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Review: Harmonic sum

H(n) =1+ + +1~/"1dx—|n(n)
-T2 n"Ji x '

1/2

1/3

1/4 15

A good approximation is

H(n) ~In(n)+ vy where y~ 0.58 (Euler-Mascheroni constant).
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Consider this stack of cards (no gluel):

U

If each card has length 2, the stack can extend H(n) to the right of the
table. As nincreases, you can go as far as you want!



Paradox

par-a-dox
/'pera daks/

a statement or proposition that, despite sound (or apparently sound) reasoning from
acceptable premises, leads to a conclusion that seems senseless, logically
unacceptable, or self-contradictory.

"a potentially serious conflict between quantum mechanics and the general theory of
relativity known as the information paradox"

« aseemingly absurd or self-contradictory statement or proposition that when
invesfigated or explained may prove to be well founded or true.
"in a paradox, he has discovered that stepping back from his job has increased the
rewards he gleans from it"
synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency,

incongruity; More

« a situation, person, or thing that combines contradictory features or qualities.
"the mingling of deciduous trees with elements of desert flora forms a fascinating
ecological paradox"
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The cards have width 2. Induction shows that the center of gravity
after n cards is H(n) away from the right-most edge.
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» Events A, B are independent if PrlAn B] = Pr[A]Pr[B].
» Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are
independent

and Pr[An BN C| = Pr[A|Pr|B]Pr[C].
» Events {A,,n > 0} are mutually independent if ....

» Example: X, Y € {0,1} two fair coin flips = X, Y, X @ Y are
pairwise independent but not mutually independent.

» Example: X,Y,Z € {0,1} three fair coin flips are mutually
independent.
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Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y = b|X = a] = Pr[Y = b}, for all aand b.

Fact:

X, Y are independent if and only if

PriX=a,Y =b]= Pr[X = a]Pr[Y =b], forall aand b.

Obvious.
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Independence: Examples

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are
independent.

Indeed: PriX=a,Y =b] = 55, PriX =a] = Pr[Y = b] = {.
Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1
minus number on die 2. X and Y are not independent.

Indeed: Pr[X =12,Y =1] =0+ Pr{X =12]Pr[Y = 1] > 0.
Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y =
number of Hs in last two flips. X and Y are independent.

Indeed:
PriX=a,Y=b]= <3> (i) 27°= <3> 273 x (i) 272 =PriX=2alPr[Y=b].

a a
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A useful observation about independence
Theorem

X and Y are independent if and only if

PriXe A, Y € Bl=Pr[X € AlPr|Y € B] for all A,B C .

Proof:
If (<): Choose A= {a} and B = {b}.

This shows that Pr[X =a,Y = b] = Pr[X = a|Pr[Y = b].
Only if (=):

PriXe A Y € B]
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acAbeB acAbeB
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=Y Pr{X=alPr[Y € B] = Pr[X € A|Pr[Y € B].

acA
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Theorem Functions of independent RVs are independent
Let X, Y be independent RV. Then

f(X) and g(Y) are independent, for all f(-),g(-).

Proof:
Recall the definition of inverse image:

h(z)e Cezeh'(C):={z| h(z) e C}. (1)
Now,

Pr[f(X) e A,g(Y) € B]
=PriXef'(A),Y g '(B)], by (1)
= Pr[X e f1(A)]Pr[Y € g~ 1(B)], since X, Y ind.
= Pr[f(X) € A]Pr[g(Y) € B], by (1).
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Theorem
Let X, Y be independent RVs. Then
E[XY] = E[X]E[Y].
Proof:
Recall that E[g(X, Y)] = YXx, 9(x,y)Pr[X = x,Y = y]. Hence,

E[XY]

Y xyPriX=x,Y =yl =Y xyPr[X =x]Pr[Y = y], by ind.
X,y X,y

Y xyPriX =X|PrlY = yl| = Y [xPr[X = x](Y yPr[Y = y])]
X y X y

Y [xPriX = x]E[Y]]



Mean of product of independent RV
Theorem
Let X, Y be independent RVs. Then
E[XY] = E[X]E[Y].
Proof:
Recall that E[g(X, Y)] = YXx, 9(x,y)Pr[X = x,Y = y]. Hence,

E[XY]

Y xyPriX=x,Y =yl =Y xyPr[X =x]Pr[Y = y], by ind.
X,y X,y

Y xyPriX =X|PrlY = yl| = Y [xPr[X = x](Y yPr[Y = y])]
X y X y

Y [XPr[X = X]E[Y]] = E[X]E[Y].
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(1) Assume that X, Y,Z are (pairwise) independent, with
E[X]=E[Y]= E[Z] 0 and E[X?] = E[Y?]| = E[Z%] =1.

Then
E[(X+2Y+32)%] = E[X?+4Y2+9Z%2 + 4XY +12YZ + 6 XZ]

=14+44+9+4x0+12x0+6x0
=14.

(2) Let X, Y be independent and U[1,2,...n]. Then

E[(X-Y)]] = E[X?+Y2-2XY]=2E[X?]-2E[X]?



Examples

(1) Assume that X, Y,Z are (pairwise) independent, with
E[X]=E[Y]= E[Z] 0 and E[X?] = E[Y?]| = E[Z%] =1.

Then
E[(X+2Y+32)%] = E[X?+4Y2+9Z%2 + 4XY +12YZ + 6 XZ]

=14+44+9+4x0+12x0+6x0
=14.

(2) Let X, Y be independent and U[1,2,...n]. Then
E[(X-Y)]] = E[X?+Y2-2XY]=2E[X?]-2E[X]?

14+3n+2m  (n+1)>?
3 2
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Mutually Independent Random Variables

Definition

X,Y,Z are mutually independent if

PriX=x,Y=y,Z=2]=PriX=x]PrlY =ylPr[Z=2Z], forall x,y,z.

Theorem

The events A, B, C,... are pairwise (resp. mutually) independent iff
the random variables 14,15,1¢,... are pairwise (resp. mutually)
independent.

Proof:
Priia=1,1g=1,1¢c=1]=PrlAnBnNC],...
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Functions of pairwise independent RVs

If X,Y,Z are pairwise independent, but not mutually independent, it
may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins,

X =1{coin1is H},Y =1{coin2is H},Z=Xa@ Y. Then, X,Y,Z are
pairwise independent. Let g(Y,Z) =Y @& Z. Then g(Y,Z) = X is not

independent of X.

Example 2: Let A, B, C be pairwise but not mutually independent in a

way that A and BN C are not independent. Let
X=14Y=1p,Z=1¢. Choose f(X)=X,g(Y,2) = YZ.
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Let Xi,Xo,..., X171 be mutually independent random variables. Define
Y1 = (X1,...,X4), Y2 = (X57---7X8)7 Y3 = (Xg,...,Xﬂ). Then
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Proof:
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A Little Lemma

Let Xi,Xo,..., X171 be mutually independent random variables. Define
Y1 = (X1,...,X4), Y2 = (X57---7X8)7 Y3 = (Xg,...,Xﬂ). Then
PI’[Y1 S B1 , Yg S Bg, Y3 S Bg] = PF[Y1 S B1]PF[Y2 S BQ]PI‘[Y3 S B3]

Proof:

PF[Y1 € B1, Yg S Bg, Y3 S B3]

= Y PriYi=y1,Y2=y2, Y3 = ys]
Y1€B1.y2€B5,y3€B3
= Y PrYy = y1]Pr[Ya = yo] Pr[ Y3 = y3]

Y1€By.y2€B2,y3€B;3

={ Y PlVi=yiH{ ¥ PriYa=yell{ Y PriYa=ysl}

y1€B; Y2€B> y3€B3



A Little Lemma

Let Xi,Xo,..., X171 be mutually independent random variables. Define
Y1 = (X1,...,X4), Y2 = (X57---7X8)7 Y3 = (Xg,...,Xﬂ). Then
PI’[Y1 S B1 , Yg S Bg, Y3 S Bg] = PF[Y1 S B1]PF[Y2 S BQ]PI‘[Y3 S B3]

Proof:

PF[Y1 € B1, Yg S Bg, Y3 S B3]

= Y Pr[Yy =y1,Y2 = y2, Y3 = y3]
Y1€B1,y2€Bs,y3€B3
= )3 Pr[Yy = y1]Pr[ Y2 = ya] Pr[Ys = ys]

YV1€B1.y2€B5,y3€B;3
={ Y PYi=nll{ Y PriYa=yal}{ Y, Pr[Ys=ys]}
y1€B; Yyo€Bs y3€Bs
= Pr[Y; € By]Pr[Y2 € Bo]Pr[Ys € B3]. O
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Theorem
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Example:
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Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random
variables are mutually independent.

Example:

Let {Xn,n > 1} be mutually independent. Then,

Yy :=X4 X2(X3 +X4)2, Yo := max{X5,X6} — min{X7,X8}, Ys5:=Xy COS(X10 + X 1)
are mutually independent.

Proof:

Let B1 = {(X1 ,X2,X3,X4) ‘ X1 X2(X3 +X4)2 S A1 } Slmllarly for Bg7 Bg.
Then

PI’[Y1 €A, Yo€eA,Ys €A3]
:PI'[(X1,...,X4)EB1,(X5,...,X3)EBQ,(Xg,...,Xﬂ)EBS]
= PI’[(X1,...,X4) € B1]PI’[(X5,...,X8) S Bg]PI’[(Xg,...,Xﬁ) S B3]



Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random
variables are mutually independent.

Example:

Let {Xn,n > 1} be mutually independent. Then,

Yy :=X4 X2(X3 +X4)2, Yo := max{X5,X6} — min{X7,X8}, Ys5:=Xy COS(X10 + Xi1 )
are mutually independent.

Proof:

Let B1 = {(X1 ,X2,X3,X4) ‘ X1 X2(X3 +X4)2 S A1 } Slmllarly for Bg7 Bg.
Then
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Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random
variables are mutually independent.

Example:

Let {Xn,n > 1} be mutually independent. Then,

Yy :=X4 X2(X3 +X4)2, Yo := max{X5,X6} — min{X7,X8}, Ys5:=Xy COS(X10 + Xi1 )
are mutually independent.

Proof:

Let B1 = {(X1 ,X2,X3,X4) ‘ X1 X2(X3 +X4)2 S A1 } Slmllarly for Bg7 Bg.
Then

PI’[Y1 €A, Yo€eA,Ys €A3]
= Pr((Xi,...,X4) € B1,(X5,...,Xg) € B2, (Xo,...,X11) € B3]
= Pr((Xi,...,X4) € B{]Pr[(Xs,...,Xg) € B2]Pr[(Xy,...,X11) € B3]
by little lemma
= Pr[Yi € A{]Pr[Yo € Ao]Pr[Ys € A3] O
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produce mutually independent events.
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Proof:
1AAB = f(1Aa1B) where
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Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events
produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then
AAB, C\ D, E are mutually independent.

Proof:
1AAB = f(1Aa1B) where
f(0,0)=0,f(1,0)=1,f(0,1)=1,f(1,1)=0
1C\D = g(1c,1D) where
9(0,0)=0,9(1,0)=1,9(0,1)=0,9(1,1) =0
1,:: = h(1E) where
h(0) =1 and h(1) =0.

Hence, 14a8,1¢\p, 1 are functions of mutually independent RVs.
Thus, those RVs are mutually independent. Consequently, the events
of which they are indicators are mutually independent. O
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Product of mutually independent RVs

Theorem
Let Xi,..., X, be mutually independent RVs. Then,

E[Xi X - Xn] = E[X{]E[Xo] - - E[Xn].

Proof:
Assume that the result is true for n. (It is true for n=2.)
Then, with Y = Xj --- X}, one has

E[X1 "'Xan+1] = E[YXn+1]7
= E[YIE[Xn1],
because Y, X, 1 are independent
E[X1] -+ E[Xa] E[Xns1].
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Summary.

‘ Coupons; Independent Random Variables ‘

v

Expected time to collect n coupons is nH(n) ~ n(Inn+7)
X, Y independent & Pr[X € A, Y € Bl = Pr[X € A|Pr[Y € B]
Then, f(X),g(Y) are independent

and E[XY] = E[X]E[Y]

Mutual independence ....

v

v

v

v

Functions of mutually independent RVs are mutually
independent.



