CS70: Lecture 27.
Coupons; Independent Random Variables

1. Time to Collect Coupons
2. Review: Independence of Events
3. Independent RVs
4. Mutually independent RVs

Coupon Collectors Problem.

Experiment: Get coupons at random from n until collect all n
coupons.
Outcomes: \{123145...,56765...\}
Random Variable: X - length of outcome.
Before: $\operatorname{Pr}[X \geq n \ln 2 n] \leq \frac{1}{2}$.
Today: $E[X]$?

Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend $H(n)$ to the right of the table. As n increases, you can go as far as you want!

Time to collect coupons

X-time to get n coupons.

X_{1} - time to get first coupon. Note: $X_{1}=1 . E\left(X_{1}\right)=1$
X_{2} - time to get second coupon after getting first.
Pr ["get second coupon"|"got milk first coupon"] $=\frac{n-1}{n}$
$E\left[X_{2}\right]$? Geometric ! ! ! $\Longrightarrow E\left[X_{2}\right]=\frac{1}{p}=\frac{1}{\frac{n-1}{n}}=\frac{n}{n-1}$.
$\operatorname{Pr}\left[\right.$ "getting j th coupon|"got $i-1$ rst coupons"] $=\frac{n-(i-1)}{n}=\frac{n-i+1}{n}$
$E\left[X_{i}\right]=\frac{1}{p}=\frac{n}{n-i+1}, i=1,2, \ldots, n$.
$E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]=\frac{n}{n}+\frac{n}{n-1}+\frac{n}{n-2}+\cdots+\frac{n}{1}$
$=n\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=: n H(n) \approx n(\ln n+\gamma)$

Paradox

par•a•dox

'perə,däks

noun
a statement or proposition that, despite sound (or apparently sound) reasoning from acceptable premises, leads to a conclusion that seems senseless, logically unacceptable, or self-contradictory.
"a potentially serious conflict between quantum mechanics and the general theory of
relativity known as the information paradox"

- a seemingly absurd or self-contradictory statement or proposition that when
nvestigated or explained may prove to be well founded or true
in a paradox, he has discovered that stepping back from his job has increased the
synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency, contradiction, contr
incongruity; More
- a situation, person, or thing that combines contradictory features or qualities
- a situation, person, or thing that combines contracictory features or qualities. "he "rical paradox" ecological paradox"

Stacking

The cards have width 2. Induction shows that the center of gravity after n cards is $H(n)$ away from the right-most edge.

Independence: Examples

Example

Roll two die, $X, Y=$ number of pips on the two dice, X, Y are independent.
Indeed: $\operatorname{Pr}[X=a, Y=b]=\frac{1}{36}, \operatorname{Pr}[X=a]=\operatorname{Pr}[Y=b]=\frac{1}{6}$
Example 2
Roll two die. $X=$ total number of pips, $Y=$ number of pips on die 1
minus number on die 2. X and Y are not independent.
Indeed: $\operatorname{Pr}[X=12, Y=1]=0 \neq \operatorname{Pr}[X=12] \operatorname{Pr}[Y=1]>0$.

Example 3

Flip a fair coin five times, $X=$ number of $H \mathrm{~s}$ in first three flips, $Y=$ number of H in last two flips. X and Y are independent.
Indeed:
$\operatorname{Pr}[X=a, Y=b]=\binom{3}{a}\binom{2}{b} 2^{-5}=\binom{3}{a} 2^{-3} \times\binom{ 2}{b} 2^{-2}=\operatorname{Pr}[X=a] \operatorname{Pr}[Y=b]$.

Review: Independence of Events

- Events A, B are independent if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Events A, B, C are mutually independent if
A, B are independent, A, C are independent, B, C are independent
and $\operatorname{Pr}[A \cap B \cap C]=\operatorname{Pr}[A] \operatorname{Pr}[B] \operatorname{Pr}[C]$.
- Events $\left\{A_{n}, n \geq 0\right\}$ are mutually independent if
- Example: $X, Y \in\{0,1\}$ two fair coin flips $\Rightarrow X, Y, X \oplus Y$ are pairwise independent but not mutually independent.
- Example: $X, Y, Z \in\{0,1\}$ three fair coin flips are mutually independent.

A useful observation about independence

 TheoremX and Y are independent if and only if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B] \text { for all } A, B \subset \Re .
$$

Proof
If (\Leftrightarrow) : Choose $A=\{a\}$ and $B=\{b\}$
This shows that $\operatorname{Pr}[X=a, Y=b]=\operatorname{Pr}[X=a] \operatorname{Pr}[Y=b]$.
Only if (\Rightarrow):

$$
\begin{aligned}
& \operatorname{Pr}[X \in A, Y \in B] \\
& =\sum_{a \in A} \sum_{b \in B} \operatorname{Pr}[X=a, Y=b]=\sum_{a \in A} \sum_{b \in B} \operatorname{Pr}[X=a] \operatorname{Pr}[Y=b] \\
& =\sum_{a \in A}\left[\sum_{b \in B} \operatorname{Pr}[X=a] \operatorname{Pr}[Y=b]\right]=\sum_{a \in A} \operatorname{Pr}[X=a]\left[\sum_{b \in B} \operatorname{Pr}[Y=b]\right] \\
& =\sum_{a \in A} \operatorname{Pr}[X=a] \operatorname{Pr}[Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B] .
\end{aligned}
$$

Independent Random Variables

Definition: Independence

The random variables X and Y are independent if and only if
$\operatorname{Pr}[Y=b \mid X=a]=\operatorname{Pr}[Y=b]$, for all a and b

Fact:
X, Y are independent if and only if
$\operatorname{Pr}[X=a, Y=b]=\operatorname{Pr}[X=a] \operatorname{Pr}[Y=b]$, for all a and b

Obvious.

Functions of Independent random Variables

Theorem Functions of independent RVs are independent et X, Y be indopen
$f(X)$ and $g(Y)$ are independent, for all $f(\cdot), g(\cdot)$.

Proof:
Recall the definition of inverse image:

$$
\begin{equation*}
h(z) \in C \Leftrightarrow z \in h^{-1}(C):=\{z \mid h(z) \in C\} . \tag{1}
\end{equation*}
$$

Now,
$\operatorname{Pr}[f(X) \in A, g(Y) \in B]$
$=\operatorname{Pr}\left[X \in f^{-1}(A), Y \in g^{-1}(B)\right]$, by (??)
$=\operatorname{Pr}\left[X \in f^{-1}(A)\right] \operatorname{Pr}\left[Y \in g^{-1}(B)\right]$, since X, Y ind
$=\operatorname{Pr}[f(X) \in A] \operatorname{Pr}[g(Y) \in B]$, by (??)

Mean of product of independent RV

Theorem

Let X, Y be independent RVs. Then

$$
E[X Y]=E[X] E[Y] .
$$

Proof:

Recall that $E[g(X, Y)]=\sum_{x, y} g(x, y) \operatorname{Pr}[X=x, Y=y]$. Hence
$E[X Y]=\sum_{x, y} x y \operatorname{Pr}[X=x, Y=y]=\sum_{x, y} x y \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]$, by ind .
$=\sum_{x}\left[\sum_{y} x y \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]\right]=\sum_{x}\left[x \operatorname{Pr}[X=x]\left(\sum_{y} y \operatorname{Pr}[Y=y]\right)\right]$
$=\sum_{x}[x \operatorname{Pr}[X=x] E[Y]]=E[X] E[Y]$.

Functions of pairwise independent RVs

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

$f(X)$ and $g(Y, Z)$ are not independent.

Example 1: Flip two fair coins,

$X=1\{$ coin 1 is $H\}, Y=1\{$ coin 2 is $H\}, Z=X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z)=Y \oplus Z$. Then $g(Y, Z)=X$ is not independent of X.

Example 2: Let A, B, C be pairwise but not mutually independent in a way that A and $B \cap C$ are not independent. Let
$X=1_{A}, Y=1_{B}, Z=1_{C}$. Choose $f(X)=X, g(Y, Z)=Y Z$.

Examples

(1) Assume that X, Y, Z are (pairwise) independent, with $E[X]=E[Y]=E[Z]=0$ and $E\left[X^{2}\right]=E\left[Y^{2}\right]=E\left[Z^{2}\right]=1$. Then

$$
E\left[(X+2 Y+3 Z)^{2}\right]=E\left[X^{2}+4 Y^{2}+9 Z^{2}+4 X Y+12 Y Z+6 X Z\right]
$$

$$
=1+4+9+4 \times 0+12 \times 0+6 \times 0
$$

$$
=14 \text {. }
$$

(2) Let X, Y be independent and $U[1,2, \ldots n]$. Then

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[X^{2}+Y^{2}-2 X Y\right]=2 E\left[X^{2}\right]-2 E[X]^{2} \\
& =\frac{1+3 n+2 n^{2}}{3}-\frac{(n+1)^{2}}{2} .
\end{aligned}
$$

A Little Lemma

$$
\begin{aligned}
& \text { Let } X_{1}, X_{2}, \ldots, X_{11} \text { be mutually independent random variables. Define } \\
& Y_{1}=\left(X_{1}, \ldots, X_{4}\right), Y_{2}=\left(X_{5}, \ldots, X_{8}\right), Y_{3}=\left(X_{9}, \ldots, X_{11}\right) \text {. Then }
\end{aligned}
$$

$$
\operatorname{Pr}\left[Y_{1} \in B_{1}, Y_{2} \in B_{2}, Y_{3} \in B_{3}\right]=\operatorname{Pr}\left[Y_{1} \in B_{1}\right] \operatorname{Pr}\left[Y_{2} \in B_{2}\right] \operatorname{Pr}\left[Y_{3} \in B_{3}\right] .
$$

Proof:

$$
\begin{aligned}
& \operatorname{Pr}\left[Y_{1} \in B_{1}, Y_{2} \in B_{2}, Y_{3} \in B_{3}\right] \\
& \quad=\sum_{y_{1} \in B_{1}, y_{2} \in B_{2}, y_{3} \in B_{3}} \operatorname{Pr}\left[Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right] \\
& \quad=\sum_{y_{1} \in B_{1}, y_{2} \in B_{2}, y_{3} \in B_{3}} \operatorname{Pr}\left[Y_{1}=y_{1}\right] \operatorname{Pr}\left[Y_{2}=y_{2}\right] \operatorname{Pr}\left[Y_{3}=y_{3}\right] \\
& \quad=\left\{\sum_{y_{1} \in B_{1}} \operatorname{Pr}\left[Y_{1}=y_{1}\right]\right\}\left\{\sum_{y_{2} \in B_{2}} \operatorname{Pr}\left[Y_{2}=y_{2}\right]\right\}\left\{\sum_{y_{3} \in B_{3}} \operatorname{Pr}\left[Y_{3}=y_{3}\right]\right\} \\
& \quad=\operatorname{Pr}\left[Y_{1} \in B_{1}\right] \operatorname{Pr}\left[Y_{2} \in B_{2}\right] \operatorname{Pr}\left[Y_{3} \in B_{3}\right] .
\end{aligned}
$$

Mutually Independent Random Variables

Definition

X, Y, Z are mutually independent if
$\operatorname{Pr}[X=x, Y=y, Z=z]=\operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \operatorname{Pr}[Z=z]$, for all x, y, z.

Theorem

The events A, B, C, \ldots are pairwise (resp. mutually) independent iff the random variables $1_{A}, 1_{B}, 1_{C}, \ldots$ are pairwise (resp. mutually) independent.
Proof:

$$
\operatorname{Pr}\left[1_{A}=1,1_{B}=1,1_{C}=1\right]=\operatorname{Pr}[A \cap B \cap C], . .
$$

Functions of mutually independent RVs

One has the following result:

Theorem variables are mutually independent.
Example:
Let $\left\{X_{n}, n \geq 1\right\}$ be mutually independent. Then,
$Y_{1}:=X_{1} X_{2}\left(X_{3}+X_{4}\right)^{2}, Y_{2}:=\max \left\{X_{5}, X_{6}\right\}-\min \left\{X_{7}, X_{8}\right\}, Y_{3}:=X_{9} \cos \left(X_{10}+X_{11}\right)$ re mutually independent
Proof:
Let $B_{1}:=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1} x_{2}\left(x_{3}+x_{4}\right)^{2} \in A_{1}\right\}$. Similarly for B_{2}, B_{2}. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[Y_{1} \in A_{1}, Y_{2} \in A_{2}, Y_{3} \in A_{3}\right] \\
& \quad=\operatorname{Pr}\left[\left(X_{1}, \ldots, X_{4}\right) \in B_{1},\left(X_{5}, \ldots, X_{8}\right) \in B_{2},\left(X_{9}, \ldots, X_{11}\right) \in B_{3}\right] \\
& \quad=\operatorname{Pr}\left[\left(X_{1}, \ldots, X_{4}\right) \in B_{1}\right] \operatorname{Pr}\left[\left(X_{5}, \ldots, X_{8}\right) \in B_{2}\right] \operatorname{Pr}\left[\left(X_{9}, \ldots, X_{11}\right) \in B_{3}\right] \\
& \quad \text { by little lemma } \\
& \quad=\operatorname{Pr}\left[Y_{1} \in A_{1}\right] \operatorname{Pr}\left[Y_{2} \in A_{2}\right] \operatorname{Pr}\left[Y_{3} \in A_{3}\right]
\end{aligned}
$$

Operations on Mutually Independent Events

Theorem
Operations on disjoint collections of mutually independent events produce mutually independent events.
For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \backslash D, E$ are mutually independent.
Proof:
$1_{A \Delta B}=f\left(1_{A}, 1_{B}\right)$ where
$f(0,0)=0, f(1,0)=1, f(0,1)=1, f(1,1)=0$
$1_{C \backslash D}=g\left(1_{C}, 1_{D}\right)$ where
$g(0,0)=0, g(1,0)=1, g(0,1)=0, g(1,1)=0$
$1_{\bar{E}}=h\left(1_{E}\right)$ where $h(0)=1$ and $h(1)=0$

Hence, $1_{A \triangle B}, 1_{C \backslash D}, 1_{\bar{E}}$ are functions of mutually independent $R V$ s. Thus, those RVs are mutually independent. Consequently, the events of which they are indicators are mutually independent.

Product of mutually independent RVs

Theorem

Let X_{1}, \ldots, X_{n} be mutually independent RVs. Then,
$E\left[X_{1} X_{2} \cdots X_{n}\right]=E\left[X_{1}\right] E\left[X_{2}\right] \cdots E\left[X_{n}\right]$.

Proof

Assume that the result is true for n. (It is true for $n=2$.)
Then, with $Y=X_{1} \cdots X_{n}$, one has
$E\left[X_{1} \cdots X_{n} X_{n+1}\right]=E\left[Y X_{n+1}\right]$
$=E[Y] E\left[X_{n+1}\right]$,
because Y, X_{n+1} are independent
$=E\left[X_{1}\right] \cdots E\left[X_{n}\right] E\left[X_{n+1}\right]$.

Summary.

Coupons; Independent Random Variables

- Expected time to collect n coupons is $n H(n) \approx n(\ln n+\gamma)$
- X, Y independent $\Leftrightarrow \operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B]$

Then, $f(X), g(Y)$ are independent

$$
\text { and } E[X Y]=E[X] E[Y]
$$

Mutual independence

- Functions of mutually independent RVs are mutually independent.

