CS70: Lecture 27.

Coupons; Independent Random Variables

CS70: Lecture 27.

Coupons; Independent Random Variables

CS70: Lecture 27.

Coupons; Independent Random Variables

- 1. Time to Collect Coupons
- 2. Review: Independence of Events
- 3. Independent RVs
- 4. Mutually independent RVs

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Experiment: Get coupons at random from *n* until collect all *n* coupons. **Outcomes:** {123145...,56765...}

Experiment: Get coupons at random from *n* until collect all *n*coupons.
Outcomes: {123145...,56765...}
Random Variable: X - length of outcome.

Experiment: Get coupons at random from *n* until collect all *n*coupons.
Outcomes: {123145...,56765...}
Random Variable: X - length of outcome.

Experiment: Get coupons at random from *n* until collect all *n* coupons. **Outcomes:** {123145...,56765...} **Random Variable:** *X* - length of outcome. Before: $Pr[X \ge n \ln 2n] \le \frac{1}{2}$.

Experiment: Get coupons at random from *n* until collect all *n* coupons. **Outcomes:** {123145...,56765...} **Random Variable:** *X* - length of outcome. Before: $Pr[X \ge n \ln 2n] \le \frac{1}{2}$.

Today: E[X]?

Experiment: Get coupons at random from *n* until collect all *n* coupons. **Outcomes:** {123145...,56765...} **Random Variable:** *X* - length of outcome. Before: $Pr[X \ge n \ln 2n] \le \frac{1}{2}$.

Today: E[X]?

X-time to get *n* coupons.

X-time to get *n* coupons.

 X_1 - time to get first coupon.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X-time to get *n* coupons.

- X_1 time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
- X_2 time to get second coupon after getting first.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

"]

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk

X-time to get *n* coupons.

- X_1 time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
- X_2 time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]?$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric !

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

E[*X*₂]? Geometric ! !

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

```
E[X<sub>2</sub>]? Geometric !!!
```

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{\rho} =$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{\rho}}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* - 1rst coupons"] = $\frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* – 1rst coupons"] = $\frac{n-(i-1)}{n} = \frac{n-i+1}{n}$ $E[X_i]$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* – 1rst coupons" $] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$ $E[X_i] = \frac{1}{p}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting$ *i*th coupon|"got*i* $- 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n - i + 1}, \end{aligned}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n - i + 1}, i = 1, 2, \dots, n. \end{aligned}$

 $E[X] = E[X_1] + \cdots + E[X_n] =$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n - i + 1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n)$$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

Review: Harmonic sum

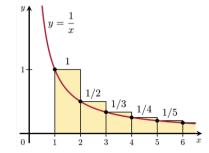
٠

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

Review: Harmonic sum

٠

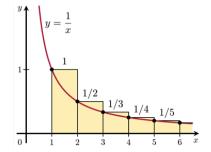
$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$



Review: Harmonic sum

.

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

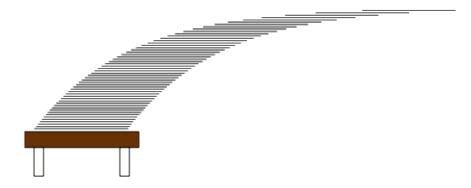


A good approximation is

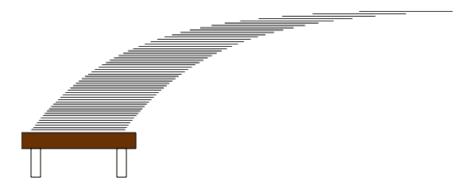
 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Consider this stack of cards (no glue!):

Consider this stack of cards (no glue!):

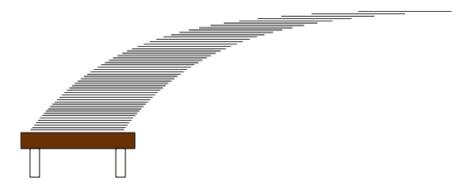


Consider this stack of cards (no glue!):



If each card has length 2, the stack can extend H(n) to the right of the table.

Consider this stack of cards (no glue!):



If each card has length 2, the stack can extend H(n) to the right of the table. As *n* increases, you can go as far as you want!

Paradox

par·a·dox /ˈperəˌdäks/

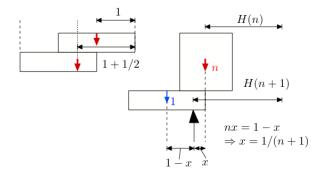
noun

a statement or proposition that, despite sound (or apparently sound) reasoning from acceptable premises, leads to a conclusion that seems senseless, logically unacceptable, or self-contradictory.

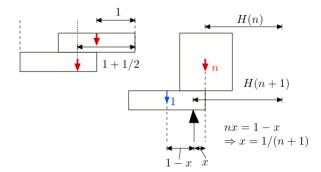
"a potentially serious conflict between quantum mechanics and the general theory of relativity known as the information paradox"

- a seemingly absurd or self-contradictory statement or proposition that when investigated or explained may prove to be well founded or true.
 "in a paradox, he has discovered that stepping back from his job has increased the rewards he gleans from it" synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency, incongruity; More
- a situation, person, or thing that combines contradictory features or qualities.
 "the mingling of deciduous trees with elements of desert flora forms a fascinating ecological paradox"

Stacking

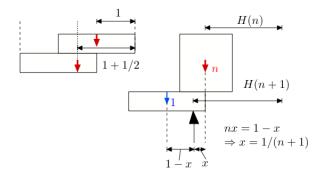


Stacking



The cards have width 2.

Stacking



The cards have width 2. Induction shows that the center of gravity after *n* cards is H(n) away from the right-most edge.

Events A, B are independent if

• Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- ► Events A, B, C are mutually independent if

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- ► Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- ► Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

• Events $\{A_n, n \ge 0\}$ are mutually independent if

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

- Events $\{A_n, n \ge 0\}$ are mutually independent if
- ► Example: X, Y ∈ {0,1} two fair coin flips ⇒ X, Y, X ⊕ Y are pairwise independent but not mutually independent.

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

- Events $\{A_n, n \ge 0\}$ are mutually independent if
- ► Example: X, Y ∈ {0,1} two fair coin flips ⇒ X, Y, X ⊕ Y are pairwise independent but not mutually independent.
- ► Example: $X, Y, Z \in \{0, 1\}$ three fair coin flips are mutually independent.

Definition: Independence

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Fact:

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Fact:

X, Y are independent if and only if

Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b], for all *a* and *b*.

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Fact:

X, Y are independent if and only if

Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b], for all *a* and *b*.

Obvious.

Example 1 Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0.$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$.

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed:
$$Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$$
.

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Indeed:

$$Pr[X=a, Y=b] = \binom{3}{a}\binom{2}{b}2^{-5}$$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed:
$$Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$$
.

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Indeed:

$$Pr[X = a, Y = b] = {3 \choose a} {2 \choose b} 2^{-5} = {3 \choose a} 2^{-3} \times {2 \choose b} 2^{-2}$$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed:
$$Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$$
.

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Indeed:

$$Pr[X = a, Y = b] = {3 \choose a} {2 \choose b} 2^{-5} = {3 \choose a} 2^{-3} \times {2 \choose b} 2^{-2} = Pr[X = a] Pr[Y = b].$$

A useful observation about independence Theorem

A useful observation about independence Theorem

X and Y are independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$ for all $A, B \subset \mathfrak{R}$.

A useful observation about independence Theorem

X and Y are independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$ for all $A, B \subset \mathfrak{R}$.

A useful observation about independence Theorem

X and Y are independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$ for all $A, B \subset \mathfrak{R}$.

Proof: If (\Leftarrow): Choose $A = \{a\}$ and $B = \{b\}$.

X and Y are independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$ for all $A, B \subset \mathfrak{R}$.

Proof:

If (\Leftarrow): Choose $A = \{a\}$ and $B = \{b\}$.

This shows that Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b].

X and Y are independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$ for all $A, B \subset \mathfrak{R}$.

Proof:

If (\Leftarrow): Choose $A = \{a\}$ and $B = \{b\}$.

This shows that Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]. Only if (\Rightarrow) :

X and Y are independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$ for all $A, B \subset \mathfrak{R}$.

Proof:

$$Pr[X \in A, Y \in B]$$

= $\sum_{a \in A} \sum_{b \in B} Pr[X = a, Y = b]$

X and Y are independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$ for all $A, B \subset \mathfrak{R}$.

Proof:

$$Pr[X \in A, Y \in B]$$

= $\sum_{a \in A} \sum_{b \in B} Pr[X = a, Y = b] = \sum_{a \in A} \sum_{b \in B} Pr[X = a]Pr[Y = b]$

X and Y are independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$ for all $A, B \subset \mathfrak{R}$.

Proof:

$$Pr[X \in A, Y \in B]$$

$$= \sum_{a \in A} \sum_{b \in B} Pr[X = a, Y = b] = \sum_{a \in A} \sum_{b \in B} Pr[X = a]Pr[Y = b]$$

$$= \sum_{a \in A} [\sum_{b \in B} Pr[X = a]Pr[Y = b]]$$

X and Y are independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$ for all $A, B \subset \mathfrak{R}$.

Proof:

$$\begin{aligned} & \Pr[X \in A, Y \in B] \\ &= \sum_{a \in A} \sum_{b \in B} \Pr[X = a, Y = b] = \sum_{a \in A} \sum_{b \in B} \Pr[X = a] \Pr[Y = b] \\ &= \sum_{a \in A} \left[\sum_{b \in B} \Pr[X = a] \Pr[Y = b] \right] = \sum_{a \in A} \Pr[X = a] \left[\sum_{b \in B} \Pr[Y = b] \right] \end{aligned}$$

X and Y are independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$ for all $A, B \subset \mathfrak{R}$.

Proof:

$$Pr[X \in A, Y \in B]$$

$$= \sum_{a \in A} \sum_{b \in B} Pr[X = a, Y = b] = \sum_{a \in A} \sum_{b \in B} Pr[X = a]Pr[Y = b]$$

$$= \sum_{a \in A} \sum_{b \in B} Pr[X = a]Pr[Y = b]] = \sum_{a \in A} Pr[X = a][\sum_{b \in B} Pr[Y = b]]$$

$$= \sum_{a \in A} Pr[X = a]Pr[Y \in B]$$

X and Y are independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$ for all $A, B \subset \mathfrak{R}$.

Proof:

If (\Leftarrow): Choose $A = \{a\}$ and $B = \{b\}$. This shows that Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b].

Only if (\Rightarrow) :

$$\begin{aligned} & \Pr[X \in \mathcal{A}, Y \in \mathcal{B}] \\ &= \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \Pr[X = a, Y = b] = \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \Pr[X = a] \Pr[Y = b] \\ &= \sum_{a \in \mathcal{A}} \left[\sum_{b \in \mathcal{B}} \Pr[X = a] \Pr[Y = b] \right] = \sum_{a \in \mathcal{A}} \Pr[X = a] \left[\sum_{b \in \mathcal{B}} \Pr[Y = b] \right] \\ &= \sum_{a \in \mathcal{A}} \Pr[X = a] \Pr[Y \in \mathcal{B}] = \Pr[X \in \mathcal{A}] \Pr[Y \in \mathcal{B}]. \end{aligned}$$

Theorem Functions of independent RVs are independent Let X, Y be independent RV. Then

f(X) and g(Y) are independent, for all $f(\cdot), g(\cdot)$.

Theorem Functions of independent RVs are independent Let X, Y be independent RV. Then

f(X) and g(Y) are independent, for all $f(\cdot), g(\cdot)$.

Proof:

Recall the definition of inverse image:

Theorem Functions of independent RVs are independent Let X, Y be independent RV. Then

f(X) and g(Y) are independent, for all $f(\cdot), g(\cdot)$.

Proof:

Recall the definition of inverse image:

$$h(z) \in C \Leftrightarrow z \in h^{-1}(C) := \{ z \mid h(z) \in C \}.$$
(1)

Theorem Functions of independent RVs are independent Let X, Y be independent RV. Then

f(X) and g(Y) are independent, for all $f(\cdot), g(\cdot)$.

Proof:

Recall the definition of inverse image:

$$h(z) \in C \Leftrightarrow z \in h^{-1}(C) := \{ z \mid h(z) \in C \}.$$
(1)

$$Pr[f(X) \in A, g(Y) \in B]$$

= $Pr[X \in f^{-1}(A), Y \in g^{-1}(B)]$, by (1)

Theorem Functions of independent RVs are independent Let X, Y be independent RV. Then

f(X) and g(Y) are independent, for all $f(\cdot), g(\cdot)$.

Proof:

Recall the definition of inverse image:

$$h(z) \in C \Leftrightarrow z \in h^{-1}(C) := \{ z \mid h(z) \in C \}.$$
(1)

$$\begin{aligned} & \Pr[f(X) \in A, g(Y) \in B] \\ &= \Pr[X \in f^{-1}(A), Y \in g^{-1}(B)], \text{ by } (1) \\ &= \Pr[X \in f^{-1}(A)]\Pr[Y \in g^{-1}(B)], \end{aligned}$$

Theorem Functions of independent RVs are independent Let X, Y be independent RV. Then

f(X) and g(Y) are independent, for all $f(\cdot), g(\cdot)$.

Proof:

Recall the definition of inverse image:

$$h(z) \in C \Leftrightarrow z \in h^{-1}(C) := \{ z \mid h(z) \in C \}.$$
(1)

$$\begin{aligned} & Pr[f(X) \in A, g(Y) \in B] \\ &= Pr[X \in f^{-1}(A), Y \in g^{-1}(B)], \text{ by } (1) \\ &= Pr[X \in f^{-1}(A)]Pr[Y \in g^{-1}(B)], \text{ since } X, Y \text{ ind.} \\ &= Pr[f(X) \in A]Pr[g(Y) \in B], \end{aligned}$$

Theorem Functions of independent RVs are independent Let X, Y be independent RV. Then

f(X) and g(Y) are independent, for all $f(\cdot), g(\cdot)$.

Proof:

Recall the definition of inverse image:

$$h(z) \in C \Leftrightarrow z \in h^{-1}(C) := \{ z \mid h(z) \in C \}.$$
(1)

$$\begin{aligned} & Pr[f(X) \in A, g(Y) \in B] \\ &= Pr[X \in f^{-1}(A), Y \in g^{-1}(B)], \text{ by } (1) \\ &= Pr[X \in f^{-1}(A)]Pr[Y \in g^{-1}(B)], \text{ since } X, Y \text{ ind.} \\ &= Pr[f(X) \in A]Pr[g(Y) \in B], \text{ by } (1). \end{aligned}$$

Theorem Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof: Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y].$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xy Pr[X = x, Y = y]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof: Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof: Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$
$$= \sum_{x} [\sum_{y} xyPr[X = x]Pr[Y = y]]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof: Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$
$$= \sum_{x} [\sum_{y} xyPr[X = x]Pr[Y = y]] = \sum_{x} [xPr[X = x](\sum_{y} yPr[Y = y])]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} [\sum_{y} xyPr[X = x]Pr[Y = y]] = \sum_{x} [xPr[X = x](\sum_{y} yPr[Y = y])]$$

$$= \sum_{x} [xPr[X = x]E[Y]]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} [\sum_{y} xyPr[X = x]Pr[Y = y]] = \sum_{x} [xPr[X = x](\sum_{y} yPr[Y = y])]$$

$$= \sum_{x} [xPr[X = x]E[Y]] = E[X]E[Y].$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0
= 14.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^2] = E[X^2+4Y^2+9Z^2+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0
= 14.

(2) Let X, Y be independent and U[1, 2, ..., n]. Then

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0
= 14.

(2) Let X, Y be independent and U[1, 2, ..., n]. Then

$$E[(X - Y)^2] = E[X^2 + Y^2 - 2XY] = 2E[X^2] - 2E[X]^2$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0
= 14.

(2) Let X, Y be independent and U[1,2,...n]. Then

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY] = 2E[X^{2}] - 2E[X]^{2}$$
$$= \frac{1 + 3n + 2n^{2}}{3} - \frac{(n+1)^{2}}{2}.$$

Definition

Definition

X, Y, Z are mutually independent if

Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z], for all x, y, z.

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

The events A, B, C, ... are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, ...$ are pairwise (resp. mutually) independent.

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

The events A, B, C, ... are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, ...$ are pairwise (resp. mutually) independent. **Proof:**

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

The events A, B, C, ... are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, ...$ are pairwise (resp. mutually) independent.

Proof:

$$Pr[1_A = 1, 1_B = 1, 1_C = 1] = Pr[A \cap B \cap C], \dots$$

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins, $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y.$

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins,

X = 1{coin 1 is H}, Y = 1{coin 2 is H}, $Z = X \oplus Y$. Then, X, Y, Z are pairwise independent.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins, $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins,

X = 1{coin 1 is H}, Y = 1{coin 2 is H}, $Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$. Then g(Y, Z) = X is not independent of X.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins, $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$. Then g(Y, Z) = X is not independent of X.

Example 2: Let A, B, C be pairwise but not mutually independent in a way that A and $B \cap C$ are not independent.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins,

 $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$. Then g(Y, Z) = X is not independent of X.

Example 2: Let *A*, *B*, *C* be pairwise but not mutually independent in a way that *A* and $B \cap C$ are not independent. Let $X = 1_A, Y = 1_B, Z = 1_C$. Choose f(X) = X, g(Y, Z) = YZ.

Let X_1, X_2, \ldots, X_{11} be mutually independent random variables.

Let $X_1, X_2, ..., X_{11}$ be mutually independent random variables. Define $Y_1 = (X_1, ..., X_4), Y_2 = (X_5, ..., X_8), Y_3 = (X_9, ..., X_{11}).$

Let X_1, X_2, \ldots, X_{11} be mutually independent random variables. Define $Y_1 = (X_1, \ldots, X_4), Y_2 = (X_5, \ldots, X_8), Y_3 = (X_9, \ldots, X_{11})$. Then

 $Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3] = Pr[Y_1 \in B_1]Pr[Y_2 \in B_2]Pr[Y_3 \in B_3].$

Let X_1, X_2, \ldots, X_{11} be mutually independent random variables. Define $Y_1 = (X_1, \ldots, X_4), Y_2 = (X_5, \ldots, X_8), Y_3 = (X_9, \ldots, X_{11})$. Then

 $Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3] = Pr[Y_1 \in B_1]Pr[Y_2 \in B_2]Pr[Y_3 \in B_3].$

Let X_1, X_2, \ldots, X_{11} be mutually independent random variables. Define $Y_1 = (X_1, \ldots, X_4), Y_2 = (X_5, \ldots, X_8), Y_3 = (X_9, \ldots, X_{11})$. Then

 $Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3] = Pr[Y_1 \in B_1]Pr[Y_2 \in B_2]Pr[Y_3 \in B_3].$

Proof:

 $Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3]$

Let X_1, X_2, \dots, X_{11} be mutually independent random variables. Define $Y_1 = (X_1, \dots, X_4), Y_2 = (X_5, \dots, X_8), Y_3 = (X_9, \dots, X_{11})$. Then

 $Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3] = Pr[Y_1 \in B_1]Pr[Y_2 \in B_2]Pr[Y_3 \in B_3].$

$$Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3] = \sum_{y_1 \in B_1, y_2 \in B_2, y_3 \in B_3} Pr[Y_1 = y_1, Y_2 = y_2, Y_3 = y_3]$$

Let X_1, X_2, \dots, X_{11} be mutually independent random variables. Define $Y_1 = (X_1, \dots, X_4), Y_2 = (X_5, \dots, X_8), Y_3 = (X_9, \dots, X_{11})$. Then

 $Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3] = Pr[Y_1 \in B_1]Pr[Y_2 \in B_2]Pr[Y_3 \in B_3].$

$$Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3] = \sum_{y_1 \in B_1, y_2 \in B_2, y_3 \in B_3} Pr[Y_1 = y_1, Y_2 = y_2, Y_3 = y_3] = \sum_{y_1 \in B_1, y_2 \in B_2, y_3 \in B_3} Pr[Y_1 = y_1]Pr[Y_2 = y_2]Pr[Y_3 = y_3]$$

Let X_1, X_2, \dots, X_{11} be mutually independent random variables. Define $Y_1 = (X_1, \dots, X_4), Y_2 = (X_5, \dots, X_8), Y_3 = (X_9, \dots, X_{11})$. Then

 $Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3] = Pr[Y_1 \in B_1]Pr[Y_2 \in B_2]Pr[Y_3 \in B_3].$

$$\begin{aligned} & \Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3] \\ &= \sum_{y_1 \in B_1, y_2 \in B_2, y_3 \in B_3} \Pr[Y_1 = y_1, Y_2 = y_2, Y_3 = y_3] \\ &= \sum_{y_1 \in B_1, y_2 \in B_2, y_3 \in B_3} \Pr[Y_1 = y_1] \Pr[Y_2 = y_2] \Pr[Y_3 = y_3] \\ &= \{\sum_{y_1 \in B_1} \Pr[Y_1 = y_1]\} \{\sum_{y_2 \in B_2} \Pr[Y_2 = y_2]\} \{\sum_{y_3 \in B_3} \Pr[Y_3 = y_3]\} \end{aligned}$$

Let X_1, X_2, \ldots, X_{11} be mutually independent random variables. Define $Y_1 = (X_1, \ldots, X_4), Y_2 = (X_5, \ldots, X_8), Y_3 = (X_9, \ldots, X_{11})$. Then

 $Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3] = Pr[Y_1 \in B_1]Pr[Y_2 \in B_2]Pr[Y_3 \in B_3].$

$$\begin{aligned} & \Pr[Y_1 \in B_1, Y_2 \in B_2, Y_3 \in B_3] \\ &= \sum_{y_1 \in B_1, y_2 \in B_2, y_3 \in B_3} \Pr[Y_1 = y_1, Y_2 = y_2, Y_3 = y_3] \\ &= \sum_{y_1 \in B_1, y_2 \in B_2, y_3 \in B_3} \Pr[Y_1 = y_1] \Pr[Y_2 = y_2] \Pr[Y_3 = y_3] \\ &= \{\sum_{y_1 \in B_1} \Pr[Y_1 = y_1]\} \{\sum_{y_2 \in B_2} \Pr[Y_2 = y_2]\} \{\sum_{y_3 \in B_3} \Pr[Y_3 = y_3]\} \\ &= \Pr[Y_1 \in B_1] \Pr[Y_2 \in B_2] \Pr[Y_3 \in B_3]. \quad \Box \end{aligned}$$

One has the following result:

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent.

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2$, $Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}$, $Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

Proof:

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

Proof:

Let $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1 x_2 (x_3 + x_4)^2 \in A_1\}$. Similarly for B_2, B_2 . Then

 $Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3]$

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

Proof:

$$\begin{aligned} & \Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] \\ &= \Pr[(X_1, \dots, X_4) \in B_1, (X_5, \dots, X_8) \in B_2, (X_9, \dots, X_{11}) \in B_3] \end{aligned}$$

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

Proof:

1

$$\begin{aligned} & \Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] \\ &= \Pr[(X_1, \dots, X_4) \in B_1, (X_5, \dots, X_8) \in B_2, (X_9, \dots, X_{11}) \in B_3] \\ &= \Pr[(X_1, \dots, X_4) \in B_1] \Pr[(X_5, \dots, X_8) \in B_2] \Pr[(X_9, \dots, X_{11}) \in B_3] \end{aligned}$$

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

Proof:

ł

$$\begin{aligned} \Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] \\ &= \Pr[(X_1, \dots, X_4) \in B_1, (X_5, \dots, X_8) \in B_2, (X_9, \dots, X_{11}) \in B_3] \\ &= \Pr[(X_1, \dots, X_4) \in B_1] \Pr[(X_5, \dots, X_8) \in B_2] \Pr[(X_9, \dots, X_{11}) \in B_3] \\ & \text{ by little lemma} \end{aligned}$$

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

Proof:

1

$$\begin{aligned} \Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] \\ &= \Pr[(X_1, \dots, X_4) \in B_1, (X_5, \dots, X_8) \in B_2, (X_9, \dots, X_{11}) \in B_3] \\ &= \Pr[(X_1, \dots, X_4) \in B_1] \Pr[(X_5, \dots, X_8) \in B_2] \Pr[(X_9, \dots, X_{11}) \in B_3] \\ & \text{ by little lemma} \\ &= \Pr[Y_1 \in A_1] \Pr[Y_2 \in A_2] \Pr[Y_3 \in A_3] \quad \Box \end{aligned}$$

Theorem

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \overline{E}$ are mutually independent.

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \overline{E}$ are mutually independent.

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \overline{E}$ are mutually independent.

$$1_{A \triangle B} = f(1_A, 1_B)$$
 where
 $f(0, 0) = 0, f(1, 0) = 1, f(0, 1) = 1, f(1, 1) = 0$

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \overline{E}$ are mutually independent.

$$\begin{split} \mathbf{1}_{A \triangle B} &= f(\mathbf{1}_A, \mathbf{1}_B) \text{ where } \\ f(0,0) &= 0, f(1,0) = 1, f(0,1) = 1, f(1,1) = 0 \\ \mathbf{1}_{C \setminus D} &= g(\mathbf{1}_C, \mathbf{1}_D) \text{ where } \\ g(0,0) &= 0, g(1,0) = 1, g(0,1) = 0, g(1,1) = 0 \end{split}$$

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \overline{E}$ are mutually independent.

$$\begin{aligned} &\mathbf{1}_{A \triangle B} = f(\mathbf{1}_A, \mathbf{1}_B) \text{ where } \\ & f(0,0) = 0, f(1,0) = 1, f(0,1) = 1, f(1,1) = 0 \\ & \mathbf{1}_{C \setminus D} = g(\mathbf{1}_C, \mathbf{1}_D) \text{ where } \\ & g(0,0) = 0, g(1,0) = 1, g(0,1) = 0, g(1,1) = 0 \\ & \mathbf{1}_{\bar{E}} = h(\mathbf{1}_E) \text{ where } \\ & h(0) = 1 \text{ and } h(1) = 0. \end{aligned}$$

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \overline{E}$ are mutually independent.

Proof:

$$\begin{split} \mathbf{1}_{A \triangle B} &= f(\mathbf{1}_A, \mathbf{1}_B) \text{ where } \\ &f(0,0) = 0, f(1,0) = 1, f(0,1) = 1, f(1,1) = 0 \\ \mathbf{1}_{C \setminus D} &= g(\mathbf{1}_C, \mathbf{1}_D) \text{ where } \\ &g(0,0) = 0, g(1,0) = 1, g(0,1) = 0, g(1,1) = 0 \\ \mathbf{1}_{\bar{E}} &= h(\mathbf{1}_E) \text{ where } \\ &h(0) = 1 \text{ and } h(1) = 0. \end{split}$$

Hence, $1_{A \triangle B}$, $1_{C \setminus D}$, $1_{\overline{E}}$ are functions of mutually independent RVs.

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \overline{E}$ are mutually independent.

Proof:

$$\begin{split} \mathbf{1}_{A \Delta B} &= f(\mathbf{1}_A, \mathbf{1}_B) \text{ where } \\ &f(0,0) = 0, f(\mathbf{1},0) = 1, f(0,1) = 1, f(\mathbf{1},1) = 0 \\ \mathbf{1}_{C \setminus D} &= g(\mathbf{1}_C, \mathbf{1}_D) \text{ where } \\ &g(0,0) = 0, g(\mathbf{1},0) = 1, g(0,1) = 0, g(\mathbf{1},1) = 0 \\ \mathbf{1}_{\bar{E}} &= h(\mathbf{1}_E) \text{ where } \\ &h(0) = 1 \text{ and } h(1) = 0. \end{split}$$

Hence, $1_{A \Delta B}$, $1_{C \setminus D}$, $1_{\bar{E}}$ are functions of mutually independent RVs. Thus, those RVs are mutually independent.

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \overline{E}$ are mutually independent.

Proof:

$$\begin{aligned} &\mathbf{1}_{A \triangle B} = f(\mathbf{1}_A, \mathbf{1}_B) \text{ where } \\ & f(0,0) = 0, f(1,0) = 1, f(0,1) = 1, f(1,1) = 0 \\ & \mathbf{1}_{C \setminus D} = g(\mathbf{1}_C, \mathbf{1}_D) \text{ where } \\ & g(0,0) = 0, g(1,0) = 1, g(0,1) = 0, g(1,1) = 0 \\ & \mathbf{1}_{\bar{E}} = h(\mathbf{1}_E) \text{ where } \\ & h(0) = 1 \text{ and } h(1) = 0. \end{aligned}$$

Hence, $1_{A \triangle B}$, $1_{C \setminus D}$, $1_{\overline{E}}$ are functions of mutually independent RVs. Thus, those RVs are mutually independent. Consequently, the events of which they are indicators are mutually independent.

Theorem

Theorem

Let X_1, \ldots, X_n be mutually independent RVs.

Theorem

Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Theorem

Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Theorem

Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for *n*.

Theorem

Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for *n*. (It is true for n = 2.)

Theorem

Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for *n*. (It is true for n = 2.) Then, with $Y = X_1 \cdots X_n$, one has

Theorem

Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for *n*. (It is true for n = 2.) Then, with $Y = X_1 \cdots X_n$, one has

$$E[X_1 \cdots X_n X_{n+1}] = E[YX_{n+1}],$$

Theorem

Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for *n*. (It is true for n = 2.) Then, with $Y = X_1 \cdots X_n$, one has

$$E[X_1 \cdots X_n X_{n+1}] = E[YX_{n+1}], \\ = E[Y]E[X_{n+1}],$$

Theorem

Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for *n*. (It is true for n = 2.)

Then, with $Y = X_1 \cdots X_n$, one has

$$E[X_1 \cdots X_n X_{n+1}] = E[YX_{n+1}],$$

= $E[Y]E[X_{n+1}],$
because Y, X_{n+1} are independent

Theorem

Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for *n*. (It is true for n = 2.)

Then, with $Y = X_1 \cdots X_n$, one has

$$E[X_1 \cdots X_n X_{n+1}] = E[YX_{n+1}],$$

= $E[Y]E[X_{n+1}],$
because Y, X_{n+1} are independent
= $E[X_1] \cdots E[X_n]E[X_{n+1}].$

- Expected time to collect *n* coupons is $nH(n) \approx n(\ln n + \gamma)$
- ▶ *X*, *Y* independent \Leftrightarrow *Pr*[*X* ∈ *A*, *Y* ∈ *B*] = *Pr*[*X* ∈ *A*]*Pr*[*Y* ∈ *B*]

- Expected time to collect *n* coupons is $nH(n) \approx n(\ln n + \gamma)$
- ► X, Y independent \Leftrightarrow $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$
- Then, f(X), g(Y) are independent

- Expected time to collect *n* coupons is $nH(n) \approx n(\ln n + \gamma)$
- ► X, Y independent \Leftrightarrow $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$
- ► Then, f(X), g(Y) are independent and E[XY] = E[X]E[Y]

- Expected time to collect *n* coupons is $nH(n) \approx n(\ln n + \gamma)$
- ► X, Y independent \Leftrightarrow $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$
- ► Then, f(X),g(Y) are independent and E[XY] = E[X]E[Y]
- Mutual independence
- Functions of mutually independent RVs are mutually independent.