CS70: Jean Walrand: Lecture 29.

Confidence Intervals

1. Confidence?
2. Example
3. Review of Chebyshev
4. Confidence Interval with Chebyshev
5. More examples

Confidence?

- You flip a coin once and get H.

Do think that $\operatorname{Pr}[H]=1$?

- You flip a coin 10 times and get 5 Hs .

Are you sure that $\operatorname{Pr}[H]=0.5$?

- You flip a coin 10^{6} times and get 35% of Hs .

How much are you willing to bet that $\operatorname{Pr}[H]$ is exactly 0.35 ?
How much are you willing to bet that $\operatorname{Pr}[H] \in[0.3,0.4]$?
More generally, you estimate an unknown quantity θ.
Your estimate is $\hat{\theta}$.
How much confidence do you have in your estimate?

Confidence?

Confidence is essential is many applications:

- How effective is a medication?
- Are we sure of the milage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
- Is an algorithm guaranteed to be fast?
- Do we know that a program has no bug?

As scientists and engineers, you should become convinced of this fact:

Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval $[a, b]$ is a 95%-confidence interval for an unknown quantity θ if

$$
\operatorname{Pr}[\theta \in[a, b]] \geq 95 \% .
$$

The interval $[a, b]$ is calculated on the basis of observations.
Here is a typical framework. Assume that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. and have a distribution that depends on some parameter θ.
For instance, $X_{n}=B(\theta)$.
Thus, more precisely, given θ, the random variables X_{n} are i.i.d. with a known distribution (that depends on θ).

- We observe X_{1}, \ldots, X_{n}
- We calculate $a=a\left(X_{1}, \ldots, X_{n}\right)$ and $b=b\left(X_{1}, \ldots, X_{n}\right)$
- If we can guarantee that $\operatorname{Pr}[\theta \in[a, b]] \geq 95 \%$, then $[a, b]$ is a $95 \%-\mathrm{Cl}$ for θ.

Confidence Interval: Applications

- We poll 1000 people.
- Among those, 48% declare they will vote for Trump.
- We do some calculations
- We conclude that $[0.43,0.53]$ is a $95 \%-\mathrm{Cl}$ for the fraction of all the voters who will vote for Trump. (Arghhh.)
- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
- Among those, 35 patients died during surgery. (Sad example!)
- We do some calculations ...
- We conclude that $[1 \%, 5 \%]$ is a $95 \%-\mathrm{Cl}$ for the probability of dying during that surgery by Dr. Bill.
- We do a similar calculation for Dr. Fred.
- We find that $[8 \%, 12 \%]$ is a $95 \%-\mathrm{Cl}$ for Dr. Fred's surgery.
-What surgeon do you choose?

Coin Flips: Intuition

Say that you flip a coin $n=100$ times and observe 20 Hs .
If $p:=\operatorname{Pr}[H]=0.5$, this event
 is very unlikely.
Intuitively, if is unlikely that the fraction of Hs, say A_{n}, differs a lot from $p:=\operatorname{Pr}[H]$.
Thus, it is unlikely that p differs a lot from A_{n}. Hence, one should be able to build a confidence interval $\left[A_{n}-\delta, A_{n}+\delta\right]$ for p.

The key idea is that $\left|A_{n}-p\right| \leq \delta \Leftrightarrow p \in\left[A_{n}-\delta, A_{n}+\delta\right]$.
Thus, $\operatorname{Pr}\left[\left|A_{n}-p\right|>\delta\right] \leq 5 \% \Leftrightarrow \operatorname{Pr}\left[p \in\left[A_{n}-\delta, A_{n}+\delta\right]\right] \geq 95 \%$.
It remains to find δ such that $\operatorname{Pr}\left[\left|A_{n}-p\right|>\delta\right] \leq 5 \%$.
One approach: Chebyshev.

Confidence Interval with Chebyshev

- Flip a coin n times. Let A_{n} be the fraction of Hs .
- Can we find δ such that $\operatorname{Pr}\left[\left|A_{n}-p\right|>\delta\right] \leq 5 \%$?

Using Chebyshev, we will see that $\delta=2.25 \frac{1}{\sqrt{n}}$ works. Thus

$$
\left[A_{n}-\frac{2.25}{\sqrt{n}}, A_{n}+\frac{2.25}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p
$$

Example: If $n=1500$, then $\operatorname{Pr}\left[p \in\left[A_{n}-0.05, A_{n}+0.05\right]\right] \geq 95 \%$.
In fact, we will see later that $a=\frac{1}{\sqrt{n}}$ works, so that with $n=1,500$ one has $\operatorname{Pr}\left[p \in\left[A_{n}-0.02, A_{n}+0.02\right]\right] \geq 95 \%$.

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.
Define $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right] \geq 95 \% .
$$

Thus, $\left.\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right]$ is a $95 \%-\mathrm{Cl}$ for μ.

Example: Let $X_{n}=1\{$ coin n yields $H\}$. Then

$$
\mu=E\left[X_{n}\right]=p:=\operatorname{Pr}[H] \text {. Also, } \sigma^{2}=\operatorname{var}\left(X_{n}\right)=p(1-p) \leq \frac{1}{4}
$$

Hence, $\left.\left[A_{n}-4.5 \frac{1 / 2}{\sqrt{n}}, A_{n}+4.5 \frac{1 / 2}{\sqrt{n}}\right]\right]$ is a $95 \%-\mathrm{Cl}$ for p.

Confidence Interval: Analysis

We prove the theorem, i.e., that $A_{n} \pm 4.5 \sigma / \sqrt{n}$ is a $95 \%-\mathrm{Cl}$ for μ.
From Chebyshev:

$$
\operatorname{Pr}\left[\left|A_{n}-\mu\right| \geq 4.5 \sigma / \sqrt{n}\right] \leq \frac{\operatorname{var}\left(A_{n}\right)}{[4.5 \sigma / \sqrt{n}]^{2}}=\frac{n}{20 \sigma^{2}} \operatorname{var}\left(A_{n}\right)
$$

Now,

$$
\begin{aligned}
\operatorname{var}\left(A_{n}\right) & =\operatorname{var}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\frac{1}{n^{2}} \operatorname{var}\left(X_{1}+\cdots+X_{n}\right) \\
& =\frac{1}{n^{2}} \times n \cdot \operatorname{var}\left(X_{1}\right)=\frac{1}{n} \sigma^{2}
\end{aligned}
$$

Hence,

$$
\operatorname{Pr}\left[\left|A_{n}-\mu\right| \geq 4.5 \sigma / \sqrt{n}\right] \leq \frac{n}{20 \sigma^{2}} \times \frac{1}{n} \sigma^{2}=5 \% .
$$

Thus,

$$
\operatorname{Pr}\left[\left|A_{n}-\mu\right| \leq 4.5 \sigma / \sqrt{n}\right] \geq 95 \% .
$$

Hence,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \sigma / \sqrt{n}, A_{n}+4.5 \sigma / \sqrt{n}\right]\right] \geq 95 \%
$$

Confidence interval for p in $B(p)$

Let X_{n} be i.i.d. $B(p)$. Define $A_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$.
Theorem:

$$
\left[A_{n}-\frac{2.25}{\sqrt{n}}, A_{n}+\frac{2.25}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p
$$

Proof:

We have just seen that

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \sigma / \sqrt{n}, A_{n}+4.5 \sigma / \sqrt{n}\right]\right] \geq 95 \%
$$

Here, $\mu=p$ and $\sigma^{2}=p(1-p)$. Thus, $\sigma^{2} \leq \frac{1}{4}$ and $\sigma \leq \frac{1}{2}$.
Thus,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \times 0.5 / \sqrt{n}, A_{n}+4.5 \times 0.5 / \sqrt{n}\right]\right] \geq 95 \%
$$

Confidence interval for p in $B(p)$

An illustration:

Good practice: You run your simulation, or experiment. You get an estimate. You indicate your confidence interval.

Confidence interval for p in $B(p)$

Improved CI: Later we will see that we can replace 2.25 by 1 .

Quite a bit of work to get there: continuous random variables; Gaussian; Central Limit Theorem.

Confidence Interval for $1 / p$ in $G(p)$

Let X_{n} be i.i.d. $G(p)$. Define $A_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$.
Theorem:

$$
\left[\frac{A_{n}}{1+4.5 / \sqrt{n}}, \frac{A_{n}}{1-4.5 / \sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \frac{1}{p}
$$

Proof: We know that

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \sigma / \sqrt{n}, A_{n}+4.5 \sigma / \sqrt{n}\right]\right] \geq 95 \%
$$

Here, $\mu=\frac{1}{p}$ and $\sigma=\frac{\sqrt{1-p}}{p} \leq \frac{1}{p}$. Hence,

$$
\operatorname{Pr}\left[\frac{1}{p} \in\left[A_{n}-4.5 \frac{1}{p \sqrt{n}}, A_{n}+4.5 \frac{1}{p \sqrt{n}}\right]\right] \geq 95 \% .
$$

Now, $A_{n}-4.5 \frac{1}{p \sqrt{n}} \leq \frac{1}{p} \leq \frac{1}{p} \leq A_{n}+4.5 \frac{1}{p \sqrt{n}}$ is equivalent to

$$
\frac{A_{n}}{1+4.5 / \sqrt{n}} \leq \frac{1}{p} \leq \frac{A_{n}}{1-4.5 / \sqrt{n}} .
$$

Examples: $\left[0.7 A_{100}, 1.8 A_{100}\right]$ and $\left[0.96 A_{10000}, 1.05 A_{10000}\right]$.

Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $\operatorname{Pr}[H]$. Let p_{A} and p_{B} be the values of $\operatorname{Pr}[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_{n} be the fraction of Hs for coin A and B_{n} for coin B.
- Assume $A_{n}>B_{n}$. It is tempting to think that $p_{A}>p_{B}$. Confidence?

Analysis: Note that
$E\left[A_{n}-B_{n}\right]=p_{A}-p_{B}$ and $\operatorname{var}\left(A_{n}-B_{n}\right)=\frac{1}{n}\left(p_{A}\left(1-p_{A}\right)+p_{B}\left(1-p_{B}\right)\right) \leq \frac{1}{2 n}$.
Thus, $\operatorname{Pr}\left[\left|A_{n}-B_{n}-\left(p_{A}-p_{B}\right)\right|>\delta\right] \leq \frac{1}{2 n \delta^{2}}$, so

$$
\begin{aligned}
& \operatorname{Pr}\left[p_{A}-p_{B} \in\left[A_{n}-B_{n}-\delta, A_{n}-B_{n}+\delta\right]\right] \geq 1-\frac{1}{2 n \delta^{2}}, \text { and } \\
& \operatorname{Pr}\left[p_{A}-p_{B} \geq 0\right] \geq 1-\frac{1}{2 n\left(A_{n}-B_{n}\right)^{2}} .
\end{aligned}
$$

Example: With $n=100$ and $A_{n}-B_{n}=0.2, \operatorname{Pr}\left[p_{A}>p_{B}\right] \geq 1-\frac{1}{8}=0.875$.

Unknown σ

For $B(p)$, we wanted to estimate p. The Cl requires $\sigma=\sqrt{p(1-p)}$. We replaced σ by an upper bound: $1 / 2$.
In some applications, it may be OK to replace σ^{2} by the following sample variance:

$$
s_{n}^{2}:=\frac{1}{n} \sum_{m=1}^{n}\left(X_{m}-A_{n}\right)^{2}
$$

However, in some cases, this is dangerous! The theory says it is OK if the distribution of X_{n} is nice (Gaussian). This is used regularly in practice. However, be aware of the risk.

Summary

Confidence Intervals

1. Estimates without confidence level are useless!
2. $[a, b]$ is a $95 \%-\mathrm{Cl}$ for θ if $\operatorname{Pr}[\theta \in[a, b]] \geq 95 \%$.
3. Using Chebyshev: $\left[A_{n}-4.5 \sigma / \sqrt{n}, A_{n}+4.5 \sigma / \sqrt{n}\right]$ is a $95 \%-\mathrm{Cl}$ for μ.
4. Using CLT, we will replace 4.5 by 2.
5. When σ is not known, one can replace it by an upper bound.
6. Examples: $B(p), G(p)$, which coin is better?
7. In some cases, one can replace σ by the empirical standard deviation.
