. Assume that $X_1, X_2, ..., X_n$ are i.i.d. and have a distribution that depends on some parameter θ .

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

 $Pr[\theta \in [a, b]] \ge 95\%.$

The interval [a, b] is calculated on the basis of observations.

Here is a typical framework. Assume that $X_1, X_2, ..., X_n$ are i.i.d. and have a distribution that depends on some parameter θ .

For instance, $X_n = B(\theta)$.

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

```
Pr[\theta \in [a, b]] \ge 95\%.
```

The interval [a, b] is calculated on the basis of observations.

Here is a typical framework. Assume that $X_1, X_2, ..., X_n$ are i.i.d. and have a distribution that depends on some parameter θ .

For instance, $X_n = B(\theta)$.

Thus, more precisely,

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

 $Pr[\theta \in [a, b]] \ge 95\%.$

The interval [a, b] is calculated on the basis of observations.

Here is a typical framework. Assume that $X_1, X_2, ..., X_n$ are i.i.d. and have a distribution that depends on some parameter θ .

For instance, $X_n = B(\theta)$.

Thus, more precisely, given θ , the random variables X_n are i.i.d. with a known distribution (that depends on θ).

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

 $Pr[\theta \in [a, b]] \ge 95\%.$

The interval [a, b] is calculated on the basis of observations.

Here is a typical framework. Assume that $X_1, X_2, ..., X_n$ are i.i.d. and have a distribution that depends on some parameter θ .

For instance, $X_n = B(\theta)$.

Thus, more precisely, given θ , the random variables X_n are i.i.d. with a known distribution (that depends on θ).

• We observe X_1, \ldots, X_n

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

 $Pr[\theta \in [a, b]] \ge 95\%.$

The interval [a, b] is calculated on the basis of observations.

Here is a typical framework. Assume that $X_1, X_2, ..., X_n$ are i.i.d. and have a distribution that depends on some parameter θ .

For instance, $X_n = B(\theta)$.

Thus, more precisely, given θ , the random variables X_n are i.i.d. with a known distribution (that depends on θ).

- We observe X_1, \ldots, X_n
- We calculate $a = a(X_1, ..., X_n)$ and $b = b(X_1, ..., X_n)$
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

 $Pr[\theta \in [a, b]] \ge 95\%.$

The interval [a, b] is calculated on the basis of observations.

Here is a typical framework. Assume that $X_1, X_2, ..., X_n$ are i.i.d. and have a distribution that depends on some parameter θ .

For instance, $X_n = B(\theta)$.

Thus, more precisely, given θ , the random variables X_n are i.i.d. with a known distribution (that depends on θ).

- We observe X_1, \ldots, X_n
- We calculate $a = a(X_1, ..., X_n)$ and $b = b(X_1, ..., X_n)$
- If we can guarantee that $Pr[\theta \in [a, b]] \ge 95\%$,

Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a, b] is a 95%-confidence interval for an unknown quantity θ if

 $Pr[\theta \in [a, b]] \ge 95\%.$

The interval [a, b] is calculated on the basis of observations.

Here is a typical framework. Assume that $X_1, X_2, ..., X_n$ are i.i.d. and have a distribution that depends on some parameter θ .

For instance, $X_n = B(\theta)$.

Thus, more precisely, given θ , the random variables X_n are i.i.d. with a known distribution (that depends on θ).

- We observe X_1, \ldots, X_n
- We calculate $a = a(X_1, ..., X_n)$ and $b = b(X_1, ..., X_n)$
- ▶ If we can guarantee that $Pr[\theta \in [a, b]] \ge 95\%$, then [a, b] is a 95%-Cl for θ .

We poll 1000 people.

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43, 0.53] is a 95%-CI for

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43,0.53] is a 95%-CI for the fraction of all the voters who will vote for Trump.

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43,0.53] is a 95%-CI for the fraction of all the voters who will vote for Trump. (Arghhh.)

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43,0.53] is a 95%-CI for the fraction of all the voters who will vote for Trump. (Arghhh.)
- We observe 1,000 heart valve replacements that were performed by Dr. Bill.

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43,0.53] is a 95%-CI for the fraction of all the voters who will vote for Trump. (Arghhh.)
- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery.

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43,0.53] is a 95%-CI for the fraction of all the voters who will vote for Trump. (Arghhh.)
- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43,0.53] is a 95%-CI for the fraction of all the voters who will vote for Trump. (Arghhh.)
- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43,0.53] is a 95%-CI for the fraction of all the voters who will vote for Trump. (Arghhh.)
- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
 - We conclude that [1%,5%] is a 95%-CI for the probability of dying during that surgery by Dr. Bill.

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43,0.53] is a 95%-CI for the fraction of all the voters who will vote for Trump. (Arghhh.)
- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
 - We conclude that [1%,5%] is a 95%-CI for the probability of dying during that surgery by Dr. Bill.
 - We do a similar calculation for Dr. Fred.

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43,0.53] is a 95%-CI for the fraction of all the voters who will vote for Trump. (Arghhh.)
- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
 - We conclude that [1%,5%] is a 95%-CI for the probability of dying during that surgery by Dr. Bill.
 - We do a similar calculation for Dr. Fred.
 - ▶ We find that [8%, 12%] is a 95%-Cl for Dr. Fred's surgery.

- ► We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43,0.53] is a 95%-CI for the fraction of all the voters who will vote for Trump. (Arghhh.)
- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
 - We conclude that [1%,5%] is a 95%-CI for the probability of dying during that surgery by Dr. Bill.
 - We do a similar calculation for Dr. Fred.
 - ▶ We find that [8%, 12%] is a 95%-CI for Dr. Fred's surgery.
 - What surgeon do you choose?

Say that you flip a coin n = 100 times and observe 20 Hs.

Say that you flip a coin n = 100 times and observe 20 Hs.

If p := Pr[H] = 0.5, this event is very unlikely.

Say that you flip a coin n = 100 times and observe 20 Hs.

If p := Pr[H] = 0.5, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n ,

Say that you flip a coin n = 100 times and observe 20 Hs.

If p := Pr[H] = 0.5, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n , differs a lot from p := Pr[H].

Say that you flip a coin n = 100 times and observe 20 Hs.

If p := Pr[H] = 0.5, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n , differs a lot from p := Pr[H].

Thus, it is unlikely that p differs a lot from A_n .

Say that you flip a coin n = 100 times and observe 20 Hs.

If p := Pr[H] = 0.5, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n , differs a lot from p := Pr[H].

Thus, it is unlikely that *p* differs a lot from A_n . Hence, one should be able to build a confidence interval $[A_n - \delta, A_n + \delta]$ for *p*.

Say that you flip a coin n = 100 times and observe 20 Hs.

If p := Pr[H] = 0.5, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n , differs a lot from p := Pr[H].

Thus, it is unlikely that *p* differs a lot from A_n . Hence, one should be able to build a confidence interval $[A_n - \delta, A_n + \delta]$ for *p*.

The key idea is that $|A_n - p| \le \delta \Leftrightarrow p \in [A_n - \delta, A_n + \delta]$.

Say that you flip a coin n = 100 times and observe 20 Hs.

If p := Pr[H] = 0.5, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n , differs a lot from p := Pr[H].

Thus, it is unlikely that *p* differs a lot from A_n . Hence, one should be able to build a confidence interval $[A_n - \delta, A_n + \delta]$ for *p*.

The key idea is that $|A_n - p| \le \delta \Leftrightarrow p \in [A_n - \delta, A_n + \delta]$. Thus, $Pr[|A_n - p| > \delta] \le 5\% \Leftrightarrow Pr[p \in [A_n - \delta, A_n + \delta]] \ge 95\%$.

Say that you flip a coin n = 100 times and observe 20 Hs.

If p := Pr[H] = 0.5, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n , differs a lot from p := Pr[H].

Thus, it is unlikely that *p* differs a lot from A_n . Hence, one should be able to build a confidence interval $[A_n - \delta, A_n + \delta]$ for *p*.

The key idea is that $|A_n - p| \le \delta \Leftrightarrow p \in [A_n - \delta, A_n + \delta]$. Thus, $Pr[|A_n - p| > \delta] \le 5\% \Leftrightarrow Pr[p \in [A_n - \delta, A_n + \delta]] \ge 95\%$. It remains to find δ such that $Pr[|A_n - p| > \delta] \le 5\%$.

Say that you flip a coin n = 100 times and observe 20 Hs.

If p := Pr[H] = 0.5, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n , differs a lot from p := Pr[H].

Thus, it is unlikely that *p* differs a lot from A_n . Hence, one should be able to build a confidence interval $[A_n - \delta, A_n + \delta]$ for *p*.

The key idea is that $|A_n - p| \le \delta \Leftrightarrow p \in [A_n - \delta, A_n + \delta]$. Thus, $Pr[|A_n - p| > \delta] \le 5\% \Leftrightarrow Pr[p \in [A_n - \delta, A_n + \delta]] \ge 95\%$. It remains to find δ such that $Pr[|A_n - p| > \delta] \le 5\%$. One approach:

Say that you flip a coin n = 100 times and observe 20 Hs.

If p := Pr[H] = 0.5, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n , differs a lot from p := Pr[H].

Thus, it is unlikely that *p* differs a lot from A_n . Hence, one should be able to build a confidence interval $[A_n - \delta, A_n + \delta]$ for *p*.

The key idea is that $|A_n - p| \le \delta \Leftrightarrow p \in [A_n - \delta, A_n + \delta]$. Thus, $Pr[|A_n - p| > \delta] \le 5\% \Leftrightarrow Pr[p \in [A_n - \delta, A_n + \delta]] \ge 95\%$. It remains to find δ such that $Pr[|A_n - p| > \delta] \le 5\%$. One approach: Chebyshev.

Flip a coin *n* times.

Flip a coin *n* times. Let A_n be the fraction of Hs.

- ▶ Flip a coin *n* times. Let *A_n* be the fraction of *H*s.
- Can we find δ such that $Pr[|A_n p| > \delta] \le 5\%$?

- Flip a coin *n* times. Let A_n be the fraction of Hs.
- Can we find δ such that $Pr[|A_n p| > \delta] \le 5\%$?

Using Chebyshev, we will see that $\delta = 2.25 \frac{1}{\sqrt{n}}$ works.

- ▶ Flip a coin *n* times. Let *A_n* be the fraction of *H*s.
- Can we find δ such that $Pr[|A_n p| > \delta] \le 5\%$?

Using Chebyshev, we will see that $\delta = 2.25 \frac{1}{\sqrt{n}}$ works. Thus

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-Cl for *p*.
Confidence Interval with Chebyshev

- ▶ Flip a coin *n* times. Let *A_n* be the fraction of *H*s.
- Can we find δ such that $Pr[|A_n p| > \delta] \le 5\%$?

Using Chebyshev, we will see that $\delta = 2.25 \frac{1}{\sqrt{n}}$ works. Thus

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-Cl for *p*.

Example: If n = 1500, then $Pr[p \in [A_n - 0.05, A_n + 0.05]] \ge 95\%$.

Confidence Interval with Chebyshev

- ▶ Flip a coin *n* times. Let *A_n* be the fraction of *H*s.
- Can we find δ such that $Pr[|A_n p| > \delta] \le 5\%$?

Using Chebyshev, we will see that $\delta = 2.25 \frac{1}{\sqrt{n}}$ works. Thus

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-Cl for *p*.

Example: If n = 1500, then $Pr[p \in [A_n - 0.05, A_n + 0.05]] \ge 95\%$. In fact, we will see later that $a = \frac{1}{\sqrt{n}}$ works,

Confidence Interval with Chebyshev

- ▶ Flip a coin *n* times. Let *A_n* be the fraction of *H*s.
- Can we find δ such that $Pr[|A_n p| > \delta] \le 5\%$?

Using Chebyshev, we will see that $\delta = 2.25 \frac{1}{\sqrt{n}}$ works. Thus

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-Cl for *p*.

Example: If n = 1500, then $Pr[p \in [A_n - 0.05, A_n + 0.05]] \ge 95\%$. In fact, we will see later that $a = \frac{1}{\sqrt{n}}$ works, so that with n = 1,500 one has $Pr[p \in [A_n - 0.02, A_n + 0.02]] \ge 95\%$.

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 .

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 . Define $A_n = \frac{X_1 + \dots + X_n}{n}$.

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 . Define $A_n = \frac{X_1 + \dots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5\frac{\sigma}{\sqrt{n}}, A_n + 4.5\frac{\sigma}{\sqrt{n}}]] \ge 95\%$$

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 . Define $A_n = \frac{X_1 + \dots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5\frac{\sigma}{\sqrt{n}}, A_n + 4.5\frac{\sigma}{\sqrt{n}}]] \ge 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]]$ is a 95%-Cl for μ .

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 . Define $A_n = \frac{X_1 + \dots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5\frac{\sigma}{\sqrt{n}}, A_n + 4.5\frac{\sigma}{\sqrt{n}}]] \ge 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]]$ is a 95%-Cl for μ .

Example:

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 . Define $A_n = \frac{X_1 + \dots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5\frac{\sigma}{\sqrt{n}}, A_n + 4.5\frac{\sigma}{\sqrt{n}}]] \ge 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]]$ is a 95%-Cl for μ .

Example: Let $X_n = 1\{ \text{ coin } n \text{ yields } H \}$.

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 . Define $A_n = \frac{X_1 + \dots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5\frac{\sigma}{\sqrt{n}}, A_n + 4.5\frac{\sigma}{\sqrt{n}}]] \ge 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]]$ is a 95%-Cl for μ .

Example: Let $X_n = 1\{ \text{ coin } n \text{ yields } H\}$. Then

 $\mu = E[X_n] = p := Pr[H].$

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 . Define $A_n = \frac{X_1 + \dots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5\frac{\sigma}{\sqrt{n}}, A_n + 4.5\frac{\sigma}{\sqrt{n}}]] \ge 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]]$ is a 95%-Cl for μ .

Example: Let $X_n = 1\{ \text{ coin } n \text{ yields } H\}$. Then

$$\mu = E[X_n] = p := Pr[H]$$
. Also, $\sigma^2 = var(X_n) =$

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 . Define $A_n = \frac{X_1 + \dots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5\frac{\sigma}{\sqrt{n}}, A_n + 4.5\frac{\sigma}{\sqrt{n}}]] \ge 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]]$ is a 95%-Cl for μ .

Example: Let $X_n = 1\{ \text{ coin } n \text{ yields } H\}$. Then

$$\mu = E[X_n] = p := Pr[H]$$
. Also, $\sigma^2 = var(X_n) = p(1-p)$

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 . Define $A_n = \frac{X_1 + \dots + X_n}{n}$. Then,

$$\Pr[\mu \in [A_n - 4.5\frac{\sigma}{\sqrt{n}}, A_n + 4.5\frac{\sigma}{\sqrt{n}}]] \ge 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]]$ is a 95%-Cl for μ .

Example: Let $X_n = 1\{ \text{ coin } n \text{ yields } H\}$. Then

$$\mu = E[X_n] = p := Pr[H].$$
 Also, $\sigma^2 = var(X_n) = p(1-p) \le \frac{1}{4}.$

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 . Define $A_n = \frac{X_1 + \dots + X_n}{n}$. Then,

$$\Pr[\mu \in [A_n - 4.5\frac{\sigma}{\sqrt{n}}, A_n + 4.5\frac{\sigma}{\sqrt{n}}]] \ge 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]]$ is a 95%-Cl for μ .

Example: Let $X_n = 1\{ \text{ coin } n \text{ yields } H \}$. Then

$$\mu = E[X_n] = p := Pr[H].$$
 Also, $\sigma^2 = var(X_n) = p(1-p) \le \frac{1}{4}.$

Hence, $[A_n - 4.5\frac{1/2}{\sqrt{n}}, A_n + 4.5\frac{1/2}{\sqrt{n}}]]$ is a 95%-Cl for *p*.

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-Cl for μ .

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-Cl for μ .

From Chebyshev:

$$\Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{\operatorname{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2}$$

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-Cl for μ .

From Chebyshev:

$$\Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{\operatorname{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2}\operatorname{var}(A_n).$$

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-Cl for μ . From Chebyshev:

$$\Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{\operatorname{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2}\operatorname{var}(A_n).$$

$$var(A_n) = var(\frac{X_1 + \cdots + X_n}{n}) =$$

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-Cl for μ . From Chebyshev:

$$\Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{\operatorname{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2}\operatorname{var}(A_n).$$

$$var(A_n) = var(\frac{X_1 + \dots + X_n}{n}) = \frac{1}{n^2}var(X_1 + \dots + X_n)$$

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-Cl for μ . From Chebyshev:

$$\Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{\operatorname{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2}\operatorname{var}(A_n).$$

$$var(A_n) = var(\frac{X_1 + \dots + X_n}{n}) = \frac{1}{n^2}var(X_1 + \dots + X_n)$$
$$= \frac{1}{n^2} \times n.var(X_1) =$$

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-Cl for μ . From Chebyshev:

$$\Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{\operatorname{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2}\operatorname{var}(A_n).$$

$$\operatorname{var}(A_n) = \operatorname{var}(\frac{X_1 + \dots + X_n}{n}) = \frac{1}{n^2} \operatorname{var}(X_1 + \dots + X_n)$$
$$= \frac{1}{n^2} \times n \cdot \operatorname{var}(X_1) = \frac{1}{n} \sigma^2.$$

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-Cl for μ . From Chebyshev:

$$\Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{\operatorname{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2}\operatorname{var}(A_n).$$

Now,

$$var(A_n) = var(\frac{X_1 + \dots + X_n}{n}) = \frac{1}{n^2}var(X_1 + \dots + X_n)$$
$$= \frac{1}{n^2} \times n.var(X_1) = \frac{1}{n}\sigma^2.$$

Hence,

$$\Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{n}{20\sigma^2} \times \frac{1}{n}\sigma^2$$

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-Cl for μ . From Chebyshev:

$$\Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{\operatorname{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2}\operatorname{var}(A_n).$$

Now,

$$\operatorname{var}(A_n) = \operatorname{var}(\frac{X_1 + \dots + X_n}{n}) = \frac{1}{n^2} \operatorname{var}(X_1 + \dots + X_n)$$
$$= \frac{1}{n^2} \times n \cdot \operatorname{var}(X_1) = \frac{1}{n} \sigma^2.$$

Hence,

$$\Pr[|A_n-\mu| \geq 4.5\sigma/\sqrt{n}] \leq \frac{n}{20\sigma^2} \times \frac{1}{n}\sigma^2 = 5\%.$$

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-Cl for μ . From Chebyshev:

$$\Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{\operatorname{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2}\operatorname{var}(A_n).$$

Now,

$$var(A_n) = var(\frac{X_1 + \dots + X_n}{n}) = \frac{1}{n^2}var(X_1 + \dots + X_n)$$
$$= \frac{1}{n^2} \times n.var(X_1) = \frac{1}{n}\sigma^2.$$

Hence,

$$\Pr[|A_n-\mu| \geq 4.5\sigma/\sqrt{n}] \leq \frac{n}{20\sigma^2} \times \frac{1}{n}\sigma^2 = 5\%.$$

Thus,

$$\Pr[|A_n - \mu| \le 4.5\sigma/\sqrt{n}] \ge 95\%.$$

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-Cl for μ . From Chebyshev:

$$\Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{\operatorname{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2}\operatorname{var}(A_n).$$

Now,

$$\operatorname{var}(A_n) = \operatorname{var}(\frac{X_1 + \dots + X_n}{n}) = \frac{1}{n^2} \operatorname{var}(X_1 + \dots + X_n)$$
$$= \frac{1}{n^2} \times n \cdot \operatorname{var}(X_1) = \frac{1}{n} \sigma^2.$$

Hence,

$$\Pr[|A_n-\mu| \geq 4.5\sigma/\sqrt{n}] \leq \frac{n}{20\sigma^2} \times \frac{1}{n}\sigma^2 = 5\%.$$

Thus,

$$Pr[|A_n - \mu| \le 4.5\sigma/\sqrt{n}] \ge 95\%.$$

Hence,

$$\Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Let X_n be i.i.d. B(p).

Let X_n be i.i.d. B(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Let X_n be i.i.d. B(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-Cl for *p*.

Let X_n be i.i.d. B(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-CI for *p*.

Proof:

Let X_n be i.i.d. B(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-CI for *p*.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Let X_n be i.i.d. B(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-CI for *p*.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = p$

Let X_n be i.i.d. B(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-CI for *p*.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = p$ and $\sigma^2 = p(1-p)$.

Let X_n be i.i.d. B(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-CI for *p*.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = p$ and $\sigma^2 = p(1-p)$. Thus, $\sigma^2 \leq \frac{1}{4}$
Let X_n be i.i.d. B(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-CI for *p*.

Proof:

We have just seen that

$$\Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = p$ and $\sigma^2 = p(1-p)$. Thus, $\sigma^2 \leq \frac{1}{4}$ and $\sigma \leq \frac{1}{2}$.

Let X_n be i.i.d. B(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-CI for *p*.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = p$ and $\sigma^2 = p(1-p)$. Thus, $\sigma^2 \leq \frac{1}{4}$ and $\sigma \leq \frac{1}{2}$. Thus,

$$Pr[\mu \in [A_n - 4.5 \times 0.5/\sqrt{n}, A_n + 4.5 \times 0.5/\sqrt{n}]] \ge 95\%.$$

Let X_n be i.i.d. B(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-CI for *p*.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = p$ and $\sigma^2 = p(1-p)$. Thus, $\sigma^2 \leq \frac{1}{4}$ and $\sigma \leq \frac{1}{2}$. Thus,

$$Pr[\mu \in [A_n - 4.5 \times 0.5/\sqrt{n}, A_n + 4.5 \times 0.5/\sqrt{n}]] \ge 95\%.$$

An illustration:

An illustration:

An illustration:

Good practice: You run your simulation, or experiment.

An illustration:

Good practice: You run your simulation, or experiment. You get an estimate.

An illustration:

Good practice: You run your simulation, or experiment. You get an estimate. You indicate your confidence interval.

Improved CI:

Improved CI: Later we will see that we can replace 2.25 by 1.

Improved CI: Later we will see that we can replace 2.25 by 1.

Quite a bit of work to get there:

Improved CI: Later we will see that we can replace 2.25 by 1.

Quite a bit of work to get there: continuous random variables;

Improved CI: Later we will see that we can replace 2.25 by 1.

Quite a bit of work to get there: continuous random variables; Gaussian;

Improved CI: Later we will see that we can replace 2.25 by 1.

Quite a bit of work to get there: continuous random variables; Gaussian; Central Limit Theorem.

Confidence Interval for 1/p in G(p)Let X_n be i.i.d. G(p).

Confidence Interval for 1/p in G(p)Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \dots + X_n)/n$.

Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}}\right]$$
 is a 95%-CI for $\frac{1}{p}$.

Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}}]$$
 is a 95%-CI for $\frac{1}{p}$.

Proof:

Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}}]$$
 is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}}]$$
 is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \le \frac{1}{p}$.

Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}}\right]$$
 is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here,
$$\mu = \frac{1}{\rho}$$
 and $\sigma = \frac{\sqrt{1-\rho}}{\rho} \le \frac{1}{\rho}$. Hence,
 $Pr[\frac{1}{\rho} \in [A_n - 4.5\frac{1}{\rho\sqrt{n}}, A_n + 4.5\frac{1}{\rho\sqrt{n}}]] \ge 95\%.$

Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}}\right]$$
 is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$\Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \le \frac{1}{p}$. Hence, $Pr[\frac{1}{p} \in [A_n - 4.5\frac{1}{p\sqrt{n}}, A_n + 4.5\frac{1}{p\sqrt{n}}]] \ge 95\%.$ Now, $A_n - 4.5\frac{1}{p\sqrt{n}} \le \frac{1}{p} \le \frac{1}{p} \le A_n + 4.5\frac{1}{p\sqrt{n}}$ is equivalent to

Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}}\right]$$
 is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$\Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \le \frac{1}{p}$. Hence, $Pr[\frac{1}{p} \in [A_n - 4.5\frac{1}{p\sqrt{n}}, A_n + 4.5\frac{1}{p\sqrt{n}}]] \ge 95\%.$ Now, $A_n - 4.5\frac{1}{p\sqrt{n}} \le \frac{1}{p} \le \frac{1}{p} \le A_n + 4.5\frac{1}{p\sqrt{n}}$ is equivalent to $\frac{A_n}{1 + 4.5/\sqrt{n}} \le \frac{1}{p} \le \frac{A_n}{1 - 4.5/\sqrt{n}}.$

Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}}\right]$$
 is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$\Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \le \frac{1}{p}$. Hence, $Pr[\frac{1}{p} \in [A_n - 4.5\frac{1}{p\sqrt{n}}, A_n + 4.5\frac{1}{p\sqrt{n}}]] \ge 95\%.$ Now, $A_n - 4.5\frac{1}{p\sqrt{n}} \le \frac{1}{p} \le \frac{1}{p} \le A_n + 4.5\frac{1}{p\sqrt{n}}$ is equivalent to $\frac{A_n}{1 + 4.5/\sqrt{n}} \le \frac{1}{p} \le \frac{A_n}{1 - 4.5/\sqrt{n}}.$

Examples:

Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}}\right]$$
 is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$\Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \le \frac{1}{p}$. Hence, $Pr[\frac{1}{p} \in [A_n - 4.5\frac{1}{p\sqrt{n}}, A_n + 4.5\frac{1}{p\sqrt{n}}]] \ge 95\%.$ Now, $A_n - 4.5\frac{1}{p\sqrt{n}} \le \frac{1}{p} \le \frac{1}{p} \le A_n + 4.5\frac{1}{p\sqrt{n}}$ is equivalent to $\frac{A_n}{1 + 4.5/\sqrt{n}} \le \frac{1}{p} \le \frac{A_n}{1 - 4.5/\sqrt{n}}.$

Examples: [0.7A₁₀₀, 1.8A₁₀₀]

Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}}\right]$$
 is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$\Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \le \frac{1}{p}$. Hence, $Pr[\frac{1}{p} \in [A_n - 4.5\frac{1}{p\sqrt{n}}, A_n + 4.5\frac{1}{p\sqrt{n}}]] \ge 95\%.$ Now, $A_n - 4.5\frac{1}{p\sqrt{n}} \le \frac{1}{p} \le \frac{1}{p} \le A_n + 4.5\frac{1}{p\sqrt{n}}$ is equivalent to $\frac{A_n}{1 + 4.5/\sqrt{n}} \le \frac{1}{p} \le \frac{A_n}{1 - 4.5/\sqrt{n}}.$

Examples: $[0.7A_{100}, 1.8A_{100}]$ and $[0.96A_{10000}, 1.05A_{10000}]$.

You are given coin *A* and coin *B*.

You are given coin A and coin B. You want to find out which one has a larger Pr[H].

You are given coin *A* and coin *B*. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

You are given coin *A* and coin *B*. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

You are given coin *A* and coin *B*. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

Flip each coin *n* times.

You are given coin *A* and coin *B*. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
You are given coin *A* and coin *B*. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

You are given coin *A* and coin *B*. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$. Confidence?

Analysis:

You are given coin A and coin B. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$. Confidence?

Analysis: Note that

 $E[A_n-B_n] =$

You are given coin *A* and coin *B*. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$. Confidence?

Analysis: Note that

$$E[A_n-B_n]=p_A-p_B$$
 and $var(A_n-B_n)=$

You are given coin *A* and coin *B*. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$. Confidence?

Analysis: Note that

$$E[A_n-B_n] = p_A-p_B$$
 and $var(A_n-B_n) = \frac{1}{n}(p_A(1-p_A)+p_B(1-p_B)) \le \frac{1}{2n}$.

You are given coin *A* and coin *B*. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$. Confidence?

Analysis: Note that

$$E[A_n-B_n] = p_A-p_B$$
 and $var(A_n-B_n) = \frac{1}{n}(p_A(1-p_A)+p_B(1-p_B)) \le \frac{1}{2n}$.

Thus, $Pr[|A_n - B_n - (p_A - p_B)| > \delta] \le \frac{1}{2n\delta^2}$,

You are given coin A and coin B. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$. Confidence?

Analysis: Note that

$$E[A_n-B_n] = p_A-p_B$$
 and $var(A_n-B_n) = \frac{1}{n}(p_A(1-p_A)+p_B(1-p_B)) \le \frac{1}{2n}$.

Thus, $Pr[|A_n - B_n - (p_A - p_B)| > \delta] \le \frac{1}{2n\delta^2}$, so $Pr[p_A - p_B \in [A_n - B_n - \delta, A_n - B_n + \delta]] \ge 1 - \frac{1}{2n\delta^2}$,

You are given coin A and coin B. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$. Confidence?

Analysis: Note that

$$E[A_n-B_n] = p_A-p_B$$
 and $var(A_n-B_n) = \frac{1}{n}(p_A(1-p_A)+p_B(1-p_B)) \le \frac{1}{2n}$.

Thus,
$$Pr[|A_n - B_n - (p_A - p_B)| > \delta] \le \frac{1}{2n\delta^2}$$
, so
 $Pr[p_A - p_B \in [A_n - B_n - \delta, A_n - B_n + \delta]] \ge 1 - \frac{1}{2n\delta^2}$, and
 $Pr[p_A - p_B \ge 0] \ge 1 - \frac{1}{2n(A_n - B_n)^2}$.

Example:

You are given coin A and coin B. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$. Confidence?

Analysis: Note that

$$E[A_n-B_n] = p_A-p_B$$
 and $var(A_n-B_n) = \frac{1}{n}(p_A(1-p_A)+p_B(1-p_B)) \le \frac{1}{2n}$.

Thus, $Pr[|A_n - B_n - (p_A - p_B)| > \delta] \le \frac{1}{2n\delta^2}$, so $Pr[p_A - p_B \in [A_n - B_n - \delta, A_n - B_n + \delta]] \ge 1 - \frac{1}{2n\delta^2}$, and $Pr[p_A - p_B \ge 0] \ge 1 - \frac{1}{2n(A_n - B_n)^2}$.

Example: With n = 100 and $A_n - B_n = 0.2$,

You are given coin A and coin B. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$. Confidence?

Analysis: Note that

$$E[A_n-B_n]=p_A-p_B$$
 and $var(A_n-B_n)=\frac{1}{n}(p_A(1-p_A)+p_B(1-p_B))\leq \frac{1}{2n}$.

Thus, $Pr[|A_n - B_n - (p_A - p_B)| > \delta] \le \frac{1}{2n\delta^2}$, so $Pr[p_A - p_B \in [A_n - B_n - \delta, A_n - B_n + \delta]] \ge 1 - \frac{1}{2n\delta^2}$, and $Pr[p_A - p_B \ge 0] \ge 1 - \frac{1}{2n(A_n - B_n)^2}$.

Example: With n = 100 and $A_n - B_n = 0.2$, $Pr[p_A > p_B] \ge 1 - \frac{1}{8} = 0.875$.

For B(p), we wanted to estimate p.

For *B*(*p*), we wanted to estimate *p*. The CI requires $\sigma = \sqrt{p(1-p)}$.

For B(p), we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: 1/2.

For B(p), we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: 1/2.

In some applications, it may be OK to replace σ^2 by the following sample variance:

For B(p), we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: 1/2.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s_n^2 := \frac{1}{n} \sum_{m=1}^n (X_m - A_n)^2.$$

For B(p), we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: 1/2.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s_n^2 := \frac{1}{n} \sum_{m=1}^n (X_m - A_n)^2.$$

However, in some cases, this is dangerous!

For B(p), we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: 1/2.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s_n^2 := \frac{1}{n} \sum_{m=1}^n (X_m - A_n)^2.$$

However, in some cases, this is dangerous! The theory says it is OK if the distribution of X_n is nice (Gaussian).

For B(p), we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: 1/2.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s_n^2 := \frac{1}{n} \sum_{m=1}^n (X_m - A_n)^2.$$

However, in some cases, this is dangerous! The theory says it is OK if the distribution of X_n is nice (Gaussian). This is used regularly in practice.

For B(p), we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: 1/2.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s_n^2 := \frac{1}{n} \sum_{m=1}^n (X_m - A_n)^2.$$

However, in some cases, this is dangerous! The theory says it is OK if the distribution of X_n is nice (Gaussian). This is used regularly in practice. However, be aware of the risk.

1. Estimates without confidence level are useless!

- 1. Estimates without confidence level are useless!
- 2. [a,b] is a 95%-CI for θ if

- 1. Estimates without confidence level are useless!
- 2. [a,b] is a 95%-Cl for θ if $Pr[\theta \in [a,b]] \ge 95\%$.

- 1. Estimates without confidence level are useless!
- 2. [a, b] is a 95%-Cl for θ if $Pr[\theta \in [a, b]] \ge 95\%$.
- 3. Using Chebyshev: $[A_n 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]$ is a 95%-Cl for μ .

- 1. Estimates without confidence level are useless!
- 2. [a,b] is a 95%-Cl for θ if $Pr[\theta \in [a,b]] \ge 95\%$.
- 3. Using Chebyshev: $[A_n 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]$ is a 95%-Cl for μ .
- 4. Using CLT, we will replace 4.5 by 2.

- 1. Estimates without confidence level are useless!
- 2. [a,b] is a 95%-Cl for θ if $Pr[\theta \in [a,b]] \ge 95\%$.
- 3. Using Chebyshev: $[A_n 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]$ is a 95%-Cl for μ .
- 4. Using CLT, we will replace 4.5 by 2.
- 5. When σ is not known, one can replace it by an upper bound.

- 1. Estimates without confidence level are useless!
- 2. [a,b] is a 95%-Cl for θ if $Pr[\theta \in [a,b]] \ge 95\%$.
- 3. Using Chebyshev: $[A_n 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]$ is a 95%-Cl for μ .
- 4. Using CLT, we will replace 4.5 by 2.
- 5. When σ is not known, one can replace it by an upper bound.
- 6. Examples: B(p), G(p), which coin is better?
- 7. In some cases, one can replace σ by the empirical standard deviation.