CS70: Jean Walrand: Lecture 26.

Expectation; Geometric & Poisson

CS70: Jean Walrand: Lecture 26.

Expectation; Geometric & Poisson

- 1. Random Variables: Brief Review
- 2. Expectation
- 3. Linearity of Expectation
- 4. Geometric Distribution
- 5. Poisson Distribution

Definition

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

For $a \in \mathfrak{R}$, one defines $X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

For $a \in \mathfrak{R}$, one defines $X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$

The probability that X = a is defined as $Pr[X = a] = Pr[X^{-1}(a)]$.

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

For $a \in \mathfrak{R}$, one defines $X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$

The probability that X = a is defined as $Pr[X = a] = Pr[X^{-1}(a)]$.

The distribution of a random variable X, is $\{(a, Pr[X = a]) : a \in \mathscr{A}\}$, where \mathscr{A} is the *range* of X.

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

For $a \in \mathfrak{R}$, one defines $X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$

The probability that X = a is defined as $Pr[X = a] = Pr[X^{-1}(a)]$.

The distribution of a random variable X, is $\{(a, Pr[X = a]) : a \in \mathscr{A}\}$, where \mathscr{A} is the *range* of X. That is, $\mathscr{A} = \{X(\omega), \omega \in \Omega\}$.

Let X, Y, Z be random variables on Ω and $g : \Re^3 \to \Re$ a function.

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

For $a \in \mathfrak{R}$, one defines $X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$

The probability that X = a is defined as $Pr[X = a] = Pr[X^{-1}(a)]$.

The distribution of a random variable X, is $\{(a, Pr[X = a]) : a \in \mathscr{A}\}$, where \mathscr{A} is the *range* of X. That is, $\mathscr{A} = \{X(\omega), \omega \in \Omega\}$.

Let X, Y, Z be random variables on Ω and $g : \mathfrak{R}^3 \to \mathfrak{R}$ a function. Then g(X, Y, Z) is the random variable that assigns the value $g(X(\omega), Y(\omega), Z(\omega))$ to ω .

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

For $a \in \mathfrak{R}$, one defines $X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$

The probability that X = a is defined as $Pr[X = a] = Pr[X^{-1}(a)]$.

The distribution of a random variable X, is $\{(a, Pr[X = a]) : a \in \mathscr{A}\}$, where \mathscr{A} is the *range* of X. That is, $\mathscr{A} = \{X(\omega), \omega \in \Omega\}$.

Let X, Y, Z be random variables on Ω and $g : \mathfrak{R}^3 \to \mathfrak{R}$ a function. Then g(X, Y, Z) is the random variable that assigns the value $g(X(\omega), Y(\omega), Z(\omega))$ to ω .

Thus, if V = g(X, Y, Z), then $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$.

Definition: The expectation

Definition: The expectation (mean, expected value)

Definition: The **expectation** (mean, expected value) of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Definition: The **expectation** (mean, expected value) of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Indicator:

Let A be an event. The random variable X defined by

Definition: The **expectation** (mean, expected value) of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Indicator:

Let A be an event. The random variable X defined by

$$X(\omega) = \left\{egin{array}{cc} 1, & ext{if } \omega \in A \ 0, & ext{if } \omega
otin A \end{array}
ight.$$

is called the indicator of the event A.

Definition: The **expectation** (mean, expected value) of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Indicator:

Let A be an event. The random variable X defined by

$$X(\omega) = \left\{egin{array}{cc} 1, & ext{if } \omega \in A \ 0, & ext{if } \omega
otin A \end{array}
ight.$$

is called the indicator of the event A.

Note that Pr[X = 1] =

Definition: The **expectation** (mean, expected value) of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Indicator:

Let A be an event. The random variable X defined by

$$X(\omega) = \left\{egin{array}{cc} 1, & ext{if } \omega \in A \ 0, & ext{if } \omega
otin A \end{array}
ight.$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] =

Definition: The **expectation** (mean, expected value) of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Indicator:

Let A be an event. The random variable X defined by

$$X(\omega) = \left\{ egin{array}{cc} 1, & ext{if } \omega \in A \ 0, & ext{if } \omega
otin A \end{array}
ight.$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A].

Definition: The **expectation** (mean, expected value) of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Indicator:

Let A be an event. The random variable X defined by

$$X(\omega) = \left\{ egin{array}{cc} 1, & ext{if } \omega \in A \ 0, & ext{if } \omega
otin A \end{array}
ight.$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

Definition: The **expectation** (mean, expected value) of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Indicator:

Let A be an event. The random variable X defined by

$$X(\omega) = \left\{ egin{array}{cc} 1, & ext{if } \omega \in A \ 0, & ext{if } \omega
otin A \end{array}
ight.$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

The random variable X is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Theorem: Expectation is linear

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n]$$

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

Proof:

 $E[a_1X_1+\cdots+a_nX_n]$

$$E[X] = \sum_{\omega} X(\omega) \times \Pr[\omega].$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n] = \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n]$$

= $\sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$
= $\sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n]$$

= $\sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$
= $\sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$
= $a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Using Linearity - 1: Dots on dice

Roll a die *n* times.

Using Linearity - 1: Dots on dice

Roll a die *n* times.

 X_m = number of dots on roll m.

Roll a die *n* times.

 X_m = number of dots on roll m.

Roll a die *n* times.

 X_m = number of dots on roll m.

$$E[X] = E[X_1 + \cdots + X_n]$$

Roll a die *n* times.

 X_m = number of dots on roll m.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$

Roll a die *n* times.

 X_m = number of dots on roll m.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity

Roll a die *n* times.

 X_m = number of dots on roll m.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$,

Roll a die *n* times.

 X_m = number of dots on roll m.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Roll a die *n* times.

 X_m = number of dots on roll m.

 $X = X_1 + \cdots + X_n$ = total number of dots in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} =$$

Roll a die *n* times.

 X_m = number of dots on roll m.

 $X = X_1 + \cdots + X_n$ = total number of dots in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} =$$

Roll a die *n* times.

 X_m = number of dots on roll m.

 $X = X_1 + \cdots + X_n$ = total number of dots in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}$$

Roll a die *n* times.

 X_m = number of dots on roll m.

 $X = X_1 + \cdots + X_n$ = total number of dots in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X]=\frac{7n}{2}.$$

Strong Law of Large Numbers: An Example

Strong Law of Large Numbers: An Example Rolling Dice.

Strong Law of Large Numbers: An Example

Rolling Dice. X_m = number of dots on roll *m*.

Strong Law of Large Numbers: An Example

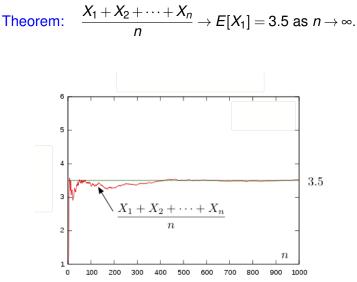
Rolling Dice. X_m = number of dots on roll *m*.

Theorem:

Strong Law of Large Numbers: An Example Rolling Dice. X_m = number of dots on roll m.

Theorem:
$$\frac{X_1 + X_2 + \dots + X_n}{n} \rightarrow E[X_1] = 3.5 \text{ as } n \rightarrow \infty.$$

Strong Law of Large Numbers: An Example Rolling Dice. X_m = number of dots on roll m.



tri als

Hand out assignments at random to *n* students.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where

 $X_m = 1$ {student *m* gets his/her own assignment back}.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where

 $X_m = 1$ {student *m* gets his/her own assignment back}.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

One has

 $E[X] = E[X_1 + \cdots + X_n]$

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n],$

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$,

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$\begin{split} E[X] &= E[X_1 + \dots + X_n] \\ &= E[X_1] + \dots + E[X_n], \text{ by linearity} \\ &= nE[X_1], \text{ because all the } X_m \text{ have the same distribution} \\ &= nPr[X_1 = 1], \end{split}$$

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$,

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$\begin{split} E[X] &= E[X_1 + \dots + X_n] \\ &= E[X_1] + \dots + E[X_n], \text{ by linearity} \\ &= nE[X_1], \text{ because all the } X_m \text{ have the same distribution} \\ &= nPr[X_1 = 1], \text{ because } X_1 \text{ is an indicator} \\ &= n(1/n), \text{ because student 1 is equally likely} \\ &\quad \text{ to get any one of the } n \text{ assignments} \end{split}$$

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the *n* assignments
= 1.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

One has

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the *n* assignments
= 1.

Note that linearity holds even though the X_m are not independent (whatever that means).

Flip *n* coins with heads probability *p*.

Flip *n* coins with heads probability *p*. *X* - number of heads

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

E[X]

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i]$$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ...

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or...

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or... a better approach: Let

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"]$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or... a better approach: Let

$$X_{i} = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$ Moreover $X = X_1 + \cdots + X_n$ and

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$ Moreover $X = X_1 + \cdots + X_n$ and $E[X] = E[X_1] + E[X_2] + \cdots + E[X_n]$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$ Moreover $X = X_1 + \cdots + X_n$ and $E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i]$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$ Moreover $X = X_1 + \cdots + X_n$ and $E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$

Assume A and B are disjoint events.

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$.

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

 $Pr[A \cup B] = E[1_{A \cup B}]$

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

 $Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] =$

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

 $Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] =$

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

 $Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] = Pr[A] + Pr[B].$

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

$$Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] = Pr[A] + Pr[B].$$

In general, $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega) - 1_{A\cap B}(\omega)$.

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

$$Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] = Pr[A] + Pr[B].$$

In general, $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega) - 1_{A\cap B}(\omega)$.

Taking expectation, we get $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$.

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

$$Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] = Pr[A] + Pr[B].$$

In general, $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega) - 1_{A\cap B}(\omega)$. Taking expectation, we get $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$.

Observe that if $Y(\omega) = b$ for all ω , then E[Y] = b.

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

$$Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] = Pr[A] + Pr[B].$$

In general, $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega) - 1_{A\cap B}(\omega)$. Taking expectation, we get $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$.

Observe that if $Y(\omega) = b$ for all ω , then E[Y] = b. Thus, E[X+b] = E[X] + b.

Calculating E[g(X)]Let Y = g(X).

Calculating E[g(X)]Let Y = g(X). Assume that we know the distribution of X.

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1:

Let Y = g(X). Assume that we know the distribution of *X*.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

Let Y = g(X). Assume that we know the distribution of *X*.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

Proof:

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

Proof:

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

 $Pr[Y = y] = Pr[X \in g^{-1}(y)]$ where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

Proof:

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{X} \sum_{\omega \in X^{-1}(X)} g(X(\omega)) Pr[\omega]$$

Calculating E[g(X)]

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

 $Pr[Y = y] = Pr[X \in g^{-1}(y)]$ where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

Proof:

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) Pr[\omega]$$
$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) Pr[\omega]$$

Calculating E[g(X)]

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

 $Pr[Y = y] = Pr[X \in g^{-1}(y)]$ where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

Proof:

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) Pr[\omega]$$
$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

Calculating E[g(X)]

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

 $Pr[Y = y] = Pr[X \in g^{-1}(y)]$ where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

Proof:

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) Pr[\omega]$$

=
$$\sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

=
$$\sum_{x} g(x) Pr[X = x].$$

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$.

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^2 \frac{1}{6}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= $\{4+1+0+1+4+9\}\frac{1}{6} = \frac{19}{6}$.

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= {4+1+0+1+4+9} $\frac{1}{6} = \frac{19}{6}$.

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= $\{4+1+0+1+4+9\}\frac{1}{6} = \frac{19}{6}.$

$$Y = \begin{cases} 4, & \text{w.p.} \frac{2}{6} \\ \\ \end{cases}$$

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= $\{4+1+0+1+4+9\}\frac{1}{6} = \frac{19}{6}.$

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ \end{cases}$$

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= {4+1+0+1+4+9} $\frac{1}{6} = \frac{19}{6}$.

$$Y = \begin{cases} 4, & \text{w.p.} \frac{2}{6} \\ 1, & \text{w.p.} \frac{2}{6} \\ 0, & \text{w.p.} \frac{1}{6} \end{cases}$$

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= {4+1+0+1+4+9} $\frac{1}{6} = \frac{19}{6}$.

$$Y = \begin{cases} 4, & \text{w.p.} \ \frac{2}{6} \\ 1, & \text{w.p.} \ \frac{2}{6} \\ 0, & \text{w.p.} \ \frac{1}{6} \\ 9, & \text{w.p.} \ \frac{1}{6} \end{cases}$$

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= {4+1+0+1+4+9} $\frac{1}{6} = \frac{19}{6}$.

$$Y = \begin{cases} 4, & \text{w.p.} \ \frac{2}{6} \\ 1, & \text{w.p.} \ \frac{2}{6} \\ 0, & \text{w.p.} \ \frac{1}{6} \\ 9, & \text{w.p.} \ \frac{1}{6} \end{cases}$$

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= {4+1+0+1+4+9} $\frac{1}{6} = \frac{19}{6}$.

Method 1 - We find the distribution of $Y = X^2$:

$$Y = \begin{cases} 4, & \text{w.p.} \ \frac{2}{6} \\ 1, & \text{w.p.} \ \frac{2}{6} \\ 0, & \text{w.p.} \ \frac{1}{6} \\ 9, & \text{w.p.} \ \frac{1}{6}. \end{cases}$$

Thus,

$$E[Y] = 4\frac{2}{6} + 1\frac{2}{6} + 0\frac{1}{6} + 9\frac{1}{6} = \frac{19}{6}.$$

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X,Y,Z)] = \sum_{x,y,z} g(x,y,z) \Pr[X=x, Y=y, Z=z].$$

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X,Y,Z)] = \sum_{x,y,z} g(x,y,z) \Pr[X=x, Y=y, Z=z].$$

An Example.

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X,Y,Z)] = \sum_{x,y,z} g(x,y,z) \Pr[X=x, Y=y, Z=z].$$

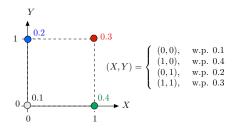
An Example. Let *X*, *Y* be as shown below:

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X,Y,Z)] = \sum_{x,y,z} g(x,y,z) \Pr[X=x, Y=y, Z=z].$$

An Example. Let *X*, *Y* be as shown below:

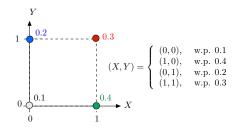


We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X,Y,Z)] = \sum_{x,y,z} g(x,y,z) \Pr[X=x, Y=y, Z=z].$$

An Example. Let *X*, *Y* be as shown below:



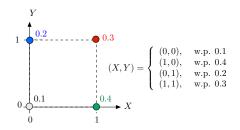
 $E[\cos(2\pi X + \pi Y)] =$

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X,Y,Z)] = \sum_{x,y,z} g(x,y,z) \Pr[X=x, Y=y, Z=z].$$

An Example. Let *X*, *Y* be as shown below:



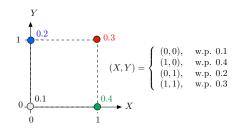
 $E[\cos(2\pi X + \pi Y)] = 0.1\cos(0) + 0.4\cos(2\pi) + 0.2\cos(\pi) + 0.3\cos(3\pi)$

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X,Y,Z)] = \sum_{x,y,z} g(x,y,z) \Pr[X=x, Y=y, Z=z].$$

An Example. Let *X*, *Y* be as shown below:



 $E[\cos(2\pi X + \pi Y)] = 0.1\cos(0) + 0.4\cos(2\pi) + 0.2\cos(\pi) + 0.3\cos(3\pi)$ = 0.1 \times 1 + 0.4 \times 1 + 0.2 \times (-1) + 0.3 \times (-1) = 0.

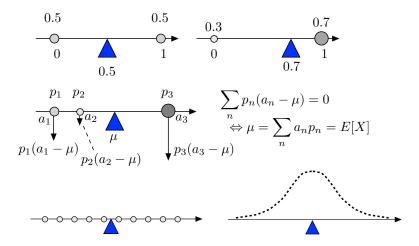
Center of Mass

Center of Mass

The expected value has a *center of mass* interpretation:

Center of Mass

The expected value has a center of mass interpretation:



Definition

Let X, Y be two random variables on Ω .

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$,

Definition

Let *X*, *Y* be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant *a*.

Definition

Let *X*, *Y* be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant *a*.

Facts

(a) If $X \ge 0$, then $E[X] \ge 0$.

Definition

Let *X*, *Y* be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant *a*.

Facts

(a) If $X \ge 0$, then $E[X] \ge 0$. (b) If $X \le Y$, then $E[X] \le E[Y]$.

Definition

Let *X*, *Y* be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant *a*.

Facts

(a) If $X \ge 0$, then $E[X] \ge 0$. (b) If $X \le Y$, then $E[X] \le E[Y]$. **Proof**

(a) If $X \ge 0$, every value *a* of *X* is nonnegative.

Definition

Let *X*, *Y* be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant *a*.

Facts

(a) If $X \ge 0$, then $E[X] \ge 0$. (b) If $X \le Y$, then $E[X] \le E[Y]$. **Proof**

(a) If $X \ge 0$, every value *a* of *X* is nonnegative. Hence,

$$E[X] = \sum_{a} a Pr[X = a] \ge 0.$$

Definition

Let *X*, *Y* be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant *a*.

Facts

(a) If $X \ge 0$, then $E[X] \ge 0$. (b) If $X \le Y$, then $E[X] \le E[Y]$. **Proof**

(a) If $X \ge 0$, every value *a* of *X* is nonnegative. Hence,

$$E[X] = \sum_{a} a Pr[X = a] \ge 0.$$

(b) $X \leq Y \Rightarrow Y - X \geq 0$

Monotonicity

Definition

Let *X*, *Y* be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant *a*.

Facts

(a) If $X \ge 0$, then $E[X] \ge 0$. (b) If $X \le Y$, then $E[X] \le E[Y]$. **Proof**

(a) If $X \ge 0$, every value *a* of *X* is nonnegative. Hence,

$$E[X] = \sum_{a} aPr[X = a] \ge 0.$$

(b)
$$X \le Y \Rightarrow Y - X \ge 0 \Rightarrow E[Y] - E[X] = E[Y - X] \ge 0$$
.
Example:

Monotonicity

Definition

Let *X*, *Y* be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant *a*.

Facts

(a) If $X \ge 0$, then $E[X] \ge 0$. (b) If $X \le Y$, then $E[X] \le E[Y]$. **Proof**

(a) If $X \ge 0$, every value *a* of *X* is nonnegative. Hence,

$$E[X] = \sum_{a} aPr[X = a] \ge 0.$$

(b)
$$X \leq Y \Rightarrow Y - X \geq 0 \Rightarrow E[Y] - E[X] = E[Y - X] \geq 0.$$

Example:

$$B = \cup_m A_m \Rightarrow \mathbf{1}_B(\omega) \leq \sum_m \mathbf{1}_{A_m}(\omega)$$

Monotonicity

Definition

Let *X*, *Y* be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant *a*.

Facts

(a) If $X \ge 0$, then $E[X] \ge 0$. (b) If $X \le Y$, then $E[X] \le E[Y]$. **Proof**

(a) If $X \ge 0$, every value *a* of *X* is nonnegative. Hence,

$$E[X] = \sum_{a} aPr[X = a] \ge 0.$$

(b)
$$X \leq Y \Rightarrow Y - X \geq 0 \Rightarrow E[Y] - E[X] = E[Y - X] \geq 0.$$

Example:

$$B = \cup_m A_m \Rightarrow \mathbf{1}_B(\omega) \leq \sum_m \mathbf{1}_{A_m}(\omega) \Rightarrow \Pr[\cup_m A_m] \leq \sum_m \Pr[A_m].$$

Roll a six-sided balanced die. Let X be the number of pips (dots).

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, ..., 6\}$.

Roll a six-sided balanced die. Let *X* be the number of pips (dots). Then *X* is equally likely to take any of the values $\{1, 2, ..., 6\}$. We say that *X* is *uniformly distributed* in $\{1, 2, ..., 6\}$.

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, ..., n\}$ if Pr[X = m] = 1/n for m = 1, 2, ..., n.

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, ..., n\}$ if Pr[X = m] = 1/n for m = 1, 2, ..., n. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m]$$

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, ..., n\}$ if Pr[X = m] = 1/n for m = 1, 2, ..., n. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n}$$

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, ..., n\}$ if Pr[X = m] = 1/n for m = 1, 2, ..., n. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}$$

Let's flip a coin with Pr[H] = p until we get H.

Let's flip a coin with Pr[H] = p until we get H.

Let's flip a coin with Pr[H] = p until we get H.

For instance:

 $\omega_1 = H$, or

Let's flip a coin with Pr[H] = p until we get H.

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or

Let's flip a coin with Pr[H] = p until we get H.

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or

Let's flip a coin with Pr[H] = p until we get H.

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T \cdots T H$.

Let's flip a coin with Pr[H] = p until we get H.

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T T \cdots T H$.
Note that $\Omega = \{\omega_n, n = 1, 2, ...\}$.

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let *X* be the number of flips until the first *H*. Then, $X(\omega_n) =$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let *X* be the number of flips until the first *H*. Then, $X(\omega_n) = n$.

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let *X* be the number of flips until the first *H*. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] =$$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T \cdots T H$.

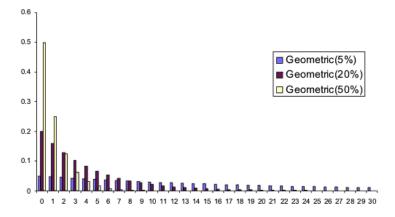
Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let *X* be the number of flips until the first *H*. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$



$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} \Pr[X_n] =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1}$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n =$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$.

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

 $S = 1 + a + a^2 + a^3 + \cdots$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if $|a| < 1$, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^2 + a^3 + \cdots$$

 $aS = a + a^2 + a^3 + a^4 + \cdots$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} \Pr[X_n] =$$

 \sim

Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} \Pr[X_n] = p \ \frac{1}{1 - (1 - p)} =$$

Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} \Pr[X_n] = p \ \frac{1}{1 - (1 - p)} = 1.$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.
One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

(1-p)E[X] = (1-p)p+2(1-p)^2p+3(1-p)^3p+\cdots
$$pE[X] = p+(1-p)p+(1-p)^2p+(1-p)^3p+\cdots$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

(1-p)E[X] = (1-p)p+2(1-p)^2p+3(1-p)^3p+\cdots
$$pE[X] = p+(1-p)p+(1-p)^2p+(1-p)^3p+\cdots$$

by subtracting the previous two identities

by subtracting the previous two identities

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
$$pE[X] = p + (1-p)p + (1-p)^2p + (1-p)^3p + \cdots$$

by subtracting the previous two identities
$$\sum_{n=1}^{\infty} Pr[X = n]$$

$$= \sum_{n=1}^{\infty} \Pr[X=n] =$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
pE[X] = p+ (1-p)p + (1-p)^2p + (1-p)^3p + \cdots
by subtracting the previous two identities
= $\sum_{n=1}^{\infty} Pr[X = n] = 1.$

$$= \sum_{n=1}^{\infty} \Pr[X=n] = 1$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
pE[X] = p + (1-p)p + (1-p)^2p + (1-p)^3p + \cdots
by subtracting the previous two identities
= $\sum_{n=1}^{\infty} Pr[X = n] = 1.$

Hence,

$$E[X]=rac{1}{p}.$$

Let X be G(p). Then, for $n \ge 0$,

Let *X* be G(p). Then, for $n \ge 0$,

Pr[X > n] = Pr[first *n* flips are T] =

Let *X* be G(p). Then, for $n \ge 0$,

Pr[X > n] = Pr[first *n* flips are $T] = (1 - p)^n$.

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first *n* flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first *n* flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

Proof:

Pr[X > n + m|X > n] =

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first *n* flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n+m|X > n] = \frac{Pr[X > n+m \text{ and } X > n]}{Pr[X > n]}$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first *n* flips are $T] = (1 - p)^n$.

Theorem

$$\Pr[X > n + m | X > n] = \Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$
$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first *n* flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n+m|X > n] = \frac{Pr[X > n+m \text{ and } X > n]}{Pr[X > n]}$$
$$= \frac{Pr[X > n+m]}{Pr[X > n]}$$
$$= \frac{(1-p)^{n+m}}{(1-p)^n} =$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first *n* flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n+m|X > n] = \frac{Pr[X > n+m \text{ and } X > n]}{Pr[X > n]}$$
$$= \frac{Pr[X > n+m]}{Pr[X > n]}$$
$$= \frac{(1-p)^{n+m}}{(1-p)^n} = (1-p)^m$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first *n* flips are $T] = (1 - p)^n$.

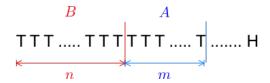
Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

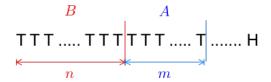
$$Pr[X > n+m|X > n] = \frac{Pr[X > n+m \text{ and } X > n]}{Pr[X > n]}$$
$$= \frac{Pr[X > n+m]}{Pr[X > n]}$$
$$= \frac{(1-p)^{n+m}}{(1-p)^n} = (1-p)^m$$
$$= Pr[X > m].$$

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$



$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$



Pr[X > n + m|X > n] = Pr[A|B] = Pr[A] = Pr[X > m].

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

Pr[X > n + m | X > n] = Pr[A|B] = Pr[A] = Pr[X > m].The coin is memoryless, therefore, so is *X*.

Theorem: For a r.v. X that takes the values $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

[See later for a proof.]

Theorem: For a r.v. X that takes the values $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i-1] = (1-p)^{i-1}$.

Theorem: For a r.v. X that takes the values $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^{i}$$

Theorem: For a r.v. X that takes the values $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} =$$

Theorem: For a r.v. X that takes the values $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X=i]$$

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

=
$$\sum_{i=1}^{\infty} i\{Pr[X \ge i] - Pr[X \ge i+1]\}$$

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times \Pr[X = i]$$

=
$$\sum_{i=1}^{\infty} i \{\Pr[X \ge i] - \Pr[X \ge i+1]\}$$

=
$$\sum_{i=1}^{\infty} \{i \times \Pr[X \ge i] - i \times \Pr[X \ge i+1]\}$$

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

=
$$\sum_{i=1}^{\infty} i\{Pr[X \ge i] - Pr[X \ge i + 1]\}$$

=
$$\sum_{i=1}^{\infty} \{i \times Pr[X \ge i] - i \times Pr[X \ge i + 1]\}$$

=
$$\sum_{i=1}^{\infty} \{i \times Pr[X \ge i] - (i - 1) \times Pr[X \ge i]\}$$

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times \Pr[X = i]$$

=
$$\sum_{i=1}^{\infty} i \{\Pr[X \ge i] - \Pr[X \ge i + 1]\}$$

=
$$\sum_{i=1}^{\infty} \{i \times \Pr[X \ge i] - i \times \Pr[X \ge i + 1]\}$$

=
$$\sum_{i=1}^{\infty} \{i \times \Pr[X \ge i] - (i - 1) \times \Pr[X \ge i]\}$$

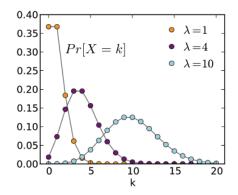
=
$$\sum_{i=1}^{\infty} \Pr[X \ge i].$$

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads.

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$.

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X "for large *n*."



$$Pr[X = m] = {\binom{n}{m}}p^m(1-p)^{n-m}$$
, with $p =$

$$Pr[X = m] = {\binom{n}{m}}p^m(1-p)^{n-m}$$
, with $p = \lambda/n$

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$
$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

=
$$\frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

=
$$\frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of *X* "for large *n*." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$;

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of *X* "for large *n*." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$; for (2) we used $(1 - a/n)^n \approx e^{-a}$.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Simeon Poisson

The Poisson distribution is named after:

Simeon Poisson

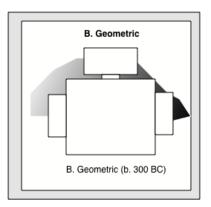
The Poisson distribution is named after:

Equal Time: B. Geometric

The geometric distribution is named after:

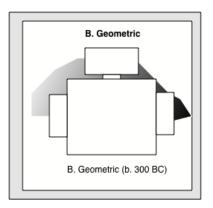
Equal Time: B. Geometric

The geometric distribution is named after:



Equal Time: B. Geometric

The geometric distribution is named after:



I could not find a picture of D. Binomial, sorry.

•
$$E[X] := \sum_a a Pr[X = a].$$

- $E[X] := \sum_a a Pr[X = a].$
- Expectation is Linear.

Summary

- $E[X] := \sum_a a Pr[X = a].$
- Expectation is Linear.

$$\blacktriangleright B(n,p), U[1:n], G(p), P(\lambda).$$